Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = microdot array

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5821 KB  
Article
Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
by Sofia Rubtsov, Akshay Puravankara, Edi L. Laufer, Alexander Sobolev, Alexey Kosenko, Vasily Shishkov, Mykola Shatalov, Victor Danchuk, Michael Zinigrad, Albina Musin and Lena Yadgarov
Nanomaterials 2025, 15(19), 1501; https://doi.org/10.3390/nano15191501 - 1 Oct 2025
Viewed by 1014
Abstract
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading [...] Read more.
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite’s crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite’s structural integrity. Full article
(This article belongs to the Special Issue Photochemical Frontiers of Noble Metal Nanomaterials)
Show Figures

Figure 1

10 pages, 544 KB  
Article
Evaluation of a New Multiparametric Microdot Array-Based Immunoassay Panel for Systemic Autoimmune Disease Diagnosis
by Maria Infantino, Francesca Pavia, Valentina Grossi, Barbara Lari, Maurizio Benucci, Francesca Li Gobbi, Silvia Pancani and Mariangela Manfredi
J. Pers. Med. 2024, 14(6), 607; https://doi.org/10.3390/jpm14060607 - 7 Jun 2024
Viewed by 1704
Abstract
Background: The early reliable detection and quantification of autoantibodies play an important role in autoimmune disease diagnosis and in disease-course monitoring. New technologies, such as the multiplexed determination of autoantibodies, have recently been introduced and are being adopted more frequently. The aim of [...] Read more.
Background: The early reliable detection and quantification of autoantibodies play an important role in autoimmune disease diagnosis and in disease-course monitoring. New technologies, such as the multiplexed determination of autoantibodies, have recently been introduced and are being adopted more frequently. The aim of this study was to evaluate the ability of a new microdot array-based multiparametric assay (ZENIT AMiDot CTD panel, A. Menarini Diagnostics, Firenze, Italy) to correctly classify patients with autoimmune rheumatic diseases (ARDs) and compare it to a fluorescence enzyme immunoassay (FEIA) for the detection of anti-ENAs. Methods: The study included 69 consecutive samples from patients with ARDs that were analyzed using two different methods (FEIA and AMiDot) to detect anti-CENP B and six anti-ENA antibodies: anti-Scl-70, anti-SSB/La, anti-Jo-1, anti-U1-RNP, anti-Ro52, and anti-Ro60. The control group sera came from sixty-eight blood donors. Tests were run on the automated slide processor ZENIT FLOW, and then the slides were imaged and analyzed using ZENIT fast. Results: Since the samples were selected for at least one antibody positivity with an ARD diagnosis, we did not calculate clinical sensitivity but only specificity, which was 98.53%, ranging from 90% for anti-SSB/La antibodies to 100% for anti-CENP B ones. Mean agreement among the methods assessed by Cohen’s kappa was 0.816 ± 0.240. Conclusions: The assay demonstrated good clinical performance and may be considered a valuable aid in detecting ARD patients, offering an alternative to methods such as FEIA which are largely in use today. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

12 pages, 10074 KB  
Article
Fabrication of Pre-Structured Substrates and Growth of CIGS Micro-Absorbers
by Marina Alves, Pedro Anacleto, Vasco Teixeira, Joaquim Carneiro and Sascha Sadewasser
Nanomaterials 2024, 14(6), 543; https://doi.org/10.3390/nano14060543 - 20 Mar 2024
Cited by 3 | Viewed by 2267
Abstract
Second-generation thin-film Cu(In, Ga)Se2 (CIGS) solar cells are a well-established photovoltaic technology with a record power conversion efficiency of 23.6%. However, their reliance on critical raw materials, such as In and Ga, requires new approaches to reduce the amount of critical raw [...] Read more.
Second-generation thin-film Cu(In, Ga)Se2 (CIGS) solar cells are a well-established photovoltaic technology with a record power conversion efficiency of 23.6%. However, their reliance on critical raw materials, such as In and Ga, requires new approaches to reduce the amount of critical raw materials employed. The micro-concentrator concept involves the combination of thin-film photovoltaic technology with concentrator photovoltaic technology. This approach reduces the size of the solar cell to the micrometer range and uses optical concentration to collect sunlight from a larger area, focusing it onto micro solar cells. This work is devoted to the development of a process for manufacturing pre-structured substrates with regular arrays of holes with 200 and 250 µm diameters inside a SiOx insulating matrix. Subsequently, a Cu–In–Ga precursor is deposited by sputtering, followed by photoresist lift-off and the application of a Cu–In–Ga thermal annealing at 500 °C to improve precursor quality and assess pre-structured substrate stability under elevated temperatures. Finally, a two-stage selenization process leads to the formation of CIGS absorber micro-dots. This study presents in detail the fabrication process and explores the feasibility of a bottom-up approach using pre-structured substrates, addressing challenges encountered during fabrication and providing insights for future improvements in CIGS absorber materials. Full article
(This article belongs to the Special Issue State-of-the-Art Nanomaterials for Solar Cells)
Show Figures

