Vertical Structure of Heavy Rainfall Events in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Case Selection and Validation
2.3. Vertical Structure
2.3.1. Tracking
2.3.2. Vertically Integrated Liquid/Ice
2.3.3. Contoured Frequency by Altitude Diagram (CFAD)
3. Results and Discussion
3.1. Events
3.2. Regional Categorization
VIL and VII
3.3. CFADs
3.4. Case Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Brooks, H.E.; Stensrud, D.J. Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Weather Rev. 2000, 4, 1194–1201. [Google Scholar] [CrossRef]
- Konrad, C.E. Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Weather Forecast. 1997, 12, 557–571. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Changes in intense precipitation over the central United States. J. Hydrometeorol. 2012, 13, 47–66. [Google Scholar] [CrossRef]
- Dolif, G.; Nobre, C. Improving extreme precipitation forecasts in Rio de Janeiro, Brazil: Are synoptic patterns efficient for distinguishing ordinary from heavy rainfall episodes? Atmos. Sci. Lett. 2012, 13, 216–222. [Google Scholar] [CrossRef]
- Teixeira, M.S.; Satyamurty, P. Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Atmos. Sci. Lett. 2007, 135, 598–617. [Google Scholar] [CrossRef]
- Liebmann, B.; Jones, C.; de Carvalho, L.M. Interannual variability of daily extreme precipitation events in the state of Sao Paulo, Brazil. J. Clim. 2001, 14, 208–218. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Jones, C.; Liebmann, B. Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Clim. 2002, 15, 2377–2394. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Lima, K.C.; Satyamurty, P.; Fernández, J.P.R. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theor. Appl. Climatol. 2010, 101, 219–246. [Google Scholar] [CrossRef]
- Pristo, M.V.D.J.; Dereczynski, C.P.; Souza, P.R.D.; Menezes, W.F. Climatologia de Chuvas Intensas no Município do Rio de Janeiro. Rev. Bras. Meteorol. 2018, 33, 615–630. [Google Scholar] [CrossRef]
- Murphy, A.M.; Ryzhkov, A.; Zhang, P. Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements. J. Atmos. Ocean. Technol. 2020, 37, 1623–1642. [Google Scholar] [CrossRef]
- Murphy, A.M.; Ryzhkov, A.; Zhang, P. Recent progress in dual-polarization radar research and applications in China. Adv. Atmos. Sci. 2019, 36, 961–974. [Google Scholar]
- Queiroz, A.P. Monitoramento e Previsão Imediata de Tempestades Severas usando dados de Radar. Master’s Dissertation, National Institute for Space Research, São José dos Campos, SP, Brazil, 2009. [Google Scholar]
- Uba, D.M. TATHU-Software Para Rastreio e anáLise do Ciclo de Vida de Sistemas Convectivos; National Institute for Space Research: São José dos Campos, SP, Brazil, 2022.
- Cecchini, M.A.; Silva, D.; Maria, A.F.; Machado, L.A.T.; Morales, R.; Carlos, A.; Biscaro, T. Macrophysical and microphysical characteristics of convective rain cells observed during SOS-CHUVA. J. Geophys. Res. Atmos. 2020, 125, e2019JD031187. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically integrated liquid water—A new analysis tool. Mon. Weather Rev. 2019, 100, 548–552. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Weather Rev. 2020, 128, 2687–2710. [Google Scholar] [CrossRef]
- Sperling, V.B. Processos Físicos e Elétricos das Tempestades de Granizo na Região Sul do Brasil. Ph.D. Thesis, National Institute for Space Research, São José dos Campos, SP, Brazil, 2009. [Google Scholar]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnić, D.S. Rain rate estimates from differential polarization measurements. J. Atmos. Ocean. Technol. 1987, 4, 588–598. [Google Scholar] [CrossRef]
- Zrnić, D.S.; Ryzhkov, A. Advantages of rain measurements using specific differential phase. J. Atmos. Ocean. Technol. 1996, 13, 454–464. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Giangrande, S.E.; Schuur, T.J. Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteorol. 2005, 44, 502–515. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Ryzhkov, A.V. Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteorol. Climatol. 2008, 47, 2445–2462. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M.; Chandrasekar, V. Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteorol. Climatol. 2018, 57, 755–775. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Radar Polarimetry for Weather Observations; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteorol. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev. 2018, 123, 1941–1963. [Google Scholar] [CrossRef]
- Markowski, P.M.; Dotzek, N. A numerical study of the effects of orography on supercells. Atmos. Res. 2011, 100, 457–478. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Calheiros, A.J.P.; Biscaro, T.; Giangrande, S.; Silva Dias, M.A.F.; Cecchini, M.A.; Albrecht, R.; Andreae, M.O.; Araujo, W.F.; Artaxo, P.; et al. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Chem. Phys. 2018, 18, 6461–6482. [Google Scholar] [CrossRef]
- Costa, I.C. Avaliação Dos Dados Produzidos Pela Rede de Radares Meteorológicos de Banda “S” Localizados No Centro Sul do Brasil. Master’s Thesis, National Institute for Space Research, São José dos Campos, SP, Brazil, 2007. (In Portuguese). [Google Scholar]
