Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = methanethiol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1241 KB  
Article
Unlocking the Secrets of Roman Chamomile (Anthemis nobilis L.) Essential Oil: Structural Elucidation and Acute Toxicity of New Esters
by Niko S. Radulović and Marko Z. Mladenović
Molecules 2026, 31(2), 256; https://doi.org/10.3390/molecules31020256 - 12 Jan 2026
Viewed by 201
Abstract
To address gaps in the characterization of Roman chamomile (Anthemis nobilis L., Asteraceae)—an ethnobotanically and commercially important species—we profiled its essential oil (EO), focusing on esters that are incompletely characterized or unreported. Comprehensive GC-MS of two commercial EOs and their chromatographic fractions, [...] Read more.
To address gaps in the characterization of Roman chamomile (Anthemis nobilis L., Asteraceae)—an ethnobotanically and commercially important species—we profiled its essential oil (EO), focusing on esters that are incompletely characterized or unreported. Comprehensive GC-MS of two commercial EOs and their chromatographic fractions, combined with synthesis and co-injection of reference compounds, enabled the identification of 190 constituents. We uncovered a homologous series of angelates, tiglates, and senecioates by partial-ion-current (PIC) screening (m/z 55, 83, 100, 101), augmented by co-injection and NMR confirmation. Among these EO constituents, four esters, methallyl 3-methylbutanoate (6h), methallyl senecioate (3h), 3-methylpentyl 2-methylbutanoate (5c), and 5-methylhexyl angelate (2g) are reported here as new natural products and previously unreported compounds in the literature. Selected methacrylates and related α,β-unsaturated esters underwent model Michael additions to methanethiol (generated in situ from dimethyl disulfide and NaBH4), confirming their thiol-acceptor reactivity. In an Artemia salina assay, the EO and most esters were non-toxic; methacrylates showed only low toxicity at the highest concentrations. These results refine the chemical map of A. nobilis EO and highlight specific ester families for future mechanistic and biological evaluation. Full article
Show Figures

Graphical abstract

14 pages, 2223 KB  
Article
Evaluating Sampling Materials for Atmospheric Volatile Organosulfur Compounds Measurement and Application in the Power Battery Recycling Industry
by Tianyu Fang, Zhou Zhang, Zhongxiangyu Ou, Sheng Li, Yanli Zhang and Xinming Wang
Atmosphere 2025, 16(12), 1341; https://doi.org/10.3390/atmos16121341 - 27 Nov 2025
Viewed by 399
Abstract
Volatile organosulfur compounds (VSCs) play significant roles in atmospheric chemistry and malodorous pollution. Accurate measurement of VSCs is challenging due to their high reactivity and adsorption tendencies, which are strongly influenced by sampling materials. This study comprehensively evaluates the performance of six types [...] Read more.
Volatile organosulfur compounds (VSCs) play significant roles in atmospheric chemistry and malodorous pollution. Accurate measurement of VSCs is challenging due to their high reactivity and adsorption tendencies, which are strongly influenced by sampling materials. This study comprehensively evaluates the performance of six types of sampling bags and passivated canisters for measuring nine VSCs. The results indicate that passivated canisters provide stable storage for all target VSCs for up to 7 days under dry conditions. Among the bags, polyvinyl fluoride (PVF) bags exhibited the lowest blank levels and preserved most VSCs (except disulfides) stably for 8 h. Field comparisons in a power battery recycling plant showed good agreement between PVF bag and canister measurements under dry conditions. However, in high-humidity stack gases, canisters showed severe losses of methanethiol and ethanethiol, likely due to humidity-driven conversion on metal surfaces, underscoring the necessity of drying humid-air samples. The application of these methods revealed significant VSCs emissions and distinct compositional profiles from power battery recycling processes, particularly pyrolysis drying, lithium leaching, and nickel–cobalt leaching processes, with concentrations of total VSCs reaching up to 1046.86 ppb. This work provides crucial guidance for selecting appropriate sampling methods for reliable VSCs measurement and offers the first emissions characteristics of VSCs from the power battery recycling industry, supporting future environmental monitoring and pollution control. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

