Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = micro-pin fin heat sink

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10016 KiB  
Article
Thermal–Hydraulic Performance Analysis of Combined Heat Sink with Open Microchannels and Embedded Pin Fins
by Yifan Li, Tianyu Wang, Zhipeng Wang, Congzhe Zhu, Junlan Yang and Bin Yang
Energies 2024, 17(21), 5301; https://doi.org/10.3390/en17215301 - 25 Oct 2024
Cited by 4 | Viewed by 1402
Abstract
An open type of microchannel with diamond pin fins (OM-DPFs) is introduced for the cooling of high-performance electronic chips. For a Reynolds number (Re) of 247~1173, a three-dimensional model is established to explore the hydrothermal properties of the OM-DPF and compare [...] Read more.
An open type of microchannel with diamond pin fins (OM-DPFs) is introduced for the cooling of high-performance electronic chips. For a Reynolds number (Re) of 247~1173, a three-dimensional model is established to explore the hydrothermal properties of the OM-DPF and compare it to traditional heat sinks with closed rectangular microchannels (RMs), heat sinks with open microchannels (OMs), and the results in the existing research. Firstly, the synergy between tip clearance and pin fins on the hydrothermal properties is discussed. Secondly, the entropy production principle is adopted to analyze the irreversible losses for different heat sinks. Lastly, the total efficiencies of different heat sinks are assessed. The RMs present the worst heat transfer with the lowest friction loss. For the OMs, the temperature and pressure drop are decreased slightly compared to those of the RMs, and the irreversible loss is reduced by 4% at Re = 1173 because of the small tip clearance. But the total efficiency is lower than that of the RMs because the pressure drop advantage is offset by the weak heat transfer. For the OM-DPF, the combined structure has a noticeable impact on the multiple physical fields and hydrothermal characteristics, which present the best thermal performance at the cost of the highest friction loss. The irreversible loss of heat transfer in the OM-DPF is reduced obviously, but the friction irreversible loss significantly increases at high Re values. At Re = 429, the total entropy production of the OM-DPF is reduced by 47.57% compared with the RM. Compared to the OM and the single-pin fin structure in the literature, the total efficiency of the OM-DPF is increased by 14.56% and 40.32% at Re = 614. For a pump power of 0.1 W, the total thermal resistance (Rth) of the OM-DPF is dropped by 23.77% and 21.19% compared to the RM and OM. For a similar Rth, the pump power of the combined structure is 63.64% and 42.86% lower than that of the RM and OM. Thus, the novel combined heat sink can achieve efficient heat removal while controlling the energy consumption of liquid cooling systems, which has bright application prospects. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

26 pages, 6510 KiB  
Review
Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review
by Yijun Li, Stéphane Roux, Cathy Castelain, Yilin Fan and Lingai Luo
Energies 2023, 16(22), 7468; https://doi.org/10.3390/en16227468 - 7 Nov 2023
Cited by 27 | Viewed by 6658
Abstract
This paper presents a detailed literature review on the thermal management issue faced by electronic devices, particularly concerning uneven heating and overheating problems. Special focus is given to the design and structural optimization of heat sinks for efficient single-phase liquid cooling. Firstly, the [...] Read more.
This paper presents a detailed literature review on the thermal management issue faced by electronic devices, particularly concerning uneven heating and overheating problems. Special focus is given to the design and structural optimization of heat sinks for efficient single-phase liquid cooling. Firstly, the paper highlights the common presence and detrimental consequences of electronics overheating resulting from multiple heat sources, supported by various illustrative examples. Subsequently, the emphasis is placed on single-phase liquid cooling as one of the effective thermal management technologies for power electronics, as well as on the enhancement of heat transfer in micro/mini channel heat sinks. Various studies on the design and structural optimization of heat sinks are then analyzed and categorized into five main areas: (1) optimization of channel cross-section shape, (2) optimization of channel flow passage, (3) flow distribution optimization for parallel straight channel heat sinks, (4) optimization of pin-fin shape and arrangement, and (5) topology optimization of global flow configuration. After presenting a broad and complete overview of the state of the art, the paper concludes with a critical analysis of the methods and results from the literature and highlights the research perspectives and challenges in the field. It is shown that the issue of uneven and overheating caused by multiple heat sources, which is commonly observed in modern electronics, has received less attention in the literature compared to uniform or single-peak heating. While several design and structural optimization techniques have been implemented to enhance the cooling performance of heat sinks, topology optimization has experienced significant advancements in recent years and appears to be the most promising technology due to its highest degree of freedom to treat the uneven heating problem. This paper can serve as an essential reference contributing to the development of liquid-cooling heat sinks for efficient thermal management of electronics. Full article
(This article belongs to the Topic Heat Transfer Enhancement and Applications)
Show Figures

Figure 1

13 pages, 7929 KiB  
Article
Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions
by Jéssica Martha Nunes, Jeferson Diehl de Oliveira, Jacqueline Biancon Copetti, Sameer Sheshrao Gajghate, Utsab Banerjee, Sushanta K. Mitra and Elaine Maria Cardoso
Energies 2023, 16(7), 3175; https://doi.org/10.3390/en16073175 - 31 Mar 2023
Cited by 7 | Viewed by 3752
Abstract
Due to microscale effects, the segmented microchannels or micro pin fin heat sinks emerged as a high thermal management solution. In this context, the present work analyzes the influence of different heights of square micro pin fins with an aligned array and investigates [...] Read more.
Due to microscale effects, the segmented microchannels or micro pin fin heat sinks emerged as a high thermal management solution. In this context, the present work analyzes the influence of different heights of square micro pin fins with an aligned array and investigates their influence on pressure drop and heat transfer behavior. The HFE-7100 is used as the working fluid, and the pressure drop and surface temperature behavior are analyzed for different mass fluxes and inlet subcooling. The single-phase flow was analyzed numerically using the computational fluid dynamics (CFD) software ANSYS FLUENT® for comparing the simulation results with the experimental data, showing that the highest micro pin fins configuration provides a more uniform and lowest wall temperature distribution compared to the lowest configuration. There is a good agreement between the experimental results and the numerical analysis, with a mean absolute error of 6% for all the considered parameters. For the two-phase flow condition, experimental tests were performed, and for the highest subcooling, an increase in mass flux causes an enhancement in the heat transfer for low heat flux; by increasing heat flux, there is a gradual predominance of boiling heat transfer over convection as the heat transfer mechanism. The pressure drop drastically increases with the vapor amount flowing into the system, regardless of the pin fin height; the boiling curves for the higher fin height show a much smaller slope and a smaller wall superheat than the fin with the smallest height, and consequently, a high heat transfer performance. A larger region of the heat sink is filled with vapor for lower inlet subcooling temperatures, degrading the heat transfer performance compared to higher inlet subcooling temperatures. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Dynamics in Boiling Systems)
Show Figures

Figure 1

22 pages, 8530 KiB  
Article
Numerical Analysis of the Effect of Nanoparticles Size and Shape on the Efficiency of a Micro Heatsink
by Saeed Alqaed, Jawed Mustafa, Fahad Awjah Almehmadi, Mathkar A. Alharthi, Mohsen Sharifpur and Goshtasp Cheraghian
Nanomaterials 2022, 12(21), 3836; https://doi.org/10.3390/nano12213836 - 30 Oct 2022
Cited by 4 | Viewed by 2195
Abstract
In this paper, two novel micro heat sinks (MHSs) were designed and subjected to thermal analysis using a numerical method. The fluid used was Boehmite alumina–water nanofluid (NFs) with high volume fractions (VOFs). Studies were conducted to determine the influence of a variety [...] Read more.
In this paper, two novel micro heat sinks (MHSs) were designed and subjected to thermal analysis using a numerical method. The fluid used was Boehmite alumina–water nanofluid (NFs) with high volume fractions (VOFs). Studies were conducted to determine the influence of a variety of nanoparticle (NP) shapes, such as platelet brick, blade, cylinder, and Os. The heatsink (HS) was made of copper, and the NFs entered it through the middle and exited via four outlets at the side of the HS. The finite element method was used to simulate the NFs flow and heat transfer in the HSs. For this purpose, Multi Physics COMSOL software was used. The maximum and middle values of HS temperature (T-MAX and T-Mid), thermal resistance (TH-R), heat transfer coefficient (h), FOM, etc., were studied for different NP shapes, and with Reynolds numbers (Re) of 300, 1000, and 1700, and VOFs of 0, 3, and 6%. One of the important outcomes of this work was the better thermal efficiency of the HS with rectangular fins. Moreover, it was discovered that a rise in Re increased the heat transfer. In general, adding NPs with high VOFs to MHSs is not appropriate in terms of heat. The Os shape was the best NP shape, and the platelet shape was the worst NP shape for high NPVOF. When NPs were added to an MHS, the temperature of the MHS dropped by an average of 2.8 or 2.19 K, depending on the form of the pin-fins contained inside the MHS (circular or square). The addition of NPs in the MHS with circular and square pin-fins enhanced the pressure drop by 13.5% and 13.3%, respectively, when the Re = 1700. Full article
Show Figures

