Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,209)

Search Parameters:
Keywords = miR-98

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1339 KB  
Article
Comparative Analysis of the Gut Bacterial Community in Laboratory-Reared and Seasonally Field-Released Larvae of the Antheraea pernyi
by Peng Hou, Li Liu, Ding Yang, Chuntian Zhang and Jianfeng Wang
Insects 2026, 17(1), 79; https://doi.org/10.3390/insects17010079 - 9 Jan 2026
Abstract
Analyzing the composition and structure of the gut bacterial community in Antheraea pernyi is essential for improving its economic traits, as well as for understanding gut bacteria–host interactions in lepidopteran insects. This study utilized the Illumina MiSeq PE 300 platform to conduct 16S [...] Read more.
Analyzing the composition and structure of the gut bacterial community in Antheraea pernyi is essential for improving its economic traits, as well as for understanding gut bacteria–host interactions in lepidopteran insects. This study utilized the Illumina MiSeq PE 300 platform to conduct 16S rRNA gene sequencing for a comparative analysis of gut bacterial community in laboratory-reared and field-released (spring and autumn) Antheraea pernyi larvae of the same strain. The study revealed the specific effects of rearing environment and seasonal variation on the structural and functional dynamics of the larval gut bacterial communities. The composition of the dominant gut bacteria varied significantly with rearing environment and season. Laboratory-reared and spring field-released groups exhibited similar bacterial community structures, whereas the autumn field-released group showed a significant trend toward specialization, characterized by enrichment of specific bacterial taxa. Linear discriminant analysis effect size identified statistically significant biomarkers across samples. Taxonomic analysis revealed that Actinomycetota, Actinobacteria, Mycobacteriales, Dietziaceae, and Dietzia were characteristic of the gut bacteria profile in spring field-released, Lactobacillales, Enterococcaceae, and Enterococcus were enriched in the autumn field-released group, and the laboratory-reared group exhibited a relative dominance of Alphaproteobacteria. Functional prediction indicated that gut bacterial community structure likely influences its metabolic potential, which may suggest an adaptive response of the Antheraea pernyi to distinct ecological environments. This study provides important insights into the highly complex nature of insect-microbe interactions. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
15 pages, 3291 KB  
Article
Investigating the Therapeutic Effects of Naringenin and Oleuropein on Prostate Cancer Cell Mat-LyLu via miR-155-5p: A Bioinformatics and Molecular Docking Analysis of KRAS and CDK2 Networks
by Cigdem Gungormez
Genes 2026, 17(1), 79; https://doi.org/10.3390/genes17010079 - 9 Jan 2026
Abstract
Background: This study systematically investigates the therapeutic effects of naringenin (NAR) and oleuropein (OLE) on prostate cancer through miR-155-5p regulation. Methods: Experimental studies conducted on MAT-LyLu prostate cancer cell lines revealed that the application of NAR (50 μM) and OLE (75 μM) significantly [...] Read more.
Background: This study systematically investigates the therapeutic effects of naringenin (NAR) and oleuropein (OLE) on prostate cancer through miR-155-5p regulation. Methods: Experimental studies conducted on MAT-LyLu prostate cancer cell lines revealed that the application of NAR (50 μM) and OLE (75 μM) significantly increased miR-155-5p expression by 2.89-fold and 1.74-fold, respectively (p < 0.05). Bioinformatics analyses have indicated that miR-155-5p interacts with critical oncogenic pathways such as KRAS, CDK2, NF-κB, and TGF-β/Smad2. Computational analyses have revealed that miR-155-5p interacts with 16 critical oncogenic targets, including KRAS and CDK2. Molecular docking studies showed that NAR binds to the Switch I/II region of KRAS with a binding energy of −8.2 kcal/mol, while OLE binds to the ATP-binding pocket of CDK2 with an affinity of −9.1 kcal/mol. Pharmacokinetic evaluations revealed that NAR indicated high oral bioavailability (93.763% HIA) and full compliance with Lipinski’s rules, while OLE required advanced formulation strategies due to its high polarity. Network pharmacology analyses have shown that NAR affects lysosomal functions and enzyme regulation, while OLE affects G protein-coupled receptors and oxidoreductase activity. Results: Results indicate that NAR and OLE exhibit antitumor effects through multiple mechanisms by increasing miR-155-5p expression and inhibiting critical oncogenic targets in prostate cancer. Conclusion: Findings suggest that the dietary intake of these natural compounds (citrus and olive products) should be considered in prostate cancer prevention strategies, shedding light on the epigenetic mechanisms of polyphenols in cancer treatment and contributing to the development of new therapeutic strategies. Full article
(This article belongs to the Section Bioinformatics)
21 pages, 3384 KB  
Article
Diabetes Alters microRNA Expression in Epicardial and Subcutaneous Adipose Tissue from Patients Undergoing Elective Cardiac Surgery
by Diana Santos, António Canotilho, Gonçalo Coutinho, David Prieto, Pedro Antunes, Manuel Antunes, Adelino F. Leite Moreira, Inês Falcão-Pires, Eugenia Carvalho and Louise Torp Dalgaard
Cells 2026, 15(2), 122; https://doi.org/10.3390/cells15020122 - 9 Jan 2026
Abstract
