Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = metal–dithiolene complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3137 KB  
Article
HX-Linear and Nonlinear Optical Responsiveness of Rationally Designed Heteroleptic d8-Metallo-dithiolene Complexes
by Salahuddin S. Attar, Flavia Artizzu, Luca Pilia, Angela Serpe, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani, Dominique Roberto, Daniele Marinotto and Paola Deplano
Molecules 2025, 30(19), 4004; https://doi.org/10.3390/molecules30194004 - 7 Oct 2025
Viewed by 287
Abstract
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = [...] Read more.
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = 1,2,5-thiadiazole-3,4-dithiolato). Addition of hydrohalic acids induces a strong bathochromic shift and visible color change, which is fully reversed by ammonia (NH3). Moreover, the sensing capability of 1 was further evaluated by deposition on a cellulose substrate. Exposure to HCl vapors induces an evident color change from purple to green, whereas successive exposure to NH3 vapors fully restores the purple color. Remarkably, cellulose films of 1 were revealed to be excellent optical sensors against the response to triethylamine, which is a toxic volatile amine. Moreover, the HCl-responsiveness of the nonlinear optical properties of complexes 1, 2, and 3 embedded into a poly(methyl methacrylate) poled matrix was demonstrated. Reversible chemical second harmonic generation (SHG) switching is achieved by exposing the poled films to HCl vapors and then to NH3 vapors. The SHG response ratio HCl–adduct/complex is significant (around 1.5). Remarkably, the coefficients of the susceptibility tensor for the HCl–adduct films are always larger than those of the respective free-complex films. Density Functional Theory (DFT) and time-dependent DFT calculations help in highlighting the structure–properties relationship. Full article
(This article belongs to the Special Issue Functional Coordination Compounds: Design, Synthesis and Applications)
Show Figures

Figure 1

12 pages, 3444 KB  
Article
Bimetallic Perthiocarbonate Complexes of Cobalt: Synthesis, Structure and Bonding
by Alaka Nanda Pradhan, Shivankan Mishra, Urminder Kaur, Bikram Keshari Rout, Jean-François Halet and Sundargopal Ghosh
Molecules 2024, 29(11), 2688; https://doi.org/10.3390/molecules29112688 - 6 Jun 2024
Viewed by 1717
Abstract
The syntheses and structural elucidation of bimetallic thiolate complexes of early and late transition metals are described. Thermolysis of the bimetallic hydridoborate species [{Cp*CoPh}{µ-TePh}{µ-TeBH3-ĸ2Te,H}{Cp*Co}] (Cp* = ɳ5-C5Me5) ( [...] Read more.
The syntheses and structural elucidation of bimetallic thiolate complexes of early and late transition metals are described. Thermolysis of the bimetallic hydridoborate species [{Cp*CoPh}{µ-TePh}{µ-TeBH3-ĸ2Te,H}{Cp*Co}] (Cp* = ɳ5-C5Me5) (1) in the presence of CS2 afforded the bimetallic perthiocarbonate complex [(Cp*Co)2(μ-CS4-κ1S:κ2S′)(μ-S2-κ2S″:κ1S‴)] (2) and the dithiolene complex [(Cp*Co)(μ-C3S5-κ1S,S′] (3). Complex 2 contains a four-membered metallaheterocycle (Co2S2) comprising a perthiocarbonate [CS4]2− unit and a disulfide [S2]2− unit, attached opposite to each other. Complex 2 was characterized by employing different multinuclear NMR, infrared spectroscopy, mass spectrometry, and single-crystal X-ray diffraction studies. Preliminary studies show that [Cp*VCl2]3 (4) with an intermediate generated from CS2 and [LiBH4·THF] yielded thiolate species, albeit different from the cobalt system. Furthermore, a computational analysis was performed to provide insight into the bonding of this bimetallic perthiocarbonate complex. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 7900 KB  
Article
Cobalt and Iron Cyano Benzene Bis(Dithiolene) Complexes
by António G. Costa, Gonçalo Lopes, João F. G. Rodrigues, Isabel C. Santos, Dulce Simão, Elsa B. Lopes, Laura C. J. Pereira, Nolwenn Le Breton, Sylvie Choua, Stéphane A. Baudron, Manuel Almeida and Sandra Rabaça
Crystals 2024, 14(5), 469; https://doi.org/10.3390/cryst14050469 - 17 May 2024
Cited by 2 | Viewed by 1763
Abstract
New iron and cobalt bis(dithiolene) complexes [M(3cbdt)2] (3cbdt = 3-cyanobenzene-1,2-dithiolate) were prepared as tetraphenylphosphonium (Ph4P+) salts for Fe in the monoanionic state and for Co in both the dianionic and monoanionic states: (Ph4P)2[Fe(III)(3cbdt) [...] Read more.
New iron and cobalt bis(dithiolene) complexes [M(3cbdt)2] (3cbdt = 3-cyanobenzene-1,2-dithiolate) were prepared as tetraphenylphosphonium (Ph4P+) salts for Fe in the monoanionic state and for Co in both the dianionic and monoanionic states: (Ph4P)2[Fe(III)(3cbdt)2]2 (1); (Ph4P)2[Co(III)(3cbdt)2]2 (2); (Ph4P)2[Co(II)(3cbdt)2] (3). These compounds were characterized by single-crystal X-ray diffraction, cyclic voltammetry, EPR, and static magnetic susceptibility. Their properties are discussed in comparison with the corresponding complexes based on the isomer ligand 4-cyanobenzene-1,2-dithiolate (4cbdt) and 4,5-cyanobenzene-1,2-dithiolate (dcbdt), previously described by us. The Fe(III) and the Co(III) compounds (1 and 2) are isostructural, crystallizing in the triclinic P1¯ space group, with cis [M(III)(3cbdt)2] complexes dimerized in a trans fashion, and the transition metal (M = Fe, Co) has a distorted 4+1 square pyramidal coordination geometry. The Co(II) compound (3) crystallizes in the triclinic P1¯ space group, with the unit cell containing one cis and three trans inequivalent [Co(II)(3cbdt)2] complexes with the transition metal (Co) and having a square planar coordination geometry. The Fe(III) complex (1) is EPR-silent, and the static magnetic susceptibility shows a temperature dependence typical of dimers of antiferromagnetically coupled S = 3/2 spins with −J/kB = 233.6 K and g = 1.8. Static magnetic susceptibility measurements of compound (3) show that this Co(II) complex is paramagnetic, corresponding to an S = ½ state with g = 2, in agreement with EPR spectra showing in solid state a hyperfine structure typical of the I(59Co) = 7/2. Static susceptibility measurements of Co(III) complex (2) showed an increase in the paramagnetic susceptibility upon warming above 100 K, which is consistent with strong AFM coupling between dimerized S = 1 units with a constant −J/kB ~1286 K. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