526 KB  
Proceeding Paper
The Mannich Reaction of the S,N-Binucleophilic Species Derived from Meldrum’s Acid with HCHO and Primary Amines
by Anastasiya Yu. Skachkova, Alena A. Russkikh and Victor V. Dotsenko
Chem. Proc. 2025, 18(1), 98; https://doi.org/10.3390/ecsoc-29-26680 - 11 Nov 2025
Viewed by 142
Abstract
We investigated the reactivity of a new sulfur-containing compound derived from Meldrum’s acid and phenyl isothiocyanate, triethylammonium 1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)(phenylamino)methanethiolate. Under aminomethylation conditions (using aqueous formaldehyde and primary amines), this compound undergoes a double aminomethylation to form novel 1,3,5-thiadiazine derivatives. These new compounds, 2,2-dimethyl-5-(3-phenyl-1,3,5-thiadiazinan-2-ylidene)-1,3-dioxane-4,6-diones, were [...] Read more.
We investigated the reactivity of a new sulfur-containing compound derived from Meldrum’s acid and phenyl isothiocyanate, triethylammonium 1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)(phenylamino)methanethiolate. Under aminomethylation conditions (using aqueous formaldehyde and primary amines), this compound undergoes a double aminomethylation to form novel 1,3,5-thiadiazine derivatives. These new compounds, 2,2-dimethyl-5-(3-phenyl-1,3,5-thiadiazinan-2-ylidene)-1,3-dioxane-4,6-diones, were previously unknown. This study also explores some properties of the synthesized 1,3,5-thiadiazines. Full article
Show Figures

Figure 1

14 pages, 1114 KB  
Article
Deciphering Important Odorants in a Spirulina (Arthrospira platensis) Dietary Supplement by Aroma Extract Dilution Analysis Using Offline and Online Fractionation Approaches
by Aikaterina Paraskevopoulou, Veronika Mall, Theodoros M. Triantis, Triantafyllos Kaloudis, Anastasia Hiskia, Dimitra Dimotikali and Martin Steinhaus
Int. J. Mol. Sci. 2025, 26(14), 6767; https://doi.org/10.3390/ijms26146767 - 15 Jul 2025
Cited by 1 | Viewed by 1721
Abstract
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, [...] Read more.
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, including various offline and online fractionation approaches, led to the structure assignment of 30 odorants, among which the most potent were sweaty 2- and 3-methylbutanoic acid (FD 2048), roasty, earthy, shrimp-like 2-ethyl-3,5-dimethylpyrazine (FD 2048), vinegar-like acetic acid (FD 1024), and floral, violet-like β-ionone (FD 1024). Static headspace dilution analysis revealed sulfuric, cabbage-like methanethiol (FD factor ≥ 32) as an additional potent odorant. In summary, 31 important spirulina odorants were identified in this study, and 14 were reported for the first time as spirulina constituents. Our data will provide a basis for future odor optimization of spirulina-based food products. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
Show Figures

Figure 1

15 pages, 4388 KB  
Article
Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings
by Yajiao Zhao, Ye Guo, Danni Zhang, Quanlong Zhou, Xiaoxiao Feng and Yuan Liu
Foods 2025, 14(13), 2270; https://doi.org/10.3390/foods14132270 - 26 Jun 2025
Cited by 1 | Viewed by 1204
Abstract
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with [...] Read more.
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with four spices—cardamom, rosemary, mint, and rose—using a novel, household-friendly smoking protocol. The method combines air fryer pre-cooking (180 °C, 16 min) with electric griddle-based smoke infusion, followed by HS-SPME/GC-TOF/MS, relative odor activity value (ROAV) calculations, and metabolomic analysis. A total of 314 volatile compounds were identified across five samples. Among them, 45 compounds demonstrated odor activity values (ROAV) ≥ 1, contributing to green, woody, floral, and sweet aroma attributes. Eucalyptol displayed the highest ROAV (2543), underscoring its dominant sensory impact. Metabolomic profiling revealed a general upregulation of differential volatiles post-smoking: terpenes were enriched in wings smoked with cardamom, rosemary, and mint, while aldehydes and alcohols predominated in rose-smoked samples. An integrated screening based on ROAV and metabolomic data identified 24 key volatiles, including eucalyptol, β-myrcene, methanethiol, and α-pinene, which collectively defined the aroma signatures of spice-smoked wings. Spice-specific aroma enrichment and sensory properties were evident: rosemary intensified woody–spicy notes, mint enhanced herbal freshness, and rose amplified floral attributes. The proposed method demonstrated advantages in safety, ease of use, and flavor customization, aligning with clean-label trends and supporting innovation in home-based culinary practices. Moreover, it facilitates the tailored modulation of smoked meat flavor profiles, thereby enhancing product differentiation and broadening consumer acceptance. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Graphical abstract