Epicardial adipose tissue (EAT) function may influence the heart, given its metabolic actions and proximity to the heart. We hypothesized that diabetes mellitus (DM) alters miRNA expression across adipose tissue types, and that modifications in EAT may have critical implications for cardiac physiology. [...] Read more.
Epicardial adipose tissue (EAT) function may influence the heart, given its metabolic actions and proximity to the heart. We hypothesized that diabetes mellitus (DM) alters miRNA expression across adipose tissue types, and that modifications in EAT may have critical implications for cardiac physiology. To test this, we compared EAT and subcutaneous adipose tissue (SAT) miRNA profiles between patients with and without DM and across tissues within each disease group. Paired biopsies from patients with (n = 18) and without DM (n = 46) undergoing cardiac surgery were analyzed using miRNA profiling and bioinformatics. Among 680 miRNAs screened, 34 were uniquely expressed in EAT, confirming a distinct molecular signature in this fat depot. Notably, miR-155-5p was significantly elevated in EAT from patients with DM, indicating a localized metabolic effect. In SAT, miR-93-3p and miR-223-3p were upregulated in patients with DM and consistently higher than in EAT, regardless of DM status, indicating tissue-specific regulation. miR-324-5p was more expressed in SAT of patients in the NDM group, reflecting combined effects of tissue type and DM. These patterns remained consistent across cardiac disease stratifications. Pathway analysis revealed that miRNAs enriched in EAT target genes involved in cardiomyocyte growth and differentiation. Overall, the findings highlight the unique miRNA profile of epicardial fat and its altered response to DM, supporting its relevance in cardiac physiology. Full article
22 pages, 1409 KB  
Article
Integrated Plasma and Glial Cell Evidence Indicates a Functional Role for hsa-miR-342-5p in Spinocerebellar Ataxia Type 7 and Its Potential Use as a Biomarker
by Verónica M. Borgonio-Cuadra, Aranza Meza-Dorantes, José Manuel Rodríguez-Pérez, Ian A. García-Aguirre, Nadia Mireya Murillo-Melo, Nonanzit Pérez-Hernández, Oscar Hernández-Hernández, Marcela Hernández-Ortega, Zazil Herrera-Carrillo, Bulmaro Cisneros and Jonathan J. Magaña
Int. J. Mol. Sci. 2026, 27(2), 683; https://doi.org/10.3390/ijms27020683 - 9 Jan 2026
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of CAG repeats at the ATXN7 gene. Disease onset and progression vary among patients, underscoring the need for novel tools to improve [...] Read more.
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of CAG repeats at the ATXN7 gene. Disease onset and progression vary among patients, underscoring the need for novel tools to improve disease monitoring. Circulating miRNAs represent a promising prognostic tool, due to their minimally invasive sampling and high stability. The aim of this study was to assess the expression of twelve circulating miRNAs associated with neurodegeneration in plasma samples from SCA7 patients and in an inducible SCA7 glial cell model. A comparison of SCA7 patients and controls revealed that nine miRNAs exhibited significantly higher expression. Furthermore, comparison of patients with different SCA7 phenotypes to controls revealed that most miRNAs were overexpressed in plasma from early-onset patients corresponding to the clinically more severe phenotype. Regarding the cell model, we identified three miRNAs that were dysregulated; however, only hsa-miR-342-5p displayed a pattern consistent with that observed in the plasma of patient. Our findings indicate that hsa-miR-342-5p is differentially expressed in the plasma of patients and the SCA7 cellular model, implying that it can serve as a biomarker and facilitate the identification of novel processes involved in SCA7. Full article
(This article belongs to the Special Issue Molecular Research on Ataxia)
20 pages, 4347 KB  
Article
Integrated ceRNA Network Analysis in Silica-Induced Pulmonary Fibrosis and Discovery of miRNA Biomarkers
by Jia Wang, Yuting Jin, Qianwei Chen, Fenglin Zhu and Min Mu
Toxics 2026, 14(1), 63; https://doi.org/10.3390/toxics14010063 - 9 Jan 2026
Abstract
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse [...] Read more.
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse model and transcriptomic sequencing to identify 2950 mRNAs, 461 lncRNAs, 81 miRNAs, and 44 circRNAs that were differentially expressed in lung tissue. Enrichment analysis revealed that these differentially expressed genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (Akt) signaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway, and tumor necrosis factor (TNF) signaling pathway. The constructed competing endogenous RNA (ceRNA) network highlighted extensive regulatory interactions among lncRNAs/circRNAs, miRNAs, and mRNAs. Human validation showed that the expression levels of hsa-miR-215-5p and hsa-miR-146b-5p were significantly upregulated in the peripheral blood of early-stage pneumoconiosis patients, while hsa-miR-485-5p was downregulated. Logistic regression analysis revealed that hsa-miR-215-5p (OR = 1.966, 95% CI: 1.6938–2.2796, p < 0.001) and hsa-miR-146b-5p (OR = 1.9367, 95% CI: 1.697–2.201, p < 0.001) were independent risk factors for pneumoconiosis (p < 0.001). ROC curve analysis showed that both miRNAs demonstrated good diagnostic efficacy for pneumoconiosis, with AUC values of 0.9563 and 0.8876, respectively. These results provide novel insights into the complex ceRNA regulatory network involved in silicosis pathogenesis and suggest potential early, non-invasive diagnostic biomarkers. Full article
(This article belongs to the Special Issue Effects of Air Pollutants on Cardiorespiratory Health)
Show Figures