34 pages, 7831 KB  
Review
Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis
by Sharon J. Nieter Burgmayer and Martin L. Kirk
Molecules 2023, 28(22), 7456; https://doi.org/10.3390/molecules28227456 - 7 Nov 2023
Cited by 10 | Viewed by 2591
Abstract
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to [...] Read more.
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

8 pages, 1286 KB  
Communication
Mono- and Dinuclear Carbonyl Dithiolene Complexes Related to the [FeFe]-Hydrogenases
by Mohamed Kdider, Catherine Elleouet, François Y. Pétillon and Philippe Schollhammer
Molbank 2023, 2023(3), M1719; https://doi.org/10.3390/M1719 - 6 Sep 2023
Cited by 1 | Viewed by 1629
Abstract
The di-iron carbonyl dithiolene bridged complex [Fe2(CO)6(µ-S2C2(CO2Me)2)] (1) reacts with 1 equivalent of phosphane PR3 (R = Ph, OMe) to give, as major products, monosubstituted derivatives [...] Read more.
The di-iron carbonyl dithiolene bridged complex [Fe2(CO)6(µ-S2C2(CO2Me)2)] (1) reacts with 1 equivalent of phosphane PR3 (R = Ph, OMe) to give, as major products, monosubstituted derivatives [Fe2(CO)5L(µ-S2C2(CO2Me)2)] (L = PPh3 (2), P(OMe)3 (3)). In the presence of an excess (3–4 equiv.) of P(OMe)3, the cleavage of 1 arises partly and a mixture of the mononuclear species [Fe(CO)(P(OMe)3)2(κ2-S2C2(CO2Me)2)] (4) and 3 is obtained. The compounds 24 were analyzed by IR and 1H, 31P-{1H} NMR spectroscopies. Their structures in solid state were determined by X-ray diffraction analyses, which accord with their spectroscopic characteristics. Full article
Show Figures