13 pages, 657 KB  
Article
Exhaled Breath Analysis in Lymphangioleiomyomatosis by Real-Time Proton Mass Spectrometry
by Malika Mustafina, Artemiy Silantyev, Marina Makarova, Aleksandr Suvorov, Alexander Chernyak, Zhanna Naumenko, Pavel Pakhomov, Ekaterina Pershina, Olga Suvorova, Anna Shmidt, Anastasia Gordeeva, Maria Vergun, Olesya Bahankova, Daria Gognieva, Aleksandra Bykova, Andrey Belevskiy, Sergey Avdeev, Vladimir Betelin and Philipp Kopylov
Int. J. Mol. Sci. 2025, 26(13), 6005; https://doi.org/10.3390/ijms26136005 - 23 Jun 2025
Cited by 1 | Viewed by 1002
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive disease that affects women of reproductive age and is characterized by cystic lung destruction, airflow obstruction, and lymphatic dysfunction. Current diagnostic methods are costly or lack sufficient specificity, highlighting the need for novel non-invasive approaches. Exhaled breath [...] Read more.
Lymphangioleiomyomatosis (LAM) is a rare progressive disease that affects women of reproductive age and is characterized by cystic lung destruction, airflow obstruction, and lymphatic dysfunction. Current diagnostic methods are costly or lack sufficient specificity, highlighting the need for novel non-invasive approaches. Exhaled breath analysis using real-time proton mass spectrometry (PTR-MS) presents a promising strategy for identifying disease-specific volatile organic compounds (VOCs). This cross-sectional study analyzed exhaled breath samples from 51 LAM patients and 51 age- and sex-matched healthy controls. PTR-time-of-flight mass spectrometry (PTR-TOF-MS) was employed to identify VOC signatures associated with LAM. Data preprocessing, feature selection, and statistical analyses were performed using machine learning models, including gradient boosting classifiers (XGBoost), to identify predictive biomarkers of LAM and its complications. We identified several VOCs as potential biomarkers of LAM, including m/z = 90.06 (lactic acid) and m/z = 113.13. VOCs predictive of disease complications included m/z = 49.00 (methanethiol), m/z = 48.04 (O-methylhydroxylamine), and m/z = 129.07, which correlated with pneumothorax, obstructive ventilation disorders, and radiological findings of lung cysts and bronchial narrowing. The classifier incorporating these biomarkers demonstrated high diagnostic accuracy (AUC = 0.922). This study provides the first evidence that exhaled breath VOC profiling can serve as a non-invasive additional tool for diagnosing LAM and predicting its complications. These findings warrant further validation in larger cohorts to refine biomarker specificity and explore their clinical applications in disease monitoring and personalized treatment strategies. Full article
Show Figures