Figure 1

20 pages, 3144 KB  
Communication
miR-204 Negatively Regulates HIV-Tat-Mediated Inflammation in Cervical Epithelial Cells via the NF-κB Axis: Insights from an In Vitro Study
by Kadambari Akolkar and Vandana Saxena
Cells 2026, 15(2), 117; https://doi.org/10.3390/cells15020117 - 9 Jan 2026
Abstract
Despite antiretroviral therapy, HIV proteins, such as Tat, persist in tissues, driving chronic inflammation. Cervical inflammation in females not only accelerates HIV progression but also increases the risk of other STIs; hence, understanding the underlying factors/regulators is vital. However, Tat-induced cervical inflammation and [...] Read more.
Despite antiretroviral therapy, HIV proteins, such as Tat, persist in tissues, driving chronic inflammation. Cervical inflammation in females not only accelerates HIV progression but also increases the risk of other STIs; hence, understanding the underlying factors/regulators is vital. However, Tat-induced cervical inflammation and its regulation are hitherto poorly understood, which we investigated using TZM-bl cells. Tat stimulation in these cervical epithelial cells significantly increased the expression of various inflammatory mediators, including cytokines (IL-1β, TNF-α, IL-6, IL-17a, GM-CSF), chemokines (MIP-1α, MIP-1β), adhesion molecules (ICAM-1, P-Selectin, E-Selectin), and ROS. Further upregulation of inflammatory mediators (NF-κB, IRAK-4) along with TLR7 was observed in Tat-stimulated cells. Interestingly, Tat stimulation decreased miR-204-5p expression in these cells, suggesting a role in regulating Tat-mediated inflammatory processes. Using a gain-of-function approach, we further observed that the overexpression of miR-204-5p reduced the expression of IL-1β, TNF-α, IL-6, MIP-1α, MIP-1β, ICAM-1, P-Selectin, and ROS in the Tat-stimulated TZM-bl cells, along with NF-κB, IRAK-1, and IRAK-4. Using Western blotting and luciferase assays, miR-204-5p was further shown to directly target NF-κB. Here, we report that HIV-1 Tat stimulation in cervical epithelial cells downregulates hsa-miR-204-5p, thereby activating the pro-inflammatory TLR7/NF-κB axis, highlighting its relevance to understanding mechanisms underlying cervical inflammation. Full article
Show Figures