- Saraiva, I. Ariabilidade Regional das Nuvens de Chuva na Bacia Amazônica Visto por Uma Rede de Radares Meteorológicos. Ph.D. Thesis, National Institute for Amazon Research, Manaus, AM, Brazil, 2016. [Google Scholar]
- Fujita, T.T. Tornadoes around the world. Weatherwise 1973, 26, 56–83. [Google Scholar] [CrossRef]
- Nascimento, E.L. Previsão de tempestades severas utilizando-se parâmetros convectivos e modelos de mesoescala: Uma estratégia operacional adotável no Brasil. Rev. Bras. Meteorol. 2005, 20, 121–140. [Google Scholar]
- Brooks, H.E. A global view of severe thunderstorms: Estimating the current distribution and possible future changes, Preprints. In Proceedings of the AMS Severe Local Storms Special Symposium, Atlanta, GA, USA, 29 January–2 February 2016. [Google Scholar]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar] [CrossRef]
- Stevens, A.P. Introduction to the basic drivers of climate. Nat. Educ. Knowl. 2010, 3, 10. [Google Scholar]
- Krishnamurti, T.N.; Stefanova, L.; Misra, V. Tropical Meteorology; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Hastenrath, S. Climate Dynamics of the Tropics; Springer Science & Business Media: Madison, WI, USA, 2012; Volume 8, pp. 1057–1072. [Google Scholar]
- Wallace, J.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Academic Press: Burlington, MA, USA; San Diego, CA, USA, 2006. [Google Scholar]
- Sohn, B.J.; Ryu, G.H.; Song, H.J.; Ou, M.L. Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon. Weather Rev. 2013, 141, 3873–3888. [Google Scholar] [CrossRef]
- Song, H.J.; Sohn, B.J.; Hong, S.Y.; Hashino, T. Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. J. Geophys. Res. Atmos. 2017, 122, 1685–1699. [Google Scholar] [CrossRef]
- Sohn, B.J.; Ryu, G.H.; Song, H.J. Observational Characteristics of Warm-Type Heavy Rainfall. In Satellite Precipitation Measurement; Springer: Cham, Switzerland, 2020; pp. 745–759. [Google Scholar] [CrossRef]
- CPTEC-INPE. CLIMANÁLISE: Boletim de Monitoramento e Análise Climática, Número Especial, 125p. 1986. Available online: http://climanalise.cptec.inpe.br/~rclimanl/boletim/pdf/pdf08/dez08.pdf (accessed on 9 March 2024).
- Kumjian, M.R. Principles and Applications of Dual-Polarization Weather Radar. J. Oper. Meteorol. 2013, 1, 226–242. [Google Scholar] [CrossRef]
- Kumjian, M.R. Principles and Applications of Dual-Polarization Weather Radar Part II: Warm-and Cold-Season Applications. J. Oper. Meteorol. 2013, 1, 243–264. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Khain, A.P.; Benmoshe, N.; Ilotoviz, E.; Ryzhkov, A.V.; Phillips, V.T. The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteorol. Climatol. 2014, 53, 1820–1843. [Google Scholar] [CrossRef]
- Dalman, D.M.; Tanamachi, R.L.; Saunders, P.E.; Cheong, B.L.; Bodine, D.; Bluestein, H.B.; Weinhoff, Z.B. Cataloging rapid-scan observations of ZDR columns in supercells. In Proceedings of the 29th Conference on Severe Local Storms, Stowe, VT, USA, 22 October 2018. [Google Scholar]
- Tobin, D.M.; Kumjian, M.R. Microphysical and polarimetric radar modeling of hydrometeor refreezing. J. Atmos. Sci. 2021, 78, 1965–1981. [Google Scholar] [CrossRef]
Radar | UF | Polarization | Frequency |
---|---|---|---|
Almenara/CEMADEN | MG | Dual-polarization | 10 min |
Jaraguari/CEMADEN | MS | Dual-polarization | 12 min |
Maceio/CEMADEN | AL | Dual-polarization | 10 min |
Natal/CEMADEN | RN | Dual-polarization | 10 min |
Petrolina/CEMADEN | PE | Dual-polarization | 10 min |
Salvador/CEMADEN | BA | Dual-polarization | 10 min |
Santa Tereza/CEMADEN | ES | Dual-polarization | 10 min |
São Francisco/CEMADEN | MG | Dual-polarization | 10 min |
Três Marias/CEMADEN | MG | Dual-polarization | 10 min |
Canguçu/DECEA | RS | Single polarization | 10 min |
Gama/DECEA | GO | Single polarization | 10 min |
Morro da Igreja/DECEA | SC | Single polarization | 10 min |
Pico do Couto/DECEA | RJ | Single polarization | 10 min |
Santiago/DECEA | RS | Single polarization | 12 min |
São Roque/DECEA | SP | Single polarization | 10 min |
Manaus/SIPAM | AM | Single polarization | 12 min |
Santarém/SIPAM | PA | Single polarization | 12 min |
São Luiz/SIPAM | MA | Single polarization | 12 min |
Belém/SIPAM | PA | Single polarization | 12 min |
Region | Number of Events |
---|---|
South | 17 |
Southeast | 29 |
Midwest | 14 |
North | 15 |
Northeast | 08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, E.C.; da Costa, I.C.; Vila, D. Vertical Structure of Heavy Rainfall Events in Brazil. Meteorology 2024, 3, 310-332. https://doi.org/10.3390/meteorology3030016
Gatti EC, da Costa IC, Vila D. Vertical Structure of Heavy Rainfall Events in Brazil. Meteorology. 2024; 3(3):310-332. https://doi.org/10.3390/meteorology3030016
Chicago/Turabian StyleGatti, Eliana Cristine, Izabelly Carvalho da Costa, and Daniel Vila. 2024. "Vertical Structure of Heavy Rainfall Events in Brazil" Meteorology 3, no. 3: 310-332. https://doi.org/10.3390/meteorology3030016
APA StyleGatti, E. C., da Costa, I. C., & Vila, D. (2024). Vertical Structure of Heavy Rainfall Events in Brazil. Meteorology, 3(3), 310-332. https://doi.org/10.3390/meteorology3030016