Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = mica capacitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3059 KB  
Article
High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates
by Jianzeng Guo, Chao Yin, Xue Zhang and Qingguo Chi
Materials 2025, 18(10), 2353; https://doi.org/10.3390/ma18102353 - 19 May 2025
Cited by 2 | Viewed by 701
Abstract
Flexible thin-film capacitors have gained a lot of attention in energy storage applications because of their high energy storage densities and efficient charge–discharge performances. Among these materials, antiferroelectric compounds with low residual polarization and strong saturation polarization have shown great promise. However, their [...] Read more.
Flexible thin-film capacitors have gained a lot of attention in energy storage applications because of their high energy storage densities and efficient charge–discharge performances. Among these materials, antiferroelectric compounds with low residual polarization and strong saturation polarization have shown great promise. However, their comparatively low breakdown strength continues to be a major issue restricting further developments in their energy storage performance. While La3+ doping has been explored as a means to enhance the energy storage capabilities of antiferroelectric thin films, the specific influence of La3+ on breakdown strength and the underlying mechanism of phase transitions have not been thoroughly investigated in existing research. In this study, Pb1−3x/2LaxZrO3 thin films were successfully synthesized and deposited on mica substrates via the sol–gel process. By varying the concentration of La3+ ions, a detailed examination of the films’ microstructures, electrical properties, and energy storage performances was carried out to better understand how La3+ doping influences both breakdown strength and energy storage characteristics. The results show that doping with La3+ significantly improves the breakdown strength of the films, reduces the critical phase transition electric field (EF-EA), and enhances their energy storage capabilities. Notably, the Pb0.91La0.06ZrO3 thin film achieved an impressive energy storage density of 34.9 J/cm3 with an efficiency of 58.3%, and at the maximum electric field strength of 1541 kV/cm, the recoverable energy density (Wrec) was 385% greater than that of the PbZrO3 film. Additionally, the film still maintains good energy storage performance after 107 cycles and 104 bending cycles. These findings highlight the potential of flexible antiferroelectric Pb0.91La0.06ZrO3 thin films for future energy storage applications. Full article
Show Figures

Figure 1

11 pages, 2970 KB  
Article
High-Density Capacitive Energy Storage in Low-Dielectric-Constant Polymer PMMA/2D Mica Nanofillers Heterostructure Composite
by Sumit Bera, Rukshan Thantirige, Sujit A. Kadam, Anirudha V. Sumant and Nihar R. Pradhan
Molecules 2024, 29(19), 4671; https://doi.org/10.3390/molecules29194671 - 1 Oct 2024
Cited by 2 | Viewed by 1979
Abstract
The ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film [...] Read more.
The ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film geometry with high power density. In this work, we studied the dielectric properties, electric polarization, and energy density of PMMA/2D Mica nanocomposite capacitors where stratified 2D nanofillers are interfaced between the multiple layers of PMMA thin films using two heterostructure designs of the capacitors, PMMA/2D Mica/PMMA (PMP) and PMMA/2D Mica/PMMA/2D Mica/PMMA (PMPMP). The incorporation of a 2D Mica nanofiller in the low-dielectric-constant PMMA leads to an enhancement in the dielectric constant, with ∆ε ~ 15% and 53% for PMP and PMPMP heterostructures at room temperature. Additionally, a significant improvement in discharged energy density was measured for the PMPMP capacitor (Ud ~ 38 J/cm3 at 825 MV/m) compared to the pristine PMMA (Ud ~ 9.5 J/cm3 at 522 MV/m) and PMP capacitors (Ud ~ 19 J/cm3 at 740 MV/m). This excellent capacitive and energy storage performance of the PMMA/2D Mica heterostructure nanocomposite may inform the fabrication of thin-film, high-density energy storage capacitor devices for potential applications in various platforms. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

11 pages, 4682 KB  
Article
Flexible Lead-Free Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 Dielectric Film Capacitor with High Energy Storage Performance
by Wenwen Wang, Jin Qian, Chaohui Geng, Mengjia Fan, Changhong Yang, Lingchao Lu and Zhenxiang Cheng
Nanomaterials 2021, 11(11), 3065; https://doi.org/10.3390/nano11113065 - 14 Nov 2021
Cited by 18 | Viewed by 3243
Abstract
Ferroelectric thin film capacitors have triggered great interest in pulsed power systems because of their high-power density and ultrafast charge–discharge speed, but less attention has been paid to the realization of flexible capacitors for wearable electronics and power systems. In this work, a [...] Read more.
Ferroelectric thin film capacitors have triggered great interest in pulsed power systems because of their high-power density and ultrafast charge–discharge speed, but less attention has been paid to the realization of flexible capacitors for wearable electronics and power systems. In this work, a flexible Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 thin film capacitor is synthesized on mica substrate. It possesses an energy storage density of Wrec ~ 62 J cm−3, combined with an efficiency of η ~ 74% due to the moderate breakdown strength (3000 kV cm−1) and the strong relaxor behavior. The energy storage performances for the film capacitor are also very stable over a broad temperature range (−50–200 °C) and frequency range (500 Hz–20 kHz). Moreover, the Wrec and η are stabilized after 108 fatigue cycles. Additionally, the superior energy storage capability can be well maintained under a small bending radius (r = 2 mm), or after 104 mechanical bending cycles. These results reveal that the Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 film capacitors in this work have great potential for use in flexible microenergy storage systems. Full article
Show Figures