Figure 1

19 pages, 6097 KB  
Article
Circuitous Ways of EWS::FLI1 Using Circular RNA ZNF609 to Evade Translational Repression by miR-145 in Ewing’s Sarcoma
by Aakash Koppula, Ahmed Abdelgawad, Brigette Romero, Victoria Beringer, Vijay Parashar and Mona Batish
Biomedicines 2026, 14(1), 129; https://doi.org/10.3390/biomedicines14010129 - 8 Jan 2026
Abstract
Background: Ewing’s sarcoma (EwS) is a pediatric bone and soft tissue cancer driven by the oncogenic fusion protein EWS::FLI1. Currently, EwS lacks targeted therapies, necessitating the identification of novel regulatory mechanisms. While the role of microRNAs and long non-coding RNAs has been explored [...] Read more.
Background: Ewing’s sarcoma (EwS) is a pediatric bone and soft tissue cancer driven by the oncogenic fusion protein EWS::FLI1. Currently, EwS lacks targeted therapies, necessitating the identification of novel regulatory mechanisms. While the role of microRNAs and long non-coding RNAs has been explored in EwS, the presence and functional significance of circular RNAs (circRNAs) in EwS is not reported. This is the first study to report the presence and role of oncogenic circRNA, circZNF609 in EwS tumor progression. Methods: Expression of circZNF609 was validated in 5 different EwS cell lines using qPCR. Cellular localization of circZNF609 was identified using circFISH. Functional assays for proliferation, migration and apoptosis were performed in wild type and circZNF609 knocked down (KD) cell lines to confirm its oncogenic role. The impact of circZNF609 on EWS::FLI1 protein levels was confirmed using western blots, immunofluorescence, and polysome fractionation. Mechanistic insights were gained utilizing bioinformatic, dual-luciferase reporter assays, rescue experiments, and microscopy to identify and validate the circRNA-miRNA-mRNA regulatory axis. Results: We report the first identification of circZNF609 in EwS, demonstrating that its expression is EWS::FLI1-dependent. Functional analysis reveals that circZNF609 promotes cell proliferation and metastasis while inhibiting apoptosis. Mechanistically, circZNF609 acts as a molecular sponge for miR-145-5p. By sequestering this miRNA, circZNF609 prevents the translational repression of EWS::FLI1, thereby sustaining oncogenic signaling. Conclusions: These findings identify circZNF609 as a novel post-transcriptional regulator of EWS::FLI1 and establish its critical role in EwS pathogenesis. Our results suggest that targeting the circZNF609/miR-145-5p/EWS::FLI1 axis may offer a promising therapeutic strategy for EwS. Full article
Show Figures