Figure 1

13 pages, 3189 KB  
Article
Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays
by Sofia Rubtsov, Albina Musin, Viktor Danchuk, Mykola Shatalov, Neena Prasad, Michael Zinigrad and Lena Yadgarov
Nanomaterials 2023, 13(19), 2675; https://doi.org/10.3390/nano13192675 - 29 Sep 2023
Cited by 7 | Viewed by 2527
Abstract
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a [...] Read more.
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a titanium oxide (TiO2) microdot array (MDA), which was deposited using the inkjet printing technique. The X-ray (XRD) analysis of MAPI (methyl ammonium lead iodide) perovskite films deposited on glass substrates with and without MDA revealed no destructive effect of MDA on the perovskite structure. Moreover, a 12% increase in the crystallite size of perovskite with MDA was registered. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques revealed the morphology of the TiO2_MDA and TiO2-AuNPs_MDA. The finite-difference time-domain (FDTD) simulation was employed to evaluate the absorption cross-sections and local field enhancement of AuNPs in the TiO2 and TiO2/MAPI surrounding media. Reflectance UV-Vis spectra of the samples comprising glass/TiO2 ETL/TiO2_MDA (ETL—an electron transport layer) with and without AuNPs in TiO2_MDA were studied, and the band gap (Eg) values of MAPI have been calculated using the Kubelka–Munk equation. The MDA introduction did not influence the band gap value, which remained at ~1.6 eV for all the samples. The photovoltaic performance of the fabricated PSC with and without MDA and the corresponding key parameters of the solar cells have also been studied and discussed in detail. The findings indicated a significant power conversion efficiency improvement of over 47% in the PSCs with the introduction of the TiO2-AuNPs_MDA on the ETL/MAPI interface compared to the reference device. Our study demonstrates the significant enhancement achieved in halide PSC by utilizing AuNPs within a TiO2_MDA. This approach holds great promise for advancing the efficiency and performance of photovoltaic devices. Full article
Show Figures

Figure 1

10 pages, 1412 KB  
Article
Serum Epiplakin Might Be a Potential Serodiagnostic Biomarker for Bladder Cancer
by Soichiro Shimura, Kazumasa Matsumoto, Yuriko Shimizu, Kohei Mochizuki, Yutaka Shiono, Shuhei Hirano, Dai Koguchi, Masaomi Ikeda, Yuichi Sato and Masatsugu Iwamura
Cancers 2021, 13(20), 5150; https://doi.org/10.3390/cancers13205150 - 14 Oct 2021
Cited by 4 | Viewed by 2281
Abstract
Tumor markers that can be detected at an early stage are needed. Here, we evaluated the epiplakin expression levels in sera from patients with bladder cancer (BC). Using a micro-dot blot array, we evaluated epiplakin expression levels in 60 patients with BC, 20 [...] Read more.
Tumor markers that can be detected at an early stage are needed. Here, we evaluated the epiplakin expression levels in sera from patients with bladder cancer (BC). Using a micro-dot blot array, we evaluated epiplakin expression levels in 60 patients with BC, 20 patients with stone disease, and 28 healthy volunteers. The area under the curve (AUC) and best cut-off point were calculated using receiver-operating characteristic (ROC) analysis. Serum epiplakin levels were significantly higher in patients with BC than in those with stone disease (p = 0.0013) and in healthy volunteers (p < 0.0001). The AUC-ROC level for BC was 0.78 (95% confidence interval (CI) = 0.69–0.87). Using a cut-off point of 873, epiplakin expression levels exhibited 68.3% sensitivity and 79.2% specificity for BC. However, the serum epiplakin levels did not significantly differ by sex, age, pathological stage and grade, or urine cytology. We performed immunohistochemical staining using the same antibody on another cohort of 127 patients who underwent radical cystectomy. Univariate and multivariate analysis results showed no significant differences between epiplakin expression, clinicopathological findings, and patient prognoses. Our results showed that serum epiplakin might be a potential serodiagnostic biomarker in patients with BC. Full article
(This article belongs to the Special Issue Urological Cancer 2021)
Show Figures

Figure 1

13 pages, 4480 KB  
Article
Arrayed CdTeMicrodots and Their Enhanced Photodetectivity via Piezo-Phototronic Effect
by Dong Jin Lee, G. Mohan Kumar, P. Ilanchezhiyan, Fu Xiao, Sh.U. Yuldashev, Yong Deuk Woo, Deuk Young Kim and Tae Won Kang
Nanomaterials 2019, 9(2), 178; https://doi.org/10.3390/nano9020178 - 1 Feb 2019
Cited by 8 | Viewed by 3519
Abstract
In this paper, a photodetector based on arrayed CdTe microdots was fabricated on Bi coated transparent conducting indium tin oxide (ITO)/glass substrates. Current-voltage characteristics of these photodetectors revealed an ultrahigh sensitivity under stress (in the form of force through press) while compared to [...] Read more.
In this paper, a photodetector based on arrayed CdTe microdots was fabricated on Bi coated transparent conducting indium tin oxide (ITO)/glass substrates. Current-voltage characteristics of these photodetectors revealed an ultrahigh sensitivity under stress (in the form of force through press) while compared to normal condition. The devices exhibited excellent photosensing properties with photoinduced current increasing from 20 to 76 μA cm−2 under stress. Furthermore, the photoresponsivity of the devices also increased under stress from 3.2 × 10−4 A/W to 5.5 × 10−3 A/W at a bias of 5 V. The observed characteristics are attributed to the piezopotential induced change in Schottky barrier height, which actually results from the piezo-phototronic effect. The obtained results also demonstrate the feasibility in realization of a facile and promising CdTe microdots-based photodetector via piezo-phototronic effect. Full article
(This article belongs to the Special Issue Optoelectronic Nanodevices)
Show Figures

Graphical abstract

Back to TopTop