Figure 1

19 pages, 22520 KB  
Article
Dirac Cone Formation in Single-Component Molecular Conductors Based on Metal Dithiolene Complexes
by Reizo Kato and Takao Tsumuraya
Magnetochemistry 2023, 9(7), 174; https://doi.org/10.3390/magnetochemistry9070174 - 6 Jul 2023
Cited by 1 | Viewed by 1980
Abstract
Single-component molecular conductors exhibit a strong connection to the Dirac electron system. The formation of Dirac cones in single-component molecular conductors relies on (1) the crossing of HOMO and LUMO bands and (2) the presence of nodes in the HOMO–LUMO couplings. In this [...] Read more.
Single-component molecular conductors exhibit a strong connection to the Dirac electron system. The formation of Dirac cones in single-component molecular conductors relies on (1) the crossing of HOMO and LUMO bands and (2) the presence of nodes in the HOMO–LUMO couplings. In this study, we investigated the possibility of Dirac cone formation in two single-component molecular conductors derived from nickel complexes with extended tetrathiafulvalenedithiolate ligands, [Ni(tmdt)2] and [Ni(btdt)2], using tight-biding models and first-principles density-functional theory (DFT) calculations. The tight-binding model predicts the emergence of Dirac cones in both systems, which is associated with the stretcher bond type molecular arrangement. The DFT calculations also indicate the formation of Dirac cones in both systems. In the case of [Ni(btdt)2], the DFT calculations, employing a vdW-DF2 functional, reveal the formation of Dirac cones near the Fermi level in the nonmagnetic state after structural optimization. Furthermore, the DFT calculations, by utilizing the range-separated hybrid functional, confirm the antiferromagnetic stability in [Ni(btdt)2], as observed experimentally. Full article
Show Figures

Figure 1

18 pages, 8289 KB  
Review
Rational Design of Fluorescent/Colorimetric Chemosensors for Detecting Transition Metal Ions by Varying Functional Groups
by Jong-Kwon Park, Junhyeop Shin, Seohyeon Jang, Myeong-Lok Seol, Jihyeon Kang, Seyoung Choi, Hojong Eom, Ohhyun Kwon, Soomin Park, Dong-Youn Noh and Inho Nam
Inorganics 2022, 10(11), 189; https://doi.org/10.3390/inorganics10110189 - 29 Oct 2022
Cited by 11 | Viewed by 3301
Abstract
In recent decades, concerns about increasing biological and environmental contamination have necessitated the development of chemosensors with high selectivity, sensitivity, and cost-effectiveness. In principle, the sensing performance can be affected by the functional group(s) of receptor, the charge of the metal ion(s), and [...] Read more.
In recent decades, concerns about increasing biological and environmental contamination have necessitated the development of chemosensors with high selectivity, sensitivity, and cost-effectiveness. In principle, the sensing performance can be affected by the functional group(s) of receptor, the charge of the metal ion(s), and the electron configuration of the sensing molecule(s)e and metal ion(s). Fine controlling of the substituents can influence the electron density of the receptor to enhance the binding affinity to metal ions, which is an effective way to improve the photophysical properties of the sensors. This review explores the effect of functional group modification on the performance of various chemosensors represented by Pt(dithiolene)-based complexes (2012–2021). Then, recently developed Schiff base chemosensors (2014–2021) are discussed. The Schiff base is a good platform for controlling electron configuration due to a facile synthesis of various organic structures (aldehyde or ketone groups with primary amine derivatives). The discussion focuses on the detection type, physicochemical and optical properties, and applications of these chemosensors. Full article
(This article belongs to the Special Issue Colorimetric and Fluorescent Chemosensors for Metal Ions)
Show Figures

Scheme 1

27 pages, 7500 KB  
Article
Donor-Type Nickel–Dithiolene Complexes Fused with Bulky Cycloalkane Substituents and Their Application in Molecular Conductors
by Kazuya Kubo, Mamoru Sadahiro, Sonomi Arata, Norihisa Hoshino, Tomofumi Kadoya, Tomoyuki Akutagawa, Reizo Kato and Jun-ichi Yamada
Crystals 2021, 11(10), 1154; https://doi.org/10.3390/cryst11101154 - 23 Sep 2021
Cited by 1 | Viewed by 3459
Abstract
The effects of substituents on the arrangement of metal–dithiolene complexes based on π-conjugated systems, which are extensively used to synthesize various functional materials, have not been studied adequately. New donor-type nickel–dithiolene complexes fused with bulky cycloalkane substituents [Ni(Cn-dddt)2] (C [...] Read more.
The effects of substituents on the arrangement of metal–dithiolene complexes based on π-conjugated systems, which are extensively used to synthesize various functional materials, have not been studied adequately. New donor-type nickel–dithiolene complexes fused with bulky cycloalkane substituents [Ni(Cn-dddt)2] (C5-dddt = 4a,5,6,6a-pentahydro-1,4-benzodithiin-2,3-dithiolate; C6-dddt = 4a,5,6,7,8,8a-hexahydro-1,4-benzodithiin-2,3-dithiolate; C7-dddt = 4a,5,6,7,8,9,9a-heptahydro-1,4-benzodithiin-2,3-dithiolate; and C8-dddt = 4a,5,6,7,8,9,10,10a-octahydro-1,4-benzodithiin-2,3-dithiolate) were synthesized in this study. All the complexes were crystallized in cis-[Ni(cis-Cn-dddt)2] conformations with cis-oriented (R,S) conformations around the cycloalkylene groups in the neutral state. Unique molecular arrangements with a three-dimensional network, a one-dimensional column, and a helical molecular arrangement were formed in the crystals owing to the flexible cycloalkane moieties. New 2:1 cation radical crystals of [Ni(C5-dddt)2]2(X) (X = ClO4 or PF6), obtained by electrochemical crystallization, exhibited semiconducting behaviors (ρrt = 0.8 Ω cm, Ea = 0.09 eV for the ClO4 crystal; 4.0 Ω cm, 0.13 eV for the PF6 crystal) under ambient pressure due to spin-singlet states between the dimers of the donor, which were in accordance with the conducting behaviors under hydrostatic pressure (ρrt = 0.2 Ω cm, Ea = 0.07 eV for the ClO4 crystal; 1.0 Ω cm, 0.12 eV for the PF6 crystal at 2.0 GPa). Full article
(This article belongs to the Special Issue Organic Conductors)
Show Figures

Figure 1

27 pages, 9605 KB  
Review
Prototype Material for New Strategy of Photon Energy Storage
by Toshio Naito
Inorganics 2020, 8(10), 53; https://doi.org/10.3390/inorganics8100053 - 25 Sep 2020
Cited by 6 | Viewed by 4490
Abstract
The smart utilization of photons is paid global attention from the viewpoint of renewable energy and information technology. However, it is still impossible to store photons as batteries and condensers do for electrons. All the present technologies utilize (the energy of) photons in [...] Read more.
The smart utilization of photons is paid global attention from the viewpoint of renewable energy and information technology. However, it is still impossible to store photons as batteries and condensers do for electrons. All the present technologies utilize (the energy of) photons in situ, such as solar panels, or in spontaneous relaxation processes, such as photoluminescence. If we can store the energy of photons over an arbitrary period and utilize them on demand, not only we will make an innovative progress in energy management, but we will also be able to replace a part of electrons by photons in the information technology for more efficient performance. In this article, we review a prototype of such a material including the current status of related research as well as where we are heading for. Full article
(This article belongs to the Special Issue Redox-Active Ligand Complexes)
Show Figures

Graphical abstract

16 pages, 2515 KB  
Article
Light-Induced Control of the Spin Distribution on Cu–Dithiolene Complexes: A Correlated Ab Initio Study
by Jhon Zapata-Rivera and Carmen J. Calzado
Molecules 2019, 24(6), 1088; https://doi.org/10.3390/molecules24061088 - 19 Mar 2019
Cited by 6 | Viewed by 3614
Abstract
Metal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to [...] Read more.
Metal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the control of the unpaired electrons and their localized/delocalized nature. It has been recently found that UV–Vis light can control the spin distribution of some [Cu(dmit)2]−2 salts in a direct and reversible way. In this work, we study the optical response of these salts and the origin of the differences observed in the EPR spectra under UV–Vis irradiation by means of wave function-based quantum chemistry methods. The low-lying states of the complex have been characterized and the electronic transitions with a non-negligible oscillator strength have been identified. The population of the corresponding excited states promoted by the UV–Vis absorption produces significant changes in the spin distribution, and could explain the changes observed in the system upon illumination. The interaction between neighbor [Cu(dmit)2]−2 complexes is weakly ferromagnetic, consistent with the relative orientation of the magnetic orbitals and the crystal packing, but in disagreement with previous assignments. Our results put in evidence the complex electronic structure of the [Cu(dmit)2]−2 radical and the relevance of a multideterminantal approach for an adequate analysis of their properties. Full article
(This article belongs to the Special Issue Open-Shell Systems for Functional Materials)
Show Figures

Figure 1

16 pages, 6897 KB  
Article
Evolution of Spin-Crossover Transition in Hybrid Crystals Involving Cationic Iron Complexes [Fe(III)(3-OMesal2-trien)]+ and Anionic Gold Bis(dithiolene) Complexes Au(dmit)2 and Au(dddt)2
by Nataliya G. Spitsyna, Yuri N. Shvachko, Denis V. Starichenko, Erkki Lahderanta, Anton A. Komlev, Leokadiya V. Zorina, Sergey V. Simonov, Maksim A. Blagov and Eduard B. Yagubskii
Crystals 2018, 8(10), 382; https://doi.org/10.3390/cryst8100382 - 3 Oct 2018
Cited by 7 | Viewed by 4371
Abstract
Hybrid ion-pair crystals involving hexadentate [Fe(III)(3-OMesal2-trien)]+ spin-crossover (SCO) cationic complexes and anionic gold complexes [Au(dmit)2] (1) (dmit = 4,5-dithiolato-1,3-dithiole-2-thione) and [Au(dddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were synthesized and studied by [...] Read more.
Hybrid ion-pair crystals involving hexadentate [Fe(III)(3-OMesal2-trien)]+ spin-crossover (SCO) cationic complexes and anionic gold complexes [Au(dmit)2] (1) (dmit = 4,5-dithiolato-1,3-dithiole-2-thione) and [Au(dddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were synthesized and studied by single-crystal X-ray diffraction, P-XRD, and SQUID magnetometry. Our study shows that both complexes have similar 1:1 stoichiometry but different symmetry and crystal packing. Complex 1 has a rigid structure in which the SCO cations are engaged in strong π-interplay with molecular surrounding and does not show SCO transition while 2 demonstrates a reversible transition at Tsco = 118 K in a much “softer”, hydrogen-bonded structure. A new structural indicator of spin state in [Fe(sal2-trien)]+ complexes based on conformational analysis has been proposed. Aging and thermocycling ruined the SCO transition increasing the residual HS fraction from 14 to 41%. Magnetic response of 1 is explained by the AFM coupled dimers S = 5/2 with J1 = −0.18 cm−1. Residual high-spin fraction of 2, apart from a contribution of the weak dimers with J12 = J34 = −0.29 cm−1, is characterized by a stronger interdimer coupling of J23 = −1.69 cm−1, which is discussed in terms of possible involvement of neutral radicals [Au(dddt)2]. Full article
(This article belongs to the Special Issue Synthesis and Applications of New Spin Crossover Compounds)
Show Figures

Graphical abstract

50 pages, 3425 KB  
Review
Neutral Metal 1,2-Dithiolenes: Preparations, Properties and Possible Applications of Unsymmetrical in Comparison to the Symmetrical
by George C. Papavassiliou, George C. Anyfantis and George A. Mousdis
Crystals 2012, 2(3), 762-811; https://doi.org/10.3390/cryst2030762 - 29 Jun 2012
Cited by 40 | Viewed by 12052
Abstract
This paper is an overview concerning the preparations and properties as well as possible applications of neutral (one component) metal 1,2-dithiolenes (and selenium analogues). The structural, chemical, electrochemical, optical and electrical behavior of these complexes depend strongly on the nature of ligand and/or [...] Read more.
This paper is an overview concerning the preparations and properties as well as possible applications of neutral (one component) metal 1,2-dithiolenes (and selenium analogues). The structural, chemical, electrochemical, optical and electrical behavior of these complexes depend strongly on the nature of ligand and/or the metal. The results of unsymmetrical in comparison to those of symmetrical complexes related to the properties of materials in the solid state are primarily discussed. The optical absorption spectra exhibit strong bands in the near IR spectral region ca. 700 to ca. 1950 nm. X-ray crystal structure solutions show that the complexes usually have square-planar geometry with S–S and/or M–S contacts. Some of them behave as semiconductors or conductors (metals) and are stable in air. The cyclic voltammograms at negative potentials are different from the corresponding potentials of tetrathiafulvalenes (TTFs). As a consequence, the LUMO bands occur at much lower levels than those of TTFs. Consequently, electrical measurements under conditions of field effect transistors exhibit n-type or ambipolar behavior. Illumination of materials with high power lasers exhibits non-linear optical behavior. These properties enable metal 1,2-dithiolene complexes to be classified as promising candidates for optical and electronic applications, (e.g., saturable absorbers, ambipolar inverters). Full article
(This article belongs to the Special Issue Molecular Conductors)
Show Figures

Graphical abstract

Back to TopTop