Graphical abstract

22 pages, 2583 KB  
Article
Chronic Resistance Exercise Combined with Nutrient Timing Enhances Skeletal Muscle Mass and Strength While Modulating Small Extracellular Vesicle miRNA Profiles
by Dávid Csala, Zoltán Ádám, Zoltán Horváth-Szalai, Balázs Sebesi, Kitti Garai, Krisztián Kvell and Márta Wilhelm
Biomedicines 2026, 14(1), 127; https://doi.org/10.3390/biomedicines14010127 - 8 Jan 2026
Abstract
Background: The anabolic window hypothesis suggests a limited post-exercise period for optimal nutrient uptake and utilization. Prior research indicates that miRNAs in extracellular vesicles (EVs) may regulate post-exercise adaptation by influencing protein synthesis. This study aimed to examine the effects of resistance [...] Read more.
Background: The anabolic window hypothesis suggests a limited post-exercise period for optimal nutrient uptake and utilization. Prior research indicates that miRNAs in extracellular vesicles (EVs) may regulate post-exercise adaptation by influencing protein synthesis. This study aimed to examine the effects of resistance exercise (RE) on physiological parameters and the expression and function of miRNAs transported in EVs. Methods: Twenty resistance-trained male participants (22 ± 2 years) completed a five-week RE program designed for hypertrophy. They consumed maltodextrin and whey protein based on assigned nutrient timing: immediately post-exercise (AE), three hours post-exercise (AE3), or no intake (CTRL). Body composition and knee extensor strength were assessed. Small EVs were isolated and then validated via three methods. Nanoparticle tracking analysis determined EV concentration and size, followed by pooled miRNA profiling and signaling pathway analysis. Results: Skeletal muscle mass significantly increased in AE (p = 0.001, g = 2) and AE3 (p = 0.028, g = 1), and it was higher in AE compared to CTRL (p = 0.013, η2 = 0.41), while knee extensor strength improved only in AE (p = 0.032, g = 0.9). Body fat percentage significantly decreased in all groups, AE (p = 0.005, g = 1.5), AE3 (p = 0.024, g = 1), and CTRL (p = 0.005, g = 1.7). Vesicle concentration significantly increased in the AE group (p = 0.043, r = 0.7), while it decreased in the CTRL group (p = 0.046, r = 0.8). Distinct miRNA expression profiles emerged post-intervention: 20 miRNAs were upregulated in AE, while 13 in AE3 and 15 in CTRL were downregulated. Conclusions: Nutrient timing influences training adaptation but is not more critical than total macronutrient intake. Changes in EV-transported miRNAs may regulate anabolic processes via the PI3K-AKT-mTOR and FoxO pathways through PTEN regulation. Full article
(This article belongs to the Special Issue MicroRNA and Its Role in Human Health, 2nd Edition)
Show Figures

Figure 1

30 pages, 3974 KB  
Article
Training-Free Lightweight Transfer Learning for Land Cover Segmentation Using Multispectral Calibration
by Hye-Jung Moon and Nam-Wook Cho
Remote Sens. 2026, 18(2), 205; https://doi.org/10.3390/rs18020205 - 8 Jan 2026
Abstract
This study proposes a lightweight framework for transferring pretrained land cover classification architectures without additional training. The system utilizes French IGN imagery and Korean UAV and aerial imagery. It employs FLAIR U-Net models with ResNet34 and MiTB5 backbones, along with the AI-HUB U-Net. [...] Read more.
This study proposes a lightweight framework for transferring pretrained land cover classification architectures without additional training. The system utilizes French IGN imagery and Korean UAV and aerial imagery. It employs FLAIR U-Net models with ResNet34 and MiTB5 backbones, along with the AI-HUB U-Net. The implementation consists of four sequential stages. First, we perform class mapping between heterogeneous schemes and unify coordinate systems. Second, a quadratic polynomial regression equation is constructed. This formula uses multispectral band statistics as hyperparameters and class-wise IoU as the dependent variable. Third, optimal parameters are identified using the stationary point condition of Response Surface Methodology (RSM). Fourth, the final land cover map is generated by fusing class-wise optimal results at the pixel level. Experimental results show that optimization is typically completed within 60 inferences. This procedure achieves IoU improvements of up to 67.86 percentage points compared to the baseline. For automated application, these optimized values from a source domain are successfully transferred to target areas. This includes transfers between high-altitude mountainous and low-lying coastal territories via proportional mapping. This capability demonstrates cross-regional and cross-platform generalization between ResNet34 and MiTB5. Statistical validation confirmed that the performance surface followed a systematic quadratic response. Adjusted R2 values ranged from 0.706 to 0.999, with all p-values below 0.001. Consequently, the performance function is universally applicable across diverse geographic zones, spectral distributions, spatial resolutions, sensors, neural networks, and land cover classes. This approach achieves more than a 4000-fold reduction in computational resources compared to full model training, using only 32 to 150 tiles. Furthermore, the proposed technique demonstrates 10–74× superior resource efficiency (resource consumption per unit error reduction) over prior transfer learning schemes. Finally, this study presents a practical solution for inference and performance optimization of land cover semantic segmentation on standard commodity CPUs, while maintaining equivalent or superior IoU. Full article
20 pages, 4676 KB  
Article
Direct Ageing of South Atlantic Swordfish (Xiphias gladius)
by Pablo Quelle, Isabel Chapela, Paula Pérez-Casal, Arancha Carroceda, María Jaranay, Óscar Gutiérrez, Begoña García, Ana Ramos-Cartelle, Enrique Rodríguez-Marín and Jaime Mejuto
Fishes 2026, 11(1), 37; https://doi.org/10.3390/fishes11010037 - 8 Jan 2026
Abstract
Studies of swordfish growth provide essential biological parameters for stock assessment and fisheries management, informing both conventional population models and the evaluation of different management strategies. The present study aims to provide insight into the dynamics of the South Atlantic Ocean stock growth [...] Read more.
Studies of swordfish growth provide essential biological parameters for stock assessment and fisheries management, informing both conventional population models and the evaluation of different management strategies. The present study aims to provide insight into the dynamics of the South Atlantic Ocean stock growth patterns. The sampling is the most complete to date in the literature, with a wide geographical distribution and in every month of the year. The analysis included 788 anal fins. Biometric relationships between different anal fin spine measurements and fish size were found. Some variation in the size of annulus one and vascularisation hiding some internal bands was found in larger specimens. Marginal increment ratio (MIR) and edge type analyses showed an annual band formation in the austral winter (July to September), thereby confirming the hypothesis of one annulus formation per year. Growth parameters were calculated using different growth models. The Gompertz model yielded the most reliable parameters (L = 341 cm LJFL, k = 0.13 yr−1, T = 2.83 yr). The tagging and recapture data corroborated the selected model. Results were compared with other growth curves published. Full article
(This article belongs to the Special Issue Ecology of Fish: Age, Growth, Reproduction and Feeding Habits)
Show Figures

Figure 1

18 pages, 3327 KB  
Article
Non-Coding RNA Biomarkers in Prostate Cancer: Evidence Mapping and In Silico Characterization
by Lorena Albarracín-Navas, Nicolás I. Lara-Salas, Javier H. Alarcon-Roa, Maylin Almonte-Becerril, Enmanuel Guerrero and Ángela L. Riffo-Campos
Life 2026, 16(1), 95; https://doi.org/10.3390/life16010095 - 8 Jan 2026
Abstract
Non-coding RNAs (ncRNAs) have emerged as promising biomarkers for prostate cancer (PCa), yet evidence remains dispersed across heterogeneous studies and their regulatory context is seldom analyzed in an integrated manner. This study systematically maps ncRNAs reported as diagnostic biomarkers for PCa and characterizes [...] Read more.
Non-coding RNAs (ncRNAs) have emerged as promising biomarkers for prostate cancer (PCa), yet evidence remains dispersed across heterogeneous studies and their regulatory context is seldom analyzed in an integrated manner. This study systematically maps ncRNAs reported as diagnostic biomarkers for PCa and characterizes their molecular interactions through in silico analyses. A comprehensive evidence-mapping strategy across major bibliographic databases identified 693 studies, of which 58 met eligibility criteria. Differentially expressed ncRNAs were extracted and classified by RNA type. Subsequently, miRNA–target prediction, miRNA–protein interaction network construction, and functional enrichment analyses were performed to explore the regulatory landscape of miRNA-associated proteins. Results: The final dataset included 4500 participants (2871 PCa cases and 2093 controls) and reported 94 differentially expressed miRNAs, eight lncRNAs, and several circRNAs, snoRNAs, snRNAs, and piRNAs. In silico analyses predicted 13,493 miRNA–mRNA interactions converging on 4916 unique target genes, with an additional 2481 prostate tissue-specific targets. The miRNA–protein network comprised 845 nodes and 2335 edges, revealing highly connected miRNAs (e.g., hsa-miR-16-5p, hsa-miR-20a-5p) and protein hubs (QKI, YOD1, TBL1XR1; prostate-specific CDK6, ACVR2B). Enrichment analysis showed strong overrepresentation of metabolic process-related GO terms and cancer-associated KEGG pathways. Conclusions: These findings refine the list of promising ncRNA biomarkers and highlight candidates for future clinical validation. Full article
(This article belongs to the Special Issue Prostate Cancer: 4th Edition)
Show Figures

Figure 1

13 pages, 2450 KB  
Article
Circulating Tenascin-C/-miR-155-5p Identified as Promising Prognostic Candidates of Intervertebral Disc Herniation
by Catarina Correia, Cláudia Ribeiro-Machado, Joana Caldeira, Inês C. Ferreira, Hugo Osório, Mário A. Barbosa, Milton Severo and Carla Cunha
Bioengineering 2026, 13(1), 74; https://doi.org/10.3390/bioengineering13010074 - 8 Jan 2026
Abstract
Intervertebral disc (IVD) herniation is a complex and multifactorial condition with a challenging diagnosis and limited therapeutic options, highlighting the need for reliable biomarkers to improve clinical decision-making. The aim of this study was to identify circulating prognostic biomarkers of IVD herniation regression. [...] Read more.
Intervertebral disc (IVD) herniation is a complex and multifactorial condition with a challenging diagnosis and limited therapeutic options, highlighting the need for reliable biomarkers to improve clinical decision-making. The aim of this study was to identify circulating prognostic biomarkers of IVD herniation regression. The plasma proteomic profile and the expression of circulating non-coding RNAs were analysed in a rat model of IVD herniation and were correlated with herniation size. Four candidate proteins (TNC, COPS3, JUP, and GNAI2) were significantly correlated with herniation size, with TNC further validated by ELISA. Additionally, miR-143-3p, miR-10b-5p, miR-27a-3p, miR-140-5p, miR-155-5p, miR-146a-5p, and miR-21-5p were positively correlated with herniation size. Moreover, TNC, COPS3, JUP, and GNAI2 were found to be potential targets of miR-155-5p. This study provides the first combined proteomic and miRNA account of preclinical plasma biomarkers of IVD herniation size, where TNC-miR-155-5p emerge as promising elements of a regulatory module with IVD herniation prognostic potential. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

17 pages, 3013 KB  
Article
Identification and Functional Investigation of Grapevine Circular RNA Vv-circRCD1 in Response to Salt Stress
by Jingjing Liu, Yuanyuan Xu, Yue Song, Junpeng Li, Dongying Fan, Zhen Zhang, Lipeng Zhang, Yuanxu Teng, Huaifeng Liu, Lingzhe Wang, Chunyan Liu, Long Zhou, Yi Ren and Chao Ma
Horticulturae 2026, 12(1), 72; https://doi.org/10.3390/horticulturae12010072 - 7 Jan 2026
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that regulate various biological processes in plants. However, the functions of most identified circRNAs remain unclear. Here, we report a nucleoplasmic-localized circRNA, Vv-circRCD1, derived from exons 2 and 3 of the grape VvRCD1 gene. [...] Read more.
Circular RNAs (circRNAs) are covalently closed RNA molecules that regulate various biological processes in plants. However, the functions of most identified circRNAs remain unclear. Here, we report a nucleoplasmic-localized circRNA, Vv-circRCD1, derived from exons 2 and 3 of the grape VvRCD1 gene. Overexpression of Vv-circRCD1 significantly shortened primary root length and increased root hair number and length, notably, and improved the salt tolerance in Arabidopsis. Transient overexpression also significantly enhanced salt tolerance of grapevines. In silico analyses confirmed direct sequence complementarity between Vv-circRCD1 and the Vvi-miR399 family, and Vv-circRCD1 and Vvi-miR399 target genes (involved in salt stress responses) showed consistent expression patterns under salt stress, indicating a Vv-circRCD1–Vvi-miR399–target gene regulatory module may mediate salt tolerance. These results not only identified Vv-circRCD1 as a novel regulator of grapevine salt tolerance, but also highlighted its potential in improving crop stress resistance, providing a practical reference for crop breeding. Full article
Show Figures

