Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,844)

Search Parameters:
Keywords = mesoporous structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16469 KB  
Article
Selective Dehydration of Pentoses and Hexoses of Ulva rigida to Platform Chemicals Using Nb2O5 and ZrO2 Supported on Mesoporous Silicas as Heterogeneous Catalysts
by Gabriela Rodríguez-Carballo, Benjamín Torres-Olea, Cristina García-Sancho, Julia Vega, Félix L. Figueroa, Juan Antonio Cecilia, Pedro Maireles-Torres and Ramón Moreno-Tost
Int. J. Mol. Sci. 2025, 26(20), 10054; https://doi.org/10.3390/ijms262010054 - 15 Oct 2025
Abstract
Furfural and 5-hydroxymethylfurfural are considered as essential platform molecules for the chemical industry, acting as precursors and intermediates of numerous products. They are produced from pentoses and hexoses, respectively, in an acid medium. In this work, biomass from a green macroalgae, Ulva rigida [...] Read more.
Furfural and 5-hydroxymethylfurfural are considered as essential platform molecules for the chemical industry, acting as precursors and intermediates of numerous products. They are produced from pentoses and hexoses, respectively, in an acid medium. In this work, biomass from a green macroalgae, Ulva rigida, was treated under acidic conditions provided by heterogeneous catalysts in order to promote the dehydration of its monosaccharides into furfural and 5-hydroxymethylfurfural. Particularly, two functionalized mesoporous silicas, HMS and SBA-supported metal oxides (Nb2O5 and ZrO2), were used as catalysts. Their textural, structural, and acid properties were deeply studied, providing excellent BET surface areas (ranging 424 to 1204 m2/g) and a high concentration of acid sites (220–460 µmol/g), which then translated into great catalytic performances (77.8% and 64.1% of furfural and HMF molar yields, respectively, using HMS-Nb) after a 4 h of reaction time at 180 and 160 °C, respectively. The catalyst showed excellent stability and recyclability as it could be reused for up to five reaction runs with only a slight decrease in performance. Full article
(This article belongs to the Collection Feature Papers in 'Physical Chemistry and Chemical Physics')
Show Figures

Figure 1

26 pages, 15326 KB  
Article
Macro–Micro Quantitative Model for Deformation Prediction of Artificial Structural Loess
by Yao Zhang, Chuhong Zhou, Heng Zhang, Zufeng Li, Xinyu Fan and Peixi Guo
Buildings 2025, 15(20), 3714; https://doi.org/10.3390/buildings15203714 - 15 Oct 2025
Abstract
To overcome the limitations imposed by the anisotropy and heterogeneity of natural loess, this study establishes a novel quantitative macro–micro correlation framework for investigating the deformation mechanisms of artificial structural loess (ASL). ASL samples were prepared by mixing remolded loess with cement (0–4%) [...] Read more.
To overcome the limitations imposed by the anisotropy and heterogeneity of natural loess, this study establishes a novel quantitative macro–micro correlation framework for investigating the deformation mechanisms of artificial structural loess (ASL). ASL samples were prepared by mixing remolded loess with cement (0–4%) and NaCl (0–16%), followed by static compaction (95% degree) and 28-day curing (20 ± 2 °C, >90% RH) to replicate the structural properties of natural loess under controlled conditions. An integrated experimental methodology was employed, incorporating consolidation/collapsibility tests, particle size analysis, X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP). A three-dimensional nonlinear model was proposed. The findings show that intergranular cementation, particle size distribution, and pore architecture are the main factors influencing loess’s compressibility and collapsibility. A critical transition from medium to low compressibility was observed at cement content ≥1% and moisture content ≤16%. A strong correlation (Pearson |r| > 0.96) was identified between the mesopore volume ratio and the collapsibility coefficient. The innovation of this study lies in the establishment of a three-dimensional nonlinear model that quantitatively correlates key microstructural parameters (fractal dimension value (D), clay mineral ratio (C), and large and medium porosity (n)) with macroscopic deformation indicