Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = mesoscale convective system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3205 KiB  
Article
A Climatology of Errors in HREF MCS Precipitation Objects
by William A. Gallus, Anna Duhachek, Kristie J. Franz and Tyreek Frazier
Water 2025, 17(15), 2168; https://doi.org/10.3390/w17152168 - 22 Jul 2025
Viewed by 217
Abstract
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less [...] Read more.
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less is known about how such errors compare to other sources of error, particularly within forecasts from convection-allowing ensembles. The present study uses the Method for Object-based Diagnostic Evaluation to develop a climatology of errors for precipitation objects from High-Resolution Ensemble Forecasting forecasts for mesoscale convective systems during the warm seasons from 2018 to 2023 in the United States. It is found that displacement errors in all ensemble members are generally not systematic, and on average are between 100 and 150 km. Errors are somewhat smaller in September, possibly reflecting increased forcing from synoptic-scale systems. Although most ensemble members have a negative error for the 10th percentile of rainfall intensity, the error becomes positive for heavier amounts. However, the total system rainfall is less than that observed for all members except the 12 UTC NAM. This is likely due to the negative errors for area that are present in all models, except again in the 12 UTC NAM. Full article
(This article belongs to the Special Issue Analysis of Extreme Precipitation Under Climate Change)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Viewed by 244
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

21 pages, 11264 KiB  
Article
Comparative Analysis of Perturbation Characteristics Between LBGM and ETKF Initial Perturbation Methods in Convection-Permitting Ensemble Forecasts
by Jiajun Li, Chaohui Chen, Xiong Chen, Hongrang He, Yongqiang Jiang and Yanzhen Kang
Atmosphere 2025, 16(6), 744; https://doi.org/10.3390/atmos16060744 - 18 Jun 2025
Viewed by 320
Abstract
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes [...] Read more.
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes (LBGM) and the Ensemble Transform Kalman Filter (ETKF), to compare their perturbation structures, spatiotemporal evolution, and precipitation forecasting capabilities. The experiments demonstrated the following: (1) The LBGM method significantly improved the root mean square error (RMSE) of mid-upper tropospheric variables, particularly demonstrating superior performance in low-level temperature field forecasts, but the overall ensemble spread of the system was consistently smaller than that of ETKF. (2) The evolution of dynamical spread within the squall line system confirmed that ETKF generated greater spread growth in low-level wind fields, while LBGM exhibited better spatiotemporal alignment between mid-upper tropospheric wind field spread and the synoptic system evolution. (3) Vertical profiles of total moist energy revealed that ETKF initially exhibited higher total moist energy than LBGM. Both methods showed increasing total moist energy with forecast lead time, displaying a bimodal structure dominated by kinetic energy in upper layers (300–100 hPa) and balanced kinetic energy and moist physics terms in lower layers (1000–700 hPa), with ETKF demonstrating larger growth rates. (4) Kinetic energy spectrum analysis indicated that ETKF exhibited significantly higher perturbation energy than LBGM in the 100–1000 km mesoscale range and superior small- to medium-scale perturbation characterization at the 6–60 km scales initially. Precipitation and radar echo verification showed that ETKF effectively corrected positional biases in precipitation forecasts, while LBGM more accurately reproduced the bow-shaped echo structure near Nanchang due to its precise simulation of leading-edge vertical updrafts and rear-sector low pseudo-equivalent potential temperature regions. Full article
Show Figures

Figure 1

26 pages, 2724 KiB  
Review
From Different Systems to a Single Common Model: A Review of Dynamical Systems Leading to Lorenz Equations
by Juan Carlos Chimal-Eguía, Florencio Guzmán-Aguilar, Víctor Manuel Silva-García, Héctor Báez-Medina and Manuel Alejandro Cardona-López
Axioms 2025, 14(6), 465; https://doi.org/10.3390/axioms14060465 - 13 Jun 2025
Viewed by 447
Abstract
This paper presents an analytical exploration of how diverse dynamical systems, arising from different scientific domains, can be reformulated (under specific approximations and assumptions) into a common set of equations formally equivalent to the Lorenz system originally derived to model atmospheric convection. Unlike [...] Read more.
This paper presents an analytical exploration of how diverse dynamical systems, arising from different scientific domains, can be reformulated (under specific approximations and assumptions) into a common set of equations formally equivalent to the Lorenz system originally derived to model atmospheric convection. Unlike previous studies that focus on analyzing or applying the Lorenz equations, our objective is to show how these equations emerge from distinct models, emphasizing the underlying structural and dynamical similarities. The mathematical steps involved in these reformulations are included. The systems examined include Lorenz’s original atmospheric convection model, the chaotic water wheel, the Maxwell–Bloch equations for lasers, mechanical gyrostat, solar dynamo model, mesoscale reaction dynamics, an interest rate economic model, and a socioeconomic control system. This work includes a discussion of the unifying features that lead to similar qualitative behaviors across seemingly unrelated systems. By highlighting the Lorenz system as a paradigmatic limit of a broad class of nonlinear models, we underscore its relevance as a unifying framework in the study of complex dynamics. Full article
Show Figures