Figure 1

24 pages, 6324 KB  
Article
MicroRNAs as Key Regulators in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Bioinformatics Analysis
by Claudriana Locatelli, Karine Luz, Sergio Fallone de Andrade, Emyr Hiago Bellaver, Rosana Claudio Silva Ogoshi, Ariana Centa, João Paulo Assolini, Gustavo Colombo Dal Pont and Tania Beatriz Creczynski-Pasa
Biomedicines 2026, 14(1), 120; https://doi.org/10.3390/biomedicines14010120 - 7 Jan 2026
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a highly prevalent hepatic condition closely linked to metabolic syndrome (MetS). Epigenetic regulators such as microRNAs (miRNAs) have emerged as critical modulators of the molecular pathways underlying MASLD [...] Read more.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a highly prevalent hepatic condition closely linked to metabolic syndrome (MetS). Epigenetic regulators such as microRNAs (miRNAs) have emerged as critical modulators of the molecular pathways underlying MASLD pathogenesis, offering new perspectives for non-invasive diagnosis and targeted therapy. This study aimed to identify and characterize target genes and pathways regulated by two key hepatic miRNAs, namely miR-122 and miR-29a, through a comprehensive in silico bioinformatics approach, to better understand their functional roles in MASLD and MetS. Methods: Target genes of miR-122 and miR-29a were predicted using three databases (TargetScan, DIANA-microT-CDS, and miRWalk), and those identified by at least two databases were selected for downstream analyses. Functional enrichment was performed using Gene Ontology and KEGG pathway analysis. Gene networks and biological process maps were constructed using Metascape, clusterProfiler and Cytoscape. Results: miR-122 was found to negatively regulate genes involved in lipid metabolism, insulin signaling, and inflammatory pathways, including PPARGC1A, PPARA, LPL, TLR4, and HMGCR, contributing to insulin resistance and liver dysfunction. By contrast, miR-29a demonstrated potential hepatoprotective effects by targeting LEP, INSR, IL13, and IL18, enhancing insulin sensitivity and reducing fibrogenic activity. Enrichment analysis revealed strong associations with biological processes, such as STAT phosphorylation, lipid homeostasis, and inflammatory signaling, as well as associations with cellular components, including lipoproteins and plasma membranes. miR-122 and miR-29a exhibit opposing regulatory functions in MASLD pathogenesis. Whereas miR-122 is associated with disease progression, miR-29a acts protectively. These miRNAs may serve as promising biomarkers and therapeutic targets in MASLD and related metabolic conditions. Further validation through experimental and clinical studies is warranted. Full article
(This article belongs to the Special Issue Bioinformatics Analysis of RNA for Human Health and Disease)
Show Figures

Figure 1

21 pages, 3577 KB  
Article
Differential Circulating miRNA Responses to PM Exposure in Healthy and Diabetes Mellitus Patients: Implications for Lung Cancer Susceptibility
by Moe Thi Thi Han, Nichakorn Satitpornbunpot, Naoomi Tominaga, Saranta Freeouf, Khanittha Punturee, Chidchamai Kewchareonwong, Busayamas Chewaskulyong, Ganjana Lertmemongkolchai and Ratchada Cressey
Int. J. Mol. Sci. 2026, 27(2), 613; https://doi.org/10.3390/ijms27020613 - 7 Jan 2026
Abstract
Seasonal biomass-burning haze in Northern Thailand produces sharp fluctuations in ambient fine particulate matter (PM), posing heightened health risks, particularly for individuals with diabetes mellitus (DM). To identify PM-responsive biomarkers and assess whether metabolic status modifies these responses, we first performed small RNA [...] Read more.
Seasonal biomass-burning haze in Northern Thailand produces sharp fluctuations in ambient fine particulate matter (PM), posing heightened health risks, particularly for individuals with diabetes mellitus (DM). To identify PM-responsive biomarkers and assess whether metabolic status modifies these responses, we first performed small RNA sequencing in a discovery cohort using plasma samples collected during low- and high-PM periods. Thirteen circulating microRNAs (miRNAs) were differentially expressed, including reduced miR-542-3p and elevated miR-29a-3p, novelmiR-203, and novelmiR-754, with predicted targets enriched in immune and endoplasmic-reticulum stress pathways. These four miRNAs were quantified by RT-qPCR in a longitudinal cohort of adults with (n = 28) and without DM (n = 29) sampled at three PM-defined timepoints across one full haze cycle. In non-DM individuals, miR-542-3p decreased at peak exposure while miR-29a-3p and novelmiR-203 increased, with values returning toward baseline at re-exposure. DM participants showed altered baseline levels and attenuated or reversed seasonal changes. Plasma IL-8 rose markedly at peak PM in both groups, mirroring exosome concentration increases measured by NTA, indicating a transient systemic inflammatory response. In an independent clinical cohort, only miR-542-3p differed significantly between lung-cancer patients and healthy controls. These findings indicate that PM exposure reconfigures circulating miRNA, exosomal, and cytokine profiles, and that DM modifies these responses, highlighting miR-542-3p and miR-29a-3p as environmentally responsive and disease-relevant biomarker candidates. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop