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Abstract: The exceptional property of plasmonic materials to localize light into sub-wavelength
regimes has significant importance in various applications, especially in photovoltaics. In this
study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance
of plasmonic gold nanoparticles (AuNPs) embedded into a titanium oxide (TiO2) microdot array
(MDA), which was deposited using the inkjet printing technique. The X-ray (XRD) analysis of
MAPI (methyl ammonium lead iodide) perovskite films deposited on glass substrates with and
without MDA revealed no destructive effect of MDA on the perovskite structure. Moreover, a 12%
increase in the crystallite size of perovskite with MDA was registered. Scanning electron microscopy
(SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques revealed the
morphology of the TiO2_MDA and TiO2-AuNPs_MDA. The finite-difference time-domain (FDTD)
simulation was employed to evaluate the absorption cross-sections and local field enhancement of
AuNPs in the TiO2 and TiO2/MAPI surrounding media. Reflectance UV-Vis spectra of the samples
comprising glass/TiO2 ETL/TiO2_MDA (ETL—an electron transport layer) with and without AuNPs
in TiO2_MDA were studied, and the band gap (Eg) values of MAPI have been calculated using
the Kubelka–Munk equation. The MDA introduction did not influence the band gap value, which
remained at ~1.6 eV for all the samples. The photovoltaic performance of the fabricated PSC with and
without MDA and the corresponding key parameters of the solar cells have also been studied and
discussed in detail. The findings indicated a significant power conversion efficiency improvement of
over 47% in the PSCs with the introduction of the TiO2-AuNPs_MDA on the ETL/MAPI interface
compared to the reference device. Our study demonstrates the significant enhancement achieved in
halide PSC by utilizing AuNPs within a TiO2_MDA. This approach holds great promise for advancing
the efficiency and performance of photovoltaic devices.

Keywords: perovskite solar cells; TiO2; plasmonic Au nanoparticles; inkjet printing; localized surface
plasmon resonance

1. Introduction

Hybrid organic–inorganic metal halide perovskites have excellent optoelectronic prop-
erties for photovoltaic applications owing to their adjustable band gap, low exciton binding
energy, and high carrier mobility. This has made them an attractive area of research in
simple-solution-based chemistry and in the search for accessible methods for depositing
thin polycrystalline perovskite films at room temperature [1]. Perovskite-based solar cells
(PSC) have shown rapid improvements in durability and efficiency in recent years. The last
PSC has an efficiency of 25.8% [2], below the Shockley–Queisser limit (about 33.7%) [3] of
the maximum theoretical efficiency for one-junction solar cells (SC), indicating untapped
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potential for further enhancing PSC device performance [4]. However, a common disadvan-
tage of thin-film SCs is that only some of the incident light can be absorbed due to the small
thickness of the active layer. Phillips et al., reported that the methyl ammonium lead iodide
(MAPI) perovskite layer, measuring 350 nm in thickness, absorbed no more than 85% of in-
cident light [5]. Also, Liu et.al. reported that as the thickness of a perovskite film surpassed
the carrier diffusion lengths, there was a notable decline in the performance of PSCs, with
the optimum thickness approximately at 330 nm [6]. So, increasing the absorption in the
solar spectrum range and, as a result, gaining photoelectrons, is one of the ways to increase
the efficiency of energy conversion. Various approaches and structural configurations can
be employed to enhance absorption efficiency. For instance, creating a composite semi-
conductor oxide can lead to substantial improvements in power conversion efficiency [7].
Additionally, utilizing quantum dots can facilitate the conversion of photoelectrons, with
the photoanode serving as a channel for electron transmission [8]. Incorporating organic
and inorganic double-hole layers enables precise adjustment of energy level alignment
between these layers, ultimately enhancing the photovoltaic performance and stability of
PSCs [9]. Apart from this, another promising approach to enhance the capture of light in
the submicron active layer of PSC is based on the introduction of metallic nanostructures
in which localized surface plasmon resonance (LSPR) can be excited [10]. This leads to
various effects that can occur in thin-film PSCs. First of all, metal nanoparticles (NPs) scatter
light, increasing the effective path length within a layer and enhancing light absorption.
Due to the LSPR, NPs function as subwavelength antennas, amplifying the near field and
increasing the number of generated electron-hole pairs. Two more important effects are hot
electron transfer, that is, the direct generation of charge carriers in the surrounding semi-
conductor material, and plasmon resonant energy transfer, both of which can significantly
impact absorption efficiency [10,11].

Among the numerous studies of effects arising when plasmonic structures are cou-
pled with perovskite materials [12,13], we can mention only a few works devoted to the
application of spherical AuNPs in a TiO2 environment [14]. AuNPs with a diameter of 40
nm were incorporated between two TiO2 layers. The device with AuNPs showed 20–30%
power conversion efficiency (PCE) enhancement compared to the planar perovskite device
with a TiO2-fabricated ETL. The improved device performance was explained on the base
of enhanced conductivity and decreased surface potential of TiO2 film, ascribed to the
plasmon-mediated hot carrier injection from AuNPs to TiO2. The optimized PSC with 80
nm-sized Au@TiO2 nanospheres in mesoporous TiO2 and perovskite layers showed over
44% PCE enhancement compared to the reference device without the AuNPs [15]. The au-
thors concluded that the enhanced device performance was due to plasmonic effects rather
than only optical ones. A dual ETL with embedded AuNPs was developed [16]. Here,
the bottom was a hybrid layer of plasmonic AuNPs (about 16 nm diameter) embedded in
anatase TiO2 films, while the top layer was made of anatase TiO2 NPs to prevent direct
contact between AuNPs and the perovskite. The PSCs with dual ETLs containing 0.2 wt%
Au achieved power conversion efficiencies up to 20.31 and 15.36% better than those with
TiO2 ETL only (on rigid and flexible substrates, respectively). In all these works, AuNPs
were synthesized with the citrate method, and TiO2 layers were deposited by spin-coating.

In this work, we introduced a novel interface tailoring technique by inkjet printing
TiO2 microdot arrays with embedded AuNPs (TiO2-AuNP_MDA) into a PSC as an addi-
tional layer. It has been demonstrated that the addition of the TiO2-AuNP_MDA on the
PSC ETL layer results in the appearance of photoelectrically active regions, which both
effectively utilize photon energy and manage electrons, increasing PSC efficiency [12–14].
However, upon direct contact with a perovskite absorber, AuNPs can act as recombination
centers for charge carriers that degrade device performance [17]. The TiO2-AuNP_MDA
layer inkjet printed at the ETL/MAPI interface can both isolate AuNPs from MAPI and
create good contact with TiO2 ETL, ensuring the transfer of hot electrons and promoting
photoconductivity and the extraction of photogenerated electrons at the TiO2/MAPI inter-
face [18,19]. The printing of an MDA pattern rather than a continuous layer was chosen
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because individual droplets are reproducible, and AuNPs with the same size distribution
were synthesized in them after annealing [20]. In addition, the MDA layer contributes to
lower series resistance. The PSC modified with TiO2-AuNP_MDA demonstrated improved
photovoltaic characteristics. Namely, the PCE of the champion cell was increased by more
than 46% compared to a reference device without AuNPs. The proposed method will pave
the way for more efficient PSCs.

2. Materials and Methods

Experimental information, including the methods, synthesis, PSC fabrication, and
deposition of the layers, is provided in the SI (Supplementary Information).

2.1. Solar Cell Device Structure

High absorbance and low interfacial resistance are critical for optimizing the PSC
in the SC fabrication process. Herein, an increased absorbance is achieved by adding
TiO2-AuNPs_MDA. At the same time, low interfacial resistance is attained by the microdot
architecture of the additional layers. Here, we fabricate three types of PSCs of a planar
architecture: the reference devices and their structure are presented in Figure 1A, modified
PSCs with TiO2_MDA on the ETL/MAPI interface are presented in Figure 1B, and PCS s
with TiO2-AuNP_MDA on the ETL/MAPI interface are presented in Figure 1C. An energy
level diagram of PCS with TiO2-AuNP_MDA is presented in Figure S1. The chosen MDA
architecture of the additional layers promotes MAPI percolation, thus reducing the effective
resistivity [21].
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Figure 1. Scheme of the PSC devices: (A)—standard perovskite PSC with planar architecture, (B)—
PSC with TiO2_MDA, and (C)—PSC with TiO2-AuNP_MDA.

2.2. Characterization

The structural characteristics of the MAPI films deposited on bare glass, on glass with
printed TiO2_MDA, and on glass with TiO2-AuNP_MDA/MAPI surfaces were determined
using an XRD (SmartLab SE, Rigaku, Akishima, Japan) powder diffractometer with Cu-Kα

radiation (λ = 1.5460 Å). Measurements were made in 2θ geometry (angle of incidence 3◦)
in the range of 10–80◦ with a step of 0.03◦ and a rate of 0.5◦/min. The phase analysis was
performed using SmartLab Studio II ver. 4.2.44.0 with Powder XRD module and ICDD
PDF-2 2019 database, using the Rietveld Refinement method in the range of 10–45◦ using
the WPPF (Whole Powder Pattern Fitting) module. The crystallite size was calculated
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using the comprehensive analysis module and the Halder–Wagner modeling method. The
morphology of TiO2-AuNP_MDA/MAPI films was studied with a TESCAN MAIA3 (Brno,
Czech Republic) scanning electron microscope in SEM and STEM (scanning transmission
electron microscope) modes. In detail, the compositional and crystallographic analysis of
the single TiO2-AuNP dot was conducted with high-resolution TEM (HR-TEM) imaging.
ImageJ software (LOCI, University of Wisconsin, Madison, WI, USA) with a modified
“particle size” plugin was used to analyze the SEM micrographs in order to find the AuNP
size distribution. The optical absorption spectra (recalculated from reflectance) of the
prepared ETL/MDA films were measured with a spectrophotometer Sphere Jasco V-750
(JASCO Co., Tokyo, Japan). The current–voltage (I–V) characteristics of the fabricated PSCs
were measured using a test station (Abet Technologies, Milford, CT, USA) with SunLiteTM

solar simulator and a source meter Keithley 2400 (TEKTRONIX, Inc., Bracknell, UK) under
100 mW cm−2 illumination calibrated with a reference silicon PSC. The stainless steel mask
with a 0.04 cm2 aperture was used to specify the illumination area of the PCS.

2.3. Simulations

Finite-difference time-domain (FDTD) simulation effectively evaluates the absorption
cross-sections and local field of nanoscale optical devices. This study used commercially
available Ansys Lumerical FDTD software (Ansys Inc., Canonsburg, PA, USA) to perform
simulations that solve Maxwell’s equations in time and space. A Total-Field Scattered-Field
(TFSF) was used as an excitation source to measure the local electric field response. The
frequency domain field and power monitor directly measure the local field enhancement
that the 2D monitor captured. Here, we measured the net power flowing into the particle
and obtained the absorption cross-section (E/E0) by normalizing it to the source intensity
(E0). Similarly, the scattering cross-section was calculated using an analysis group located
outside the TFSF source [22,23]. This study modeled AuNPs embedded in TiO2 and
MAPbI3 environments with “FDTD Mie scattering” as a reference model. The background
index of the FDTD region was set to 1 for air, and the dielectric functions of MAPbI3, TiO2,
and Au were taken from the previous reports [24,25]. The cross-section of the simulation
scheme is presented in SI (see Figure S2). Here, the AuNP diameter was set to 20 nm. For
reference, we also simulate the optical response of AuNP, TiO2, and MAPbI3 surrounded
by an environment of a constant refractive index (n0 = 1) [26].

3. Results and Discussion
3.1. XRD Studies

Structural characteristics are the determining factor for the physicochemical properties
of materials. They are directly related to the processes of nucleation and growth, which in
turn depend on the topology and properties of the substrate surface. Thus, the modification
of the surface with MDA can affect the deposited MAPI layer. The structural characteristics
of the MAPI films spin-coated on glass (G), on glass with printed TiO2_MDA (GT), and
with TiO2-AuNP_MDA (GTA) were determined with powder X-ray diffraction, and the
corresponding patterns are presented in Figure 2.

The Rietveld analysis of the XRD data revealed that the MAPI films were polycrys-
talline and consisted of two phases: tetragonal MAPI described with an I422 space group
of symmetry and a minor amount of trigonal PbI2 phase R-3m. Modifying the glass surface
with TiO2_MDA increases the PbI2 phase content from 7.5 ± 0.4 to 13.6 ± 0.3 w%. The
TiO2-AuNP_MDA has a more negligible effect on the phase composition, increasing the
PbI2 content only to 9.9 ± 0.3 w%. A similar trend also persists for unit cell volumes of
MAPI deposited on G, GT, and GTA substrates, which correspondingly 992 Å3, 996 Å3,
and 995 Å3. Still, it is interesting to note that the presence of MDA on the glass surface
increases the coherent scattering regions of the MAPI films from 286 ± 8 to 308 ± 4 and 321
± 5 Å correspondingly for G, GT, and GTA substrates. Thus, the MDA printing positively
affects the crystallite’s size of the MAPI film with minor changes in phase composition and
unit cell volume. Note that the X-ray analysis did not reveal any reflections characteris-
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tic of the titanium oxide and gold phases from the corresponding MDA; the MAPI film
completely hides these peaks. Moreover, XRD analysis demonstrates consistent intensity
levels across all samples, whether with or without TiO2_MDA and TiO2_AuNP MDA. This
provides a direct verification that the application of MDA does not affect the thickness of
the MAPI layer.
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Figure 2. The X-ray diffraction patterns of the MAPI layers synthesized on a glass (G), on a glass with
TiO2_MDA (GT), and on a glass with TiO2-AuNP_MDA (GTA), represented by black, red, and blue
lines, respectively. The MAPI phase peaks are denoted with the # symbol and the PbI2 reflections
with the * one.

3.2. Morphology Analysis

The SEM images of the TiO2-AuNP_MDA on the TiO2 ETL after annealing are pre-
sented in Figure 3A. It was revealed that the spacing between the drops was about 80 µm,
and their average diameter was around 35 µm (see Figure 3B). The average thickness of
the MDA is about 35 ± 10 nm. (The detailed calculation is presented in the SI). Figure 3C
illustrates the presence and arrangement of AuNPs in a TiO2 matrix. The size distribution
of AuNPs was calculated with “ImageJ” software to be in the range of 25 ± 14 nm and
presented in Figure S3.

The HR-TEM image in Figure 3D revealed the crystalline planes of Au and TiO2 in
the TiO2/AuNP dot printed on an amorphous carbon-coated Cu grid and heated to 200 ◦C
to remove solvents. The inter-planar spacing of 0.23 nm (yellow-marked in Figure 3D)
corresponds to the (111) plane of Au in the FCC phase [27], while the blue spacing of
0.33 nm can be assigned to rutile TiO2 reflection (110) [28]. A space plane of TiO2 was
found on the top of the AuNPs, demonstrating that AuNPs are indeed covered with TiO2,
Figure S4A. The planes with the same spacing of 0.33 nm can also be found on the TiO2
material surrounding the AuNP, which confirms the identification of TiO2 on the AuNP’s
surface. This is a significant fact since the surface of the metal NP should not come into
contact with MAPI to avoid degradation. Covering AuNP with TiO2 is an essential process
that minimizes recombination on metallic NPs and improves charge carrier separation [29].
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(C) AuNPs in TiO2_MDA; (D)—HR-TEM micrograph of an Au NP embedded in TiO2. Yellow
mark—the inter-planar spacing of FCC face of Au; blue mark—the inter-planar spacing of rutile TiO2.

3.3. Grain Size Analysis of MAPI

One of the parameters that influence the photovoltaic performance of PSCs is the
MAPI grains’ size [30]. SEM imaging of the MAPI film surface and analyses of grains size
distribution using ImageJ software have been performed to examine the effect of MDA
on the morphology of the perovskite layer. The SEM images of the MAPI film surface
are presented in Figure 4. The grain diameters of MAPI on a bare glass substrate, glass
with printed TiO2_MDA, and glass with TiO2-AuNP_MDA were found to be 128 ± 72,
142 ± 110, and 125 ± 68 nm, respectively. From the SEM analysis, the TiO2_MDA does
not influence the uniformity of the MAPI film. According to the SEM micrograph of the
MAPI samples’ cross-section, the thickness of the latter is about 400 nm. (Figure S4B). The
low-magnification SEM images of all the films are shown in Figure S5. The macroscale
uniformity and smoothness of all the examined films can be readily observed.
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3.4. FDTD-Simulated Electric Field Response

According to previous reports, AuNPs can improve the efficiency of PSCs by enhancing
light absorption, accelerating exciton separation, promoting carrier extraction, and enabling
hot electron injection [10–16]. Specifically, the AuNPs can act as “antennas” using the LSPR
effect to concentrate the incident light and achieve a “light-trapping” effect [31]. This near-
field enhancement can act as a supplementary light source, thus enhancing absorption [13].
The extent of the plasmonic enhancement in PSCs not only depends on the LSPR properties
but is also closely related to the structure of PSCs. Thus, evaluating the enhancement extent
within the dielectric environment of PSCs is of the utmost importance [31,32]. Here, we use
the FDTD simulation to examine the near-field absorbance of the bare Au NP and compare
it to NPs embedded in TiO2 and MAPI, see Figure 5. The simulation results revealed a
localized enhancement of the electric field in the TiO2/AuNP structure at a wavelength
of 618 nm, Figure 5B. In contrast, the TiO2/AuNP-MAPI configuration exhibited its peak
enhancement at a wavelength of 630 nm, as illustrated in Figure 5F. Combining Au NPs
with a dielectric material is expected to further enhance the LSPR effect by increasing
the confinement of the electromagnetic field near the NPs’ surface [14,33,34]. Indeed, the
electric field of the Au NP surrounded by TiO2 presented in Figure 5B is significantly higher
than that of its bare counterpart (Au NP in the air). In fact, the derived electric-field (|E2|)
intensity of Au NPs embedded in TiO2 and TiO2/MAPI was found to be increased fourfold
and eightfold, respectively. The near-field enhancement of the electromagnetic field in the
simulated AuNP/TiO2/MAPI hybrid structure (see Figure 5F) is higher due to the strong
excitonic absorption of the MAPbI3.

3.5. Simulated and Estimated Absorption Using FDTD and Reflectance Measurements

Absorption cross-sections of AuNP, TiO2, MAPI, and their hybrids were extracted
from the FDTD simulations. Figure 6A presents the simulated absorption cross-section
of the AuNP in different dielectric media. We find that the simulated LSPR of the AuNP
suspended in air is at ~508 nm (Figure S7), corresponding to the previous reports and
experimental measurements [35,36]. The LSPR is red-shifted from 508 nm to 618 nm and
630 nm as the dielectric environment of the AuNP is changed to be TiO2 and TiO2/MAPI,
respectively. The Mie theory can explain the shift of the LSPR maxima [37–39]. Indeed,
similar findings were also observed when the relationship between the LSPR extinction
band of spherical AuNPs was analyzed using discrete dipole approximation theory and
the Drude model [40].
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(A) AuNP, (B) TiO2/AuNP, and (C) TiO2/AuNP/MAPI; under 630 nm wavelength: of (D) AuNP,
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maxima shown in Figure S5. The magnitude of the enhanced electric field intensity is indicated by
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The intensity of the shifted LSPR is increased by 12 and 10 times when the AuNP was
embedded in TiO2 and MAPI, respectively. Non-normalized curves of the absorption cross-
sections are presented in Figure S6. Moreover, the simulated absorption of MAPI/TiO2
vs. MAPI/TiO2/AuNP hybrids indicates an increase of ~27 times at 630 nm. The phe-
nomena of the increased LSPR intensity can be assigned to the stronger confinement of the
electromagnetic field near the NP’s surface [14,33,34].



Nanomaterials 2023, 13, 2675 9 of 13

3.6. Optical Properties

UV-Vis absorbance (calculated from the reflectance, (Figure S8) spectra of all the
examined samples are shown in Figure 6B. Contrary to the simulation results, the measured
spectra do not exhibit a significant increase in absorbance intensity. That discrepancy
between the simulated and experimental absorbance can be explained by the perfect
conditions of the simulation vs. the real ones. Namely, we simulated one AuNP, whereas
the experimental setup consists of multiple NPs with broad size distribution.

While we can clearly see the impact of AuNP in the simulation, the experimental
absorbance does not exhibit a similarly remarkable improvement. (Figure 6A,B). This
discrepancy is mainly rooted in the ideal simulation environment where we focused
on a single NP. Notwithstanding, the absorbance of AuNPs in the examined samples
is challenging to detect experimentally because of the thick layer of MAPI. However,
the spectra exhibit an observable difference between the MAPI/TiO2-AuNP_MDA and
MAPI/TiO2_MDA in the 615–690 nm range. (Figure 6B). Indeed, there is an increase in
the absorbance intensity of the samples that contain TiO2-AuNP_MDA. The range of the
enhanced absorbance corresponds with the LSPR of AuNPs and thus can be ascribed to
the presence of the AuNPs in the MAPI/TiO2-AuNP_MDA. Further, the band gap (Eg)
values from the reflectance spectra were calculated using the Kubelka–Munk equation,
and it was found to be around 1.6 eV for all samples covered with MAPI (see Figure S9).
This observation is in good agreement with the known Eg value (1.61 eV) for the MAPI
deposited on mesoporous TiO2. Notably, the introduction of MDA had no impact on the
band gap value, which consistently remained at approximately 1.6 eV across all samples.

3.7. Photovoltaic Parameters of PSCs

To reveal the LSPR enhancement of the PCS performance, the TiO2-AuNP_MDA was
introduced at the ETL-MAPI interface. Three types of PSC devices were fabricated: type
1—reference device, type 2—with TiO2_MDA, and type 3—with TiO2-AuNP_MDA. The
characteristics of the measured PCS devices are shown in Table 1. The comparison of the
performance of previously reported devices comprising AuNPs in perovskite solar cells is
presented in Table S1. Short-circuit photocurrent (JSC), open-circuit voltage (VOC), power
conversion efficiency (PCE), and fill factor (FF) are the key parameters of the performance
of SCs and were obtained from the analysis of current-voltage (I–V) characteristics of the
SCs using LabView-based homemade program, PSC fabrication section is presented in SI.

Table 1. Photovoltaic performance of the champion devices.

Sample Code JSC
mA/cm2, ±0.1

VOC
V, ±0.01

PCE
%, ±0.3

F.F.
%, ±0.1

1
Reference device 19.8 0.98 8.6 44.4

2
with TiO2_MDA 20.5 0.98 9.4 46.8

3
with TiO2-AuNP_MDA 23.3 0.99 12.6 54.8

The data presented in Table 1 indicate that the presence of the TiO2_MDA improves
the PCE and the FF. The possible explanation could be the MAPI scaling effect, i.e., the
TiO2_MDA will have a higher ETL surface contact area with MAPI [23]. Moreover, the MDA
architecture does not increase the effective resistance of the PSC, and the JSC/VOC remains
similar to the reference sample. It is important to note that if a continuous layer of TiO2-
AuNPs is introduced into the MAPI/ETL interface, we would expect a prominent decay in
the VOC parameter [14]. The same samples were evaluated after a week of storage, see Table
S1. The TiO2-AuNP_MDA sample shows a slight improvement of JSC parameter. Adding
TiO2-AuNP_MDA to the PSC further increases measured parameters, resulting in a ~47%
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enhancement in PCE compared to the reference device. Statistical analysis of the optimized
PSCs’ parameters, such as JSC, VOC, PCE, and FF, for all the tested devices and their average
values are presented as a box plot shown in Figure 7. Nonetheless, it remains challenging to
assert that the performance of PSCs, especially in terms of conversion efficiency, has solely
improved due to the presence of Au NPs, necessitating further investigation. However, it is
noteworthy that even the average values illustrate an improvement in PSCs following the
integration of TiO2_AuNP MDA in comparison to reference devices. The corresponding
calculated increase is depicted in Figure 7.
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fabricated PCS.

The schemes clearly demonstrate that the device with the TiO2-AuNP_MDA structures
has higher JSC, PCE, and FF values than the reference cells. In general, the reason for
improving the photovoltaic parameters of PSCs with dot arrays may be due to the increased
loading of the MAPI absorber in the porous structure of TiO2 dots. However, according to
the statistical analysis, the samples with TiO2_MDA do not exhibit an increase in current
density. Hence, the improved PSC features might be attributed solely to the enhanced
absorption accompanied by an increased light scattering within a cell induced by AuNPs.
Moreover, according to the XRD data, embedding the TiO2_MDA or TiO2-AuNP_MDA
on an ETL/MAPI interface increases the perovskite crystallite size, thus having a positive
effect on FF. Finally, the FF and JSC enhancement due to TiO2-AuNP_MDA introduced
on the ETL/MAPI interface led to around 47% PCE improvement of the PSC. The LSPR
approach is a prospective way to increase PSC efficiency.

4. Conclusions

In summary, this work highlights a novel and efficient strategy for the inkjet-printing
fabrication of high-performance plasmonic architectures based on 2D arrays of TiO2 mi-
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crodots with embedded AuNPs, and presents the superiority of the plasmon-enhanced
perovskite solar cell device characteristics. The XRD analysis confirmed the perovskite
structure of the photoactive MAPI layer synthesized on top of the microdot array. Moreover,
the presence of the microdot array increases the crystallite size of MAPI. Important to note
is that HR-TEM images revealed crystalline planes of TiO2 on the top of the AuNPs, demon-
strating that AuNPs were indeed embedded into TiO2 microdots. In general, incorporating
AuNPs in the TiO2 matrix improves light absorption in the visible region [13]. However,
we unambiguously observed an enhanced photocurrent without significant variation in the
light-harvesting capability in this study. Thus, the enhancement of the internal conversion
efficiency of the fabricated perovskite solar cell with Au incorporation can be either due to
enhanced charge separation/free carrier generation or due to enhanced charge collection.
Herein, the origin of enhanced photocurrent is attributed to a previously unobserved and
unexpected mechanism of reduced exciton binding energy with the incorporation of the
metal NPs rather than enhanced light absorption [17]. Henceforth, the inkjet printing of
2D microdot arrays of dielectric material with incorporated plasmonic NPs is a promising
approach to increase the efficiency of photovoltaic devices. The demonstrated enhancement
of perovskite solar cell efficiency through AuNP printed microdots offers a glimpse into
the exciting prospects of achieving more efficient and sustainable energy generation, thus
contributing to the ongoing global efforts towards a greener and cleaner energy future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13192675/s1, Figure S1: Energy diagram of the plasmon-
enhanced TiO2/AuNP MDA-based perovskite solar cells; Figure S2: Schematic description of 2D
FDTD simulation setup; Figure S3: AuNP size distribution from ImageJ software with a modified
“particle size” plugin; Figure S4: A—TEM micrograph of an Au NP embedded in TiO2, B—SEM image
of MAPI cross-section; Figure S5: SEM images of MAPI surface on A—glass substrates, B—glass
with TiO2_MDA, and C—glass with Au/TiO2_MDA; Figure S6: FDTD—simulated not normalized
absorption cross-section; Figure S7: FDTD simulated electromagnetic-intensity distribution for
the bare Au NP at λ = 508 nm; Figure S8: Measured reflectance of glass surfaces covered with
MAPI, MAPI/TiO2_MDA and MAPI/TiO2-AuNP_MDA; Table S1: Photovoltaic performance of the
champion devices after 7 days of storage in glove box; Figure S9. Plots of Kubelka-Munk function
with calculated band gap values for 3 samples [13–16,20,40–51].
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