Figure 1

20 pages, 3997 KB  
Article
The Use of Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) to Determine the Volatile Organic Compounds (VOCs) Produced by Different Lactic Acid Bacterial Strains Growing in Defined Media
by Sarathadevi Rajendran, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Franco Biasioli and Phil Bremer
Appl. Microbiol. 2025, 5(1), 33; https://doi.org/10.3390/applmicrobiol5010033 - 20 Mar 2025
Cited by 1 | Viewed by 2397
Abstract
Lactic acid bacteria (LAB) fermentation has been claimed as an effective way of modifying the sensory properties of plant-based foods. However, not much has been published on the influence of different LAB strains on the flavour of the volatile organic compounds (VOCs) produced. [...] Read more.
Lactic acid bacteria (LAB) fermentation has been claimed as an effective way of modifying the sensory properties of plant-based foods. However, not much has been published on the influence of different LAB strains on the flavour of the volatile organic compounds (VOCs) produced. Using a defined medium (DM) and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS), we assessed the VOCs produced by seven LAB strains, Levilactobacillus brevis WLP672 (LB672), Lactobacillus delbrueckii WLP677 (LD677), Pediococcus damnosus WLP661 (PD661), Lactiplantibacillus plantarum LP100 (LP100), Pediococcus pentosaceus PP100 (PP100), Pediococcus damnosus 5733 (PD5733), and Lentilactobacillus buchneri 5335 (LU5335), at three time points during fermentation (0, 7, and 14 days) at either 25 or 35 °C. Significant variations in VOC production were observed among LAB strains, growing in the same DM composition at either 25 °C or 35 °C. Specifically, the concentration of m/z 87.043 (t.i. diacetyl) was significantly (p < 0.05) higher at 7 days of fermentation at 35 °C by LP100, followed by PP100 at 35 °C and PD661 at 25 °C compared to the other strains at either 25 or 35 °C. The concentration of m/z 115.112 (t.i. 2-heptanone) was significantly (p < 0.05) higher at 7 days of fermentation at either 25 or 35 °C by LP100 compared to the other strains at all temperature and time points. The concentration of m/z 49.011 (t.i. methanethiol) was significantly (p < 0.05) higher after 7 days of fermentation at 35 °C by LB672 compared to the other strains at either 25 or 35 °C. The concentration of m/z 71.085 (t.i. 3-methyl butanol) was significantly (p < 0.05) higher after 7 days of fermentation at either 25 or 35 °C by PD661, LU5335, or PD5733 compared to the other strains studied. A notable increase in specific VOC concentrations was observed at 35 °C compared to 25 °C. This research demonstrates that LAB strains generate distinct VOC profiles in a DM based on strains and fermentation conditions. Therefore, this knowledge provides a basis for controlling and enhancing flavour in plant-based fermentations. Full article
Show Figures

Graphical abstract

10 pages, 1337 KB  
Article
Degradation Kinetics of Common Odorants Emitted from WWTPs: A Methodological Approach for Estimating Half-Life Through Reactions with Hydroxyl Radicals
by Marouane Dhia Eddine Bouguerra, Bartłomiej Witkowski, Tomasz Gierczak and Radosław J. Barczak
Atmosphere 2025, 16(3), 340; https://doi.org/10.3390/atmos16030340 - 18 Mar 2025
Cited by 1 | Viewed by 1131
Abstract
In contemporary times, wastewater treatment plants (WWTPs) were recognized as substantial sources of odorous emissions, potentially impacting nearby communities’ sensory experience. This study investigates the half-lives (T½) of odorous compounds emitted from WWTPs and their degradation due to atmospheric hydroxyl radicals (•OH) in [...] Read more.
In contemporary times, wastewater treatment plants (WWTPs) were recognized as substantial sources of odorous emissions, potentially impacting nearby communities’ sensory experience. This study investigates the half-lives (T½) of odorous compounds emitted from WWTPs and their degradation due to atmospheric hydroxyl radicals (•OH) in different environmental settings. The calculated half-lives of specific odorants in rural areas ranged from 31.36 min to 517.33 days, in urban areas from 42.50 min to 1550 days, and in the marine boundary layer from 42.50 min to 129,861 days. These results show that compounds with high reactivity and short T½, such as methanethiol and ethanethiol, degrade rapidly and are less likely to contribute to long-term odor nuisances. In contrast, compounds with longer half-lives, such as carbonyl sulfide and ammonia, persist longer in the atmosphere, with higher potential for sustained odor issues. The findings suggest that •OH plays a significant role in degrading odorous compounds. These insights into odorant–oxidant kinetics may aid in predicting atmospheric half-lives and their contribution to secondary aerosol formation, thus informing regulatory and mitigation strategies to improve air quality. Full article
Show Figures