Figure 1

27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 591
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

22 pages, 13935 KiB  
Article
A Diagnostic Analysis of the 2024 Beijing May 30 Gale Simulation Based on Satellite Observation Products
by Xiaoying Xu, Zhuoya Ni, Qifeng Lu, Ruixia Liu, Chunqiang Wu, Fu Wang and Jianglin Hu
Remote Sens. 2025, 17(8), 1378; https://doi.org/10.3390/rs17081378 - 12 Apr 2025
Viewed by 334
Abstract
A gale occurred in Beijing on 30 May 2024, which led to fallen trees and damaged infrastructure. This event was primarily driven by surface divergent winds induced by strong convective downdrafts. During the occurrence and development of this gale, solar shortwave radiation and [...] Read more.
A gale occurred in Beijing on 30 May 2024, which led to fallen trees and damaged infrastructure. This event was primarily driven by surface divergent winds induced by strong convective downdrafts. During the occurrence and development of this gale, solar shortwave radiation and cloud-related variables played a crucial role in triggering, sustaining, and organizing convection. This study proposes a new diagnostic analysis approach for this gale focusing on shortwave radiation and cloud-related variables involved in the physical processes of gale development, based on the FY-4B L2 products and simulations from the Mesoscale Weather Numerical Forecast System of the China Meteorological Administration (CMA-MESO). The diagnostic analysis results of this case show that before cloud formation, the CMA-MESO simulates stronger shortwave radiation heating in the initial stages, leading to an overestimation of surface temperature rise. Additionally, the simulated cloud formation occurs slightly later than observed, with reduced cloud coverage, shorter cloud duration, and lower cloud top heights, resulting in a weaker convective intensity compared to observations. Furthermore, the CMA-MESO underestimates the temperature gradient between the middle and lower troposphere and predicts lower convective instability, which leads to weaker forecasts of convection organization. Ultimately, this study provides a theoretical basis and technical support for enhancing the ability of the CMA-MESO to simulate this gale by using the FY-4B L2 data products for diagnostic analysis. Full article
Show Figures

Figure 1

23 pages, 29026 KiB  
Article
Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part I: Observations of Multi-Scale Convective Evolution
by Michael L. Kaplan, S. M. Shajedul Karim and Yuh-Lang Lin
Atmosphere 2025, 16(3), 306; https://doi.org/10.3390/atmos16030306 - 6 Mar 2025
Cited by 1 | Viewed by 861
Abstract
In this study, our aim is to diagnose how two quasi-linear convective systems (QLCS) are organized so one can determine the possible role of the city of Chicago, IL, USA, in modifying convective precipitation systems. In this Part I of a two-part study, [...] Read more.
In this study, our aim is to diagnose how two quasi-linear convective systems (QLCS) are organized so one can determine the possible role of the city of Chicago, IL, USA, in modifying convective precipitation systems. In this Part I of a two-part study, we employ large-scale analyses, radiosonde soundings, surface observations, and Doppler radar data to diagnose the precursor atmospheric circulations that organize the evolution of two mesoscale convective systems and compare those circulations to radar and precipitation. Several multi-scale processes are found that organize and modify convection over the Chicago metroplex. Two sequential quasi-linear convective systems (QLCS #1 and #2) were organized that propagated over Chicago, IL, USA, during an eight-hour period on 5–6 July 2018. The first squall line (QLCS #1) built from the southwest to the northeast while strengthening as it propagated over the city, and the second (QLCS #2) propagated southeastwards and weakened as it passed over the city in association with a polar cold front. The weak upper-level divergence associated with a diffluent flow poleward of an expansive ridge built over and strengthened a low-level trough and confluence zone, triggering QLCS #1. Convective downdrafts from QLCS #1 produced a cold pool that interacted with multiple confluent low-level jets surrounding and focused on the metroplex urban heat island, thus advecting the convection poleward over the metroplex. The heaviest precipitation occurred just south-southeast of Midway Airport, Chicago. Subsequently, a polar cold front propagated into the metroplex, which triggered QLCS #2. However, the descending air above it under the polar jet and residual cold pool from QLCS #1 rapidly dissipated the cold frontal convection. This represents a case study where very active convection built over the metroplex and was likely modified by it, as evidenced in numerical simulations to be described in Part II. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 6128 KiB  
Article
Spatiotemporal Characteristics of Mesoscale Convective Systems in the Yangtze River Delta Urban Agglomeration and Their Response to Urbanization
by Xinguan Du, Tianwen Sun and Kyaw Than Oo
Atmosphere 2025, 16(3), 245; https://doi.org/10.3390/atmos16030245 - 21 Feb 2025
Cited by 1 | Viewed by 610
Abstract
Mesoscale convective systems (MCSs) are major contributors to extreme precipitation in urban agglomerations, exhibiting complex characteristics influenced by large-scale climate variability and local urban processes. This study utilizes a high-resolution MCS database spanning from 2001 to 2020 to investigate the spatiotemporal variations of [...] Read more.
Mesoscale convective systems (MCSs) are major contributors to extreme precipitation in urban agglomerations, exhibiting complex characteristics influenced by large-scale climate variability and local urban processes. This study utilizes a high-resolution MCS database spanning from 2001 to 2020 to investigate the spatiotemporal variations of MCSs in the Yangtze River Delta (YRD) urban agglomeration and assess their response to urbanization. Our analysis reveals significant spatial and temporal differences in MCS activities during the warm season (April to September), including initiation, movement, and lifespan, with notable trends observed over the study period. MCSs are found to contribute substantially to hourly extreme precipitation, accounting for approximately 60%, which exceeds their contribution to total precipitation. Furthermore, the role of MCSs in extreme precipitation has also increased, driven by the intensification of MCS-induced extreme rainfall. Additionally, MCS characteristics exhibit significant regional differences. Urban areas experience more pronounced changes in MCS activity and precipitation compared to the surrounding rural regions. Specifically, urbanization contributes approximately 16% to MCS-related precipitation and 19% to MCS initiation, highlighting its substantial role in enhancing these processes. Moreover, mountainous areas and water bodies surrounding cities show stronger trends in certain MCS characteristics than urban and rural plains. This may be attributed to climatological conditions that favor MCS activity in these regions, as well as the complex interactions between urbanization, topography, and land–sea contrasts. These complicated dynamics warrant further investigation to better understand their implications. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 14451 KiB  
Article
IMERG V07B and V06B: A Comparative Study of Precipitation Estimates Across South America with a Detailed Evaluation of Brazilian Rainfall Patterns
by José Roberto Rozante and Gabriela Rozante
Remote Sens. 2024, 16(24), 4722; https://doi.org/10.3390/rs16244722 - 17 Dec 2024
Cited by 1 | Viewed by 1295
Abstract
Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially in regions with sparse observational data. This study compares the performance of the latest version (V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG) across South America and the [...] Read more.
Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially in regions with sparse observational data. This study compares the performance of the latest version (V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG) across South America and the adjacent oceans. It focuses on evaluating their accuracy under different precipitation regimes in Brazil using 22 years of IMERG Final data (2000–2021), aggregated into seasonal totals (summer, autumn, winter, and spring). The observations used for the evaluation were organized into 0.1° × 0.1° grid points to match IMERG’s spatial resolution. The analysis was restricted to grid points containing at least one rain gauge, and in cases where multiple gauges were present within a grid point the average value was used. The evaluation metrics included the Root Mean Square Error (RMSE) and categorical indices. The results reveal that while both versions effectively capture major precipitation systems such as the mesoscale convective system (MCS), South Atlantic Convergence Zone (SACZ), and Intertropical Convergence Zone (ITCZ), significant discrepancies emerge in high-rainfall areas, particularly over oceans and tropical zones. Over the continent, however, these discrepancies are reduced due to the correction of observations in the final version of IMERG. A comprehensive analysis of the RMSE across Brazil, both as a whole and within the five analyzed regions, without differentiating precipitation classes, demonstrates that version V07B effectively reduces errors compared to version V06B. The analysis of statistical indices across Brazil’s five regions highlights distinct performance patterns between IMERG versions V06B and V07B, driven by regional and seasonal precipitation characteristics. V07B demonstrates a superior performance, particularly in regions with intense rainfall (R1, R2, and R5), showing a reduced RMSE and improved categorical indices. These advancements are linked to V07B’s reduced overestimation in cold-top cloud regions, although both versions consistently overestimate at rain/no-rain thresholds and for light rainfall. However, in regions prone to underestimation, such as the interior of the Northeastern region (R3) during winter, and the northeastern coast (R4) during winter and spring, V07B exacerbates these issues, highlighting challenges in accurately estimating precipitation from warm-top cloud systems. This study concludes that while V07B exhibits notable advancements, further enhancements are needed to improve accuracy in underperforming regions, specifically those influenced by warm-cloud precipitation systems. Full article
Show Figures

Figure 1

37 pages, 19323 KiB  
Article
Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations
by Petra Koucká Knížová, Kateřina Potužníková, Kateřina Podolská, Tereza Šindelářová, Tamás Bozóki, Martin Setvák, Marcell Pásztor, Csilla Szárnya, Zbyšek Mošna, Daniel Kouba, Jaroslav Chum, Petr Zacharov, Attila Buzás, Hana Hanzlíková, Michal Kozubek, Dalia Burešová, István Bozsó, Kitti A. Berényi and Veronika Barta
Remote Sens. 2024, 16(22), 4338; https://doi.org/10.3390/rs16224338 - 20 Nov 2024
Cited by 2 | Viewed by 1087
Abstract
Mesoscale convective systems are effective sources of atmospheric disturbances that can reach ionospheric heights and significantly alter atmospheric and ionospheric conditions. Convective systems can affect the Earth’s atmosphere on a continental scale and up to F-layer heights. Extratropical cyclone “Zyprian” occurred at the [...] Read more.
Mesoscale convective systems are effective sources of atmospheric disturbances that can reach ionospheric heights and significantly alter atmospheric and ionospheric conditions. Convective systems can affect the Earth’s atmosphere on a continental scale and up to F-layer heights. Extratropical cyclone “Zyprian” occurred at the beginning of July, 2021 and dominated weather over the whole of Europe. An extensive cold front associated with “Zyprian” moved from the western part to the eastern part of Europe, followed by ground-level convergence and the formation of organized convective thunderstorm systems. Torrential rains in the Czech Republic have caused a great deal of damage and casualties. Storm-related signatures were developed in ground microbarograph measurements of infrasound and gravity waves. Within the stratosphere, a shift of the polar jet stream and increase in specific humidity related to the storm system were observed. At the ionospheric heights, irregular stratification and radio wave reflection plane undulation were observed. An increase in wave-like activity was detected based on ionograms and narrowband very-low-frequency (VLF) data. On directograms and SKYmaps (both products of digisonde measurements), strong and rapid changes in the horizontal plasma motion were recorded. However, no prevailing plasma motion direction was identified within the F-layer. Increased variability within the ionosphere is attributed mainly to the “Zyprian” cyclone as it developed during low geomagnetic activity and stable solar forcing. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 7245 KiB  
Article
A Numerical Simulation of Convective Systems in Southeast China: A Comparison of Microphysical Schemes and Sensitivity Experiments on Raindrop Break and Evaporation
by Zhaoqing Cheng and Xiaoli Liu
Remote Sens. 2024, 16(22), 4297; https://doi.org/10.3390/rs16224297 - 18 Nov 2024
Viewed by 976
Abstract
This study employed version 4.2.2 of the Weather Research and Forecasting (WRF) model for this simulation and applied two microphysics schemes, the Thompson scheme (THOM) and Milbrandt–Yau scheme (MY)—which are widely used in convective simulations—to simulate a mesoscale severe convective precipitation event that [...] Read more.
This study employed version 4.2.2 of the Weather Research and Forecasting (WRF) model for this simulation and applied two microphysics schemes, the Thompson scheme (THOM) and Milbrandt–Yau scheme (MY)—which are widely used in convective simulations—to simulate a mesoscale severe convective precipitation event that occurred in southeastern China on 8 May 2017. The simulations were then compared with dual-polarization radar observations using a radar simulator. It was found that THOM produced vertical structures of radar reflectivity (ZH) closer to radar observations and accumulated precipitation more consistent with ground-based observations. However, both schemes overestimated specific differential phase (KDP) and differential reflectivity (ZDR) below the 0 °C level. Further analysis indicated that THOM produced more rain with larger raindrop sizes below the 0 °C level. Due to the close connection between raindrop breakup, evaporation rate, and raindrop size, sensitivity experiments on the breakup threshold (Db) and the evaporation efficiency (EE) of the THOM scheme were carried out. It was found that adjusting Db significantly changed the simulated raindrop size distribution and had a certain impact on the strength of cold pool; whereas modifying EE not only significantly changed the intensity and scope of the cold pool, but also had great effect on the raindrop size distribution. At the same time, comparison with dual-polarization radar observations indicated that reducing the Db can improve the model’s simulation of polarimetric radar variables such as ZDR. This paper specifically analyzes a severe convective precipitation event in the Guangdong region under weak synoptic conditions and a humid climate. It demonstrates the feasibility of a method based on polarimetric radar data that modifies Db of THOM to achieve better consistency between simulations and observations in southeast China. Since the microphysical processes of different Mesoscale Convective Systems (MCSs) vary, the generalizability of this study needs to be validated through more cases and regions in the future. Full article
Show Figures

Graphical abstract

16 pages, 17000 KiB  
Technical Note
Quasi-Linear Convective Systems in Catalonia Detected Through Radar and Lightning Data
by Tomeu Rigo and Carme Farnell
Remote Sens. 2024, 16(22), 4262; https://doi.org/10.3390/rs16224262 - 15 Nov 2024
Cited by 1 | Viewed by 1076
Abstract
Quasi-Linear Convective Systems (QLCSs) are a type of Mesoscale Convective System characterised by their linear shape and association with severe weather phenomena (such as hail, tornadoes, or wind gusts). This study deals with the application of a technique that consists of combinations of [...] Read more.
Quasi-Linear Convective Systems (QLCSs) are a type of Mesoscale Convective System characterised by their linear shape and association with severe weather phenomena (such as hail, tornadoes, or wind gusts). This study deals with the application of a technique that consists of combinations of radar and lightning data to identify QLCS in Catalonia (the northeast region of the Iberian Peninsula) and the surrounding areas. Even with the limitation of reduced coverage, the technique has revealed efficiency in identifying the systems affecting the region of interest. Concretely, we have detected twenty cases for 2013–2023, significantly less than for other parts of Central Europe but similar to the global values for the whole continent and the United States of America. All cases occurred during the warm season and are divided into diurnal and nocturnal cases with different behaviours. Full article
Show Figures

Figure 1

37 pages, 34329 KiB  
Technical Note
The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model
by Emily Gleeson, Ekaterina Kurzeneva, Wim de Rooy, Laura Rontu, Daniel Martín Pérez, Colm Clancy, Karl-Ivar Ivarsson, Bjørg Jenny Engdahl, Sander Tijm, Kristian Pagh Nielsen, Metodija Shapkalijevski, Panu Maalampi, Peter Ukkonen, Yurii Batrak, Marvin Kähnert, Tosca Kettler, Sophie Marie Elies van den Brekel, Michael Robin Adriaens, Natalie Theeuwes, Bolli Pálmason, Thomas Rieutord, James Fannon, Eoin Whelan, Samuel Viana, Mariken Homleid, Geoffrey Bessardon, Jeanette Onvlee, Patrick Samuelsson, Daniel Santos-Muñoz, Ole Nikolai Vignes and Roel Stappersadd Show full author list remove Hide full author list
Meteorology 2024, 3(4), 354-390; https://doi.org/10.3390/meteorology3040018 - 5 Nov 2024
Cited by 2 | Viewed by 3770
Abstract
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of [...] Read more.
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale numerical weather prediction. This technical note describes updates to the physical parametrizations, both upper-air and surface, configuration choices such as lateral boundary conditions, model levels, horizontal resolution, model time step, and databases associated with the model, such as for physiography and aerosols. Much of the physics developments are related to improving the representation of clouds in the model, including developments in the turbulence, shallow convection, and statistical cloud scheme, as well as changes in radiation and cloud microphysics concerning cloud droplet number concentration and longwave cloud liquid optical properties. Near real-time aerosols and the ICE-T microphysics scheme, which improves the representation of supercooled liquid, and a wind farm parametrization have been added as options. Surface-wise, one of the main advances is the implementation of the lake model FLake. An outlook on upcoming developments is also included. Full article
Show Figures

Figure 1

23 pages, 21344 KiB  
Article
Vertical Structure of Heavy Rainfall Events in Brazil
by Eliana Cristine Gatti, Izabelly Carvalho da Costa and Daniel Vila
Meteorology 2024, 3(3), 310-332; https://doi.org/10.3390/meteorology3030016 - 23 Sep 2024
Viewed by 1503
Abstract
Intense rainfall events frequently occur in Brazil, often leading to rapid flooding. Despite their recurrence, there is a notable lack of sub-daily studies in the country. This research aims to assess patterns related to the structure and microphysics of clouds driving intense rainfall [...] Read more.
Intense rainfall events frequently occur in Brazil, often leading to rapid flooding. Despite their recurrence, there is a notable lack of sub-daily studies in the country. This research aims to assess patterns related to the structure and microphysics of clouds driving intense rainfall in Brazil, resulting in high accumulation within 1 h. Employing a 40 mm/h threshold and validation criteria, 83 events were selected for study, observed by both single and dual-polarization radars. Contoured Frequency by Altitude Diagrams (CFADs) of reflectivity, Vertical Integrated Liquid (VIL), and Vertical Integrated Ice (VII) are employed to scrutinize the vertical cloud characteristics in each region. To address limitations arising from the absence of polarimetric coverage in some events, one case study focusing on polarimetric variables is included. The results reveal that the generating system (synoptic or mesoscale) of intense rain events significantly influences the rainfall pattern, mainly in the South, Southeast, and Midwest regions. Regional CFADs unveil primary convective columns with 40–50 dBZ reflectivity, extending to approximately 6 km. The microphysical analysis highlights the rapid structural intensification, challenging the event predictability and the issuance of timely, specific warnings. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Graphical abstract

26 pages, 21981 KiB  
Article
A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024
by Michelle Simões Reboita, Enrique Vieira Mattos, Bruno César Capucin, Diego Oliveira de Souza and Glauber Willian de Souza Ferreira
Atmosphere 2024, 15(9), 1123; https://doi.org/10.3390/atmos15091123 - 16 Sep 2024
Cited by 18 | Viewed by 4334
Abstract
Since 2020, southern Brazil’s Rio Grande do Sul (RS) State has been affected by extreme precipitation episodes caused by different atmospheric systems. However, the most extreme was registered between the end of April and the beginning of May 2024. This extreme precipitation caused [...] Read more.
Since 2020, southern Brazil’s Rio Grande do Sul (RS) State has been affected by extreme precipitation episodes caused by different atmospheric systems. However, the most extreme was registered between the end of April and the beginning of May 2024. This extreme precipitation caused floods in most parts of the state, affecting 2,398,255 people and leading to 183 deaths and 27 missing persons. Due to the severity of this episode, we need to understand its drivers. In this context, the main objective of this study is a multi-scale analysis of the extreme precipitation between 26 April and 5 May, i.e., an analysis of the large-scale patterns of the atmosphere, a description of the synoptic environment, and an analysis of the mesoscale viewpoint (cloud-top features and lightning). Data from different sources (reanalysis, satellite, radar, and pluviometers) were used in this study, and different methods were applied. The National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN) registered accumulated rainfall above 400 mm between 26 April and 5 May using 27 pluviometers located in the central-northern part of RS. The monthly volumes reached 667 mm and 803 mm, respectively, for April and May 2024, against a climatological average of 151 mm and 137 mm for these months. The maximum precipitation recorded was 300 mm in a single day on 30 April 2024. From a large-scale point of view, an anomalous heat source in the western Indian Ocean triggered a Rossby wave that contributed to a barotropic anticyclonic anomalous circulation over mid-southeastern Brazil. While the precipitant systems were inhibited over this region (the synoptic view), the anomalous stronger subtropical jet southward of the anticyclonic circulation caused uplift over RS State and, consequently, conditions leading to mesoscale convective system (MCS) development. In addition, the low-level jet east of the Andes transported warm and moist air to southern Brazil, which also interacted with two cold fronts that reached RS during the 10-day period, helping to establish the precipitation. Severe deep MCSs (with a cloud-top temperature lower than −80 °C) were responsible for a high lightning rate (above 10 flashes km−2 in 10 days) and accumulated precipitation (above 600 mm in 10 days), as observed by satellite measurements. This high volume of rainfall caused an increase in soil moisture, which exceeded a volume fraction of 0.55, making water infiltration into the soil difficult and, consequently, favoring flood occurrence. Full article
Show Figures

Figure 1

Back to TopTop