Figure 1

17 pages, 6051 KiB  
Article
Heat Transfer and Fluid Flow Characteristics of Microchannel with Oval-Shaped Micro Pin Fins
by Yuting Jia, Jianwei Huang, Jingtao Wang and Hongwei Li
Entropy 2021, 23(11), 1482; https://doi.org/10.3390/e23111482 - 9 Nov 2021
Cited by 28 | Viewed by 3746
Abstract
A novel microchannel heat sink with oval-shaped micro pin fins (MOPF) is proposed and the characteristics of fluid flow and heat transfer are studied numerically for Reynolds number (Re) ranging from 157 to 668. In order to study the influence of [...] Read more.
A novel microchannel heat sink with oval-shaped micro pin fins (MOPF) is proposed and the characteristics of fluid flow and heat transfer are studied numerically for Reynolds number (Re) ranging from 157 to 668. In order to study the influence of geometry on flow and heat transfer characteristics, three non-dimensional variables are defined, such as the fin axial length ratio (α), width ratio (β), and height ratio (γ). The thermal enhancement factor (η) is adopted as an evaluation criterion to evaluate the best comprehensive thermal-hydraulic performance of MOPF. Results indicate that the oval-shaped pin fins in the microchannel can effectively prevent the rise of heat surface temperature along the flow direction, which improves the temperature distribution uniformity. In addition, results show that for the studied Reynolds number range and microchannel geometries in this paper, the thermal enhancement factor η increases firstly and then decreases with the increase of α and β. In addition, except for Re = 157, η decreases first and then increases with the increase of the fin height ratio γ. The thermal enhancement factor for MOPF with α = 4, β = 0.3, and γ = 0.5 achieves 1.56 at Re = 668. The results can provide a theoretical basis for the design of a microchannel heat exchanger. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics and Conjugate Heat Transfer)
Show Figures

Figure 1

11 pages, 3525 KiB  
Communication
Enhanced Thermal Management of GaN Power Amplifier Electronics with Micro-Pin Fin Heat Sinks
by Ting Kang, Yuxin Ye, Yuncong Jia, Yanmei Kong and Binbin Jiao
Electronics 2020, 9(11), 1778; https://doi.org/10.3390/electronics9111778 - 27 Oct 2020
Cited by 17 | Viewed by 5900
Abstract
This study introduces an enhanced thermal management strategy for efficient heat dissipation from GaN power amplifiers with high power densities. The advantages of applying an advanced liquid-looped silicon-based micro-pin fin heat sink (MPFHS) as the mounting plate for GaN devices are illustrated using [...] Read more.
This study introduces an enhanced thermal management strategy for efficient heat dissipation from GaN power amplifiers with high power densities. The advantages of applying an advanced liquid-looped silicon-based micro-pin fin heat sink (MPFHS) as the mounting plate for GaN devices are illustrated using both experimental and 3D finite element model thermal simulation methods, then compared against traditional mounting materials. An IR thermography system was equipped to obtain the temperature distribution of GaN mounted on three different plates. The influence of mass flow rate on a MPFHS was also investigated in the experiments. Simulation results showed that GaN device performance could be improved by increasing the thermal conductivity of mounting plates’ materials. The dissipated power density of the GaN power amplifier increased 17.5 times when the mounting plate was changed from LTCC (Low Temperature Co-fired Ceramics) (k = 2 Wm−1 K−1) to HTCC (High-Temperature Co-fired Ceramics) (k = 180 Wm−1 K−1). Experiment results indicate that the GaN device performance was significantly improved by applying liquid-looped MPFHS, with the maximum dissipated power density reaching 7250 W/cm2. A thermal resistance model for the whole system, replacing traditional plates (PCB (Printed Circuit Board), silicon wafer and LTCC/HTCC) with an MPFHS plate, could significantly reduce θjs (thermal resistance of junction to sink) to its theoretical limitation value. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

13 pages, 4370 KiB  
Article
An Experimental Study of Microchannel and Micro-Pin-Fin Based On-Chip Cooling Systems with Silicon-to-Silicon Direct Bonding
by Yunlong Qiu, Wenjie Hu, Changju Wu and Weifang Chen
Sensors 2020, 20(19), 5533; https://doi.org/10.3390/s20195533 - 27 Sep 2020
Cited by 20 | Viewed by 4057
Abstract
This paper describes an experimental study of the cooling capabilities of microchannel and micro-pin-fin based on-chip cooling systems. The on-chip cooling systems integrated with a micro heat sink, simulated power IC (integrated circuit) and temperature sensors are fabricated by micromachining and silicon-to-silicon direct [...] Read more.
This paper describes an experimental study of the cooling capabilities of microchannel and micro-pin-fin based on-chip cooling systems. The on-chip cooling systems integrated with a micro heat sink, simulated power IC (integrated circuit) and temperature sensors are fabricated by micromachining and silicon-to-silicon direct bonding. Three micro heat sink structures: a microchannel heat sink (MCHS), an inline micro-pin-fin heat sink (I-MPFHS) and a staggered micro-pin-fin heat sink (S-MPFHS) are tested in the Reynolds number range of 79.2 to 882.3. The results show that S-MPFHS is preferred if the water pump can provide enough pressure drop. However, S-MPFHS has the worst performance when the rated pressure drop of the pump is lower than 1.5 kPa because the endwall effect under a low Reynolds number suppresses the disturbance generated by the staggered micro pin fins but S-MPFHS is still preferred when the rated pressure drop of the pump is in the range of 1.5 to 20 kPa. When the rated pressure drop of the pump is higher than 20 kPa, I-MPFHS will be the best choice because of high heat transfer enhancement and low pressure drop price brought by the unsteady vortex street. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

Back to TopTop