Figure 1

13 pages, 4871 KB  
Article
A Compact Modular 5 GW Pulse PFN-Marx Generator for Driving HPM Source
by Haoran Zhang, Ting Shu, Shifei Liu, Zicheng Zhang, Lili Song and Heng Zhang
Electronics 2021, 10(5), 545; https://doi.org/10.3390/electronics10050545 - 26 Feb 2021
Cited by 31 | Viewed by 7953
Abstract
A compact and modular pulse forming network (PFN)-Marx generator with output parameters of 5 GW, 500 kV, and 30 Hz repetition is designed and constructed to produce intense electron beams for the purpose of high-power microwave (HPM) generation in the paper. The PFN-Marx [...] Read more.
A compact and modular pulse forming network (PFN)-Marx generator with output parameters of 5 GW, 500 kV, and 30 Hz repetition is designed and constructed to produce intense electron beams for the purpose of high-power microwave (HPM) generation in the paper. The PFN-Marx is composed by 22 stages of PFN modules, and each module is formed by three mica capacitors (6 nF/50 kV) connected in parallel. Benefiting from the utilization of mica capacitors with high energy density and a mini-trigger source integrated into the magnetic transformer and the magnetic switch, the compactness of the PFN-Marx system is improved significantly. The structure of the PFN module, the gas switch unit, and the connection between PFN modules and switches are well designed for modular realization. Experimental results show that this generator can deliver electrical pulses with the pulse width of 100 ns and amplitude of 500 kV on a 59-ohm water load at a repetition rate of 30 Hz in burst mode. The PFN-Marx generator is fitted into a cuboid stainless steel case with the length of 80 cm. The ratio of storage energy to volume and the ratio of power to weight of the PFN-Marx generator are calculated to be 6.5 J/L and 90 MW/kg, respectively. Furthermore, utilizing the generator to drive the transit time oscillator (TTO) at a voltage level of 450 kV, a 100 MW microwave pulse with the pulse width of 20 ns is generated. Full article
Show Figures

Figure 1

17 pages, 4891 KB  
Article
Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites
by Chao-Yu Lee and Chia-Wei Chang
J. Compos. Sci. 2021, 5(2), 52; https://doi.org/10.3390/jcs5020052 - 8 Feb 2021
Cited by 30 | Viewed by 6247
Abstract
Polypropylene has been widely used as dielectric material in organic thin-film capacitors due to their high breakdown strength, low dielectric loss and self-healing capability. However, polypropylene’s energy density is relatively low. Increasing the energy density of polypropylene by adding materials with a high [...] Read more.
Polypropylene has been widely used as dielectric material in organic thin-film capacitors due to their high breakdown strength, low dielectric loss and self-healing capability. However, polypropylene’s energy density is relatively low. Increasing the energy density of polypropylene by adding materials with a high dielectric constant is commonly used. Still, it often leads to an increase in dielectric loss, lower dielectric strength and other shortcomings. In this study, a thin 2D platelet of mica/graphene oxide composite material was made from exfoliated mica as a substrate and attached by graphene oxide. The mica/graphene oxide platelets were added to polypropylene to make a plastic dielectric composite. The non-conductive flat inorganic additive can increase the dielectric constant and dielectric strength of the composite without increasing dielectric loss. The tiny mica/graphene oxide platelets can significantly improve the dielectric properties of polypropylene. The results show that by adding a small amount (less than 1 wt%) mica/graphene oxide, the relative dielectric constant of polypropylene can increase to more than 3.7 without causing an increase in dielectric loss and the dielectric strength of polypropylene can also enhance. Full article
(This article belongs to the Special Issue Graphene Oxide Composites)
Show Figures

Figure 1

12 pages, 3607 KB  
Article
Triboelectric Energy Harvesting Response of Different Polymer-Based Materials
by Tiago Rodrigues-Marinho, Nelson Castro, Vitor Correia, Pedro Costa and Senentxu Lanceros-Méndez
Materials 2020, 13(21), 4980; https://doi.org/10.3390/ma13214980 - 5 Nov 2020
Cited by 23 | Viewed by 4192
Abstract
Energy harvesting systems for low-power devices are increasingly being a requirement within the context of the Internet of Things and, in particular, for self-powered sensors in remote or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting environmental mechanical energy otherwise wasted [...] Read more.
Energy harvesting systems for low-power devices are increasingly being a requirement within the context of the Internet of Things and, in particular, for self-powered sensors in remote or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting environmental mechanical energy otherwise wasted in nature. This work reports on the evaluation of the output power of different polymer and polymer composites, by using the triboelectric contact-separation systems (10 N of force followed by 5 cm of separation per cycle). Different materials were used as positive (Mica, polyamide (PA66) and styrene/ethylene-butadiene/styrene (SEBS)) and negative (polyvinylidene fluoride (PVDF), polyurethane (PU), polypropylene (PP) and Kapton) charge materials. The obtained output power ranges from 0.2 to 5.9 mW, depending on the pair of materials, for an active area of 46.4 cm2. The highest response was obtained for Mica with PVDF composites with 30 wt.% of barium titanate (BT) and PA66 with PU pairs. A simple application has been developed based on vertical contact-separation mode, able to power up light emission diodes (LEDs) with around 30 cycles to charge a capacitor. Further, the capacitor can be charged in one triboelectric cycle if an area of 0.14 m2 is used. Full article
(This article belongs to the Special Issue Smart Materials and Devices for Energy Harvesting)
Show Figures

Graphical abstract

Back to TopTop