Figure 1

12 pages, 2298 KB  
Article
PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin
by Iuliia Khomenko, Valentina Ting, Fabio Brambilla, Mirco Perbellini, Luca Cappellin and Franco Biasioli
Molecules 2025, 30(2), 402; https://doi.org/10.3390/molecules30020402 - 18 Jan 2025
Cited by 1 | Viewed by 1182
Abstract
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with [...] Read more.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified. Principal component analysis (PCA) showed a clear separation between cooked and raw samples, with cooking causing a significant increase in 64% of VOCs, especially hydrogen sulphide, methanethiol, and butanal. A two-way ANOVA revealed significant effects of origin, time, and their interaction on VOC concentration, with 102 mass peaks varying significantly based on all three factors. Seasonal effects were also notable, particularly in reared fish from the Adriatic Sea, where compounds like monoterpenes and aromatics were higher during non-breeding months, likely due to environmental factors unique to that area. Differences between wild and reared fish were influenced by lipid content and seasonal changes, impacting the VOC profile of seabream. These findings provide valuable insights into how cooking, geographical origin, and seasonality interact to define the flavour profile of seabream, with potential applications in improving quality control and product differentiation in seafood production. Full article
(This article belongs to the Special Issue Innovative Analytical Techniques in Food Chemistry)
Show Figures

Figure 1

15 pages, 2147 KB  
Article
Impact of Dried Stems on the Chemical Profile of Passito Wines: A Case Study of Four Veneto Varieties
by Giovanni Luzzini, Loris Colognato, Leonardo Vanzo, Jessica Anahi Samaniego Solis, Naíssa Prévide Bernardo, Rosario Pascale, Beatrice Perina, Giacomo Cristanelli, Maurizio Ugliano and Davide Slaghenaufi
Fermentation 2025, 11(1), 18; https://doi.org/10.3390/fermentation11010018 - 3 Jan 2025
Viewed by 1938
Abstract
In winemaking, the use of stems during fermentation is rarely employed due to some undesirable side effects. While the effect of fresh stems on wine is extensively studied, to date limited information is available about the effect of dried stems. This study aimed [...] Read more.
In winemaking, the use of stems during fermentation is rarely employed due to some undesirable side effects. While the effect of fresh stems on wine is extensively studied, to date limited information is available about the effect of dried stems. This study aimed to investigate the impact of dried stems on the chemical and sensory profile of passito wines. Four withered grape varieties were selected for winemaking: three red and one white from the Verona area. Grapes were fermented with and without withered stems. A major impact on enological parameters, in particular pH and total polyphenols, was observed. In terms of volatile compounds, no release of C6 alcohols—compounds with undesirable herbaceous odors—was detected. Varietal-dependent release of 3-isobutyl-2-methoxypyrazine (IBMP) was also observed; however in most cases, the content was below the odor threshold. Furthermore, dried stems significantly decreased methanethiol content, likely due to adsorption phenomena. Minor differences were observed in acetate esters, terpenes, and norisoprenoids, though these were not consistent across all wine types. From a sensory point of view, a significant variety-dependent effect was observed, mostly due to IBMP, ethyl acetate, and β-damascenone. Full article
(This article belongs to the Special Issue Wine Aromas: 2nd Edition)
Show Figures

Figure 1

17 pages, 879 KB  
Article
Identification of Exhaled Metabolites Correlated with Respiratory Function and Clinical Features in Adult Patients with Cystic Fibrosis by Real-Time Proton Mass Spectrometry
by Malika Mustafina, Artemiy Silantyev, Stanislav Krasovskiy, Alexander Chernyak, Zhanna Naumenko, Aleksandr Suvorov, Daria Gognieva, Magomed Abdullaev, Olga Suvorova, Anna Schmidt, Aida Gadzhiakhmedova, Aleksandra Bykova, Sergey Avdeev, Vladimir Betelin, Abram Syrkin and Philipp Kopylov
Biomolecules 2024, 14(9), 1189; https://doi.org/10.3390/biom14091189 - 21 Sep 2024
Cited by 7 | Viewed by 1821
Abstract
Cystic fibrosis (CF) is a hereditary disease characterized by the progression of respiratory disorders, especially in adult patients. The purpose of the study was to identify volatile organic compounds (VOCs) as predictors of respiratory dysfunction, chronic respiratory infections of Staphylococcus aureus, Pseudomonas [...] Read more.
Cystic fibrosis (CF) is a hereditary disease characterized by the progression of respiratory disorders, especially in adult patients. The purpose of the study was to identify volatile organic compounds (VOCs) as predictors of respiratory dysfunction, chronic respiratory infections of Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, and VOCs associated with severe genotype and highly effective modulator treatment (HEMT). Exhaled breath samples from 102 adults with CF were analyzed using PTR-TOF-MS, obtained during a forced expiratory maneuver and normal quiet breathing. Using cross-validation and building gradient boosting classifiers (XGBoost), the importance of VOCs for functional and clinical outcomes was determined. The presence of the previously identified VOCs indole, phenol, and dimethyl sulfide were metabolic outcomes associated with impaired respiratory function. New VOCs associated with respiratory disorders were methyl acetate, carbamic acid, 1,3-Pentadiene, and 2,3-dimethyl-2-butene; VOCs associated with the above mentioned respiratory pathogens were non-differentiable nitrogen-containing organic compounds m/z = 47.041 (CH5NO)+ and m/z = 44.044 (C2H5NH+), hydrocarbons (cyclopropane, propene) and methanethiol; and VOCs associated with severe CFTR genotype were non-differentiable VOC m/z = 281.053. No significant features associated with the use of HEMT were identified. Early non-invasive determination of VOCs as biomarkers of the severity of CF and specific pathogenic respiratory flora could make it possible to prescribe adequate therapy and assess the prognosis of the disease. However, further larger standardized studies are needed for clinical use. Full article
(This article belongs to the Special Issue Airway Diseases: Molecular Updates and Perspectives)
Show Figures

Figure 1

9 pages, 2711 KB  
Article
Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica
by Muhammad Jehangir, Mohammad Saeed Iqbal and Usman Aftab
Molecules 2024, 29(17), 4226; https://doi.org/10.3390/molecules29174226 - 6 Sep 2024
Cited by 1 | Viewed by 1790
Abstract
This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography–mass spectrometry. The drug was incubated with the organisms in tryptic soya broth [...] Read more.
This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography–mass spectrometry. The drug was incubated with the organisms in tryptic soya broth at 37 °C. The broth was filtered and subjected to liquid chromatography–mass spectrometry. The metabolites identified by the use of mass spectral (+ve ion mode) fragmentation patterns were (3-methylphenyl)methanethiol (Bacillus subtilis), 1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Salmonella enterica subsp. enterica) and 1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Salmonella enterica subsp. enterica, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus). These metabolites exhibit high gastrointestinal absorption, no blood–brain barrier permeability (except (3-methylphenyl)methanethiol), a bioavailability score of 0.55 and no inhibitory effect on CYP2C19, CYP2C9, CYP2D6, CYP3A4 or cytochrome P450 1A2 (except (3-methylphenyl)methanethiol), as determined by SwissADME software ver. 2024. The metabolites appear to be more toxic than the parent drug, as suggested by their calculated median lethal dose values. All four organisms under investigation transformed sumatriptan to different chemical substances that were more toxic than the parent drug. Full article
Show Figures

Figure 1

12 pages, 865 KB  
Review
Selenium-Binding Protein 1 (SBP1): A New Putative Player of Stress Sensing in Plants
by Irene Dervisi, Aikaterini Koletti, Adamantia Agalou, Kosmas Haralampidis, Emmanouil Flemetakis and Andreas Roussis
Int. J. Mol. Sci. 2024, 25(17), 9372; https://doi.org/10.3390/ijms25179372 - 29 Aug 2024
Cited by 2 | Viewed by 2420
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous and conserved protein family with yet unclear biochemical and molecular functions. The importance of the human homolog has been extensively studied as it is implicated in many cancer types and other diseases. On the other hand, little [...] Read more.
Selenium-binding proteins (SBPs) represent a ubiquitous and conserved protein family with yet unclear biochemical and molecular functions. The importance of the human homolog has been extensively studied as it is implicated in many cancer types and other diseases. On the other hand, little is known regarding plant homologs. In plants, there is evidence that SBP participates in developmental procedures, oxidative stress responses, selenium and cadmium binding, and pathogenic tolerance. Moreover, recent studies have revealed that SBP is a methanethiol oxidase (MTO) catalyzing the conversion of methanethiol into formaldehyde, H2S, and H2O2. The two later products emerge as key signal molecules, playing pivotal roles in physiological processes and environmental stress responses. In this review, we highlight the available information regarding plants in order to introduce and emphasize the importance of SBP1 and its role in plant growth, development, and abiotic/biotic stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2676 KB  
Article
Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
by Sarathadevi Rajendran, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Franco Biasioli and Phil Bremer
Molecules 2024, 29(14), 3275; https://doi.org/10.3390/molecules29143275 - 11 Jul 2024
Cited by 2 | Viewed by 2318
Abstract
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To [...] Read more.
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To simplify this, a defined medium can be used to better understand VOCs production with regard to individual compounds. In the current study, the VOCs produced by the lactic acid bacterium, Levilactobacillus brevis WLP672, growing in a defined medium containing different carbon sources (either glucose (DM), fructose (DMFr) or citrate (DMCi)) under a range of fermentation conditions (time: 0, 7, and 14 days; and temperature: 25 and 35 °C) were assessed using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Among the detected mass peaks (m/z), after 7 days of fermentation, the concentrations of m/z 45.033 (t.i. acetaldehyde), m/z 49.011 (t.i. methanethiol), and m/z 89.060 (t.i. ethyl acetate) were significantly (p < 0.05) higher in DM at 35 °C than all other treatments at either temperature. The knowledge obtained will help to produce desirable LAB fermentation flavour VOCs or VOC mixtures that could be used in developing plant-based analogues with acceptable sensory properties. Full article
Show Figures

Figure 1

18 pages, 8740 KB  
Article
The Effect of Different Medium Compositions and LAB Strains on Fermentation Volatile Organic Compounds (VOCs) Analysed by Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS)
by Sarathadevi Rajendran, Iuliia Khomenko, Patrick Silcock, Emanuela Betta, Michele Pedrotti, Franco Biasioli and Phil Bremer
Fermentation 2024, 10(6), 317; https://doi.org/10.3390/fermentation10060317 - 15 Jun 2024
Cited by 4 | Viewed by 3058
Abstract
Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the [...] Read more.
Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the addition of individual amino acids (AAs) (L-leucine, L-isoleucine, L-phenylalanine, L-glutamic acid, L-aspartic acid, L-threonine, or L-methionine) to a defined medium (DM) on the generation of VOCs (after 0, 7, and 14 days) by one of three LAB strains (Levilactobacillus brevis WLP672 (LB672), Lactiplantibacillus plantarum LP100 (LP100), and Pediococcus pentosaceus PP100 (PP100)), using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The concentration of m/z 45.031 (t.i. acetaldehyde) was significantly (p < 0.05) higher after 7 days of fermentation by LP100 in the DM supplemented with threonine compared to all other media fermented by all three strains. The concentrations of m/z 49.012 (t.i. methanethiol) and m/z 95.000 (t.i. dimethyl disulfide) were significantly (p < 0.05) higher after 7 days of fermentation by either LP100, PP100, or LB672 in the DM supplemented with methionine compared to all other media. Information on the role of individual AAs on VOCs generation by different LAB strains will help to guide flavour development from the fermentation of plant-based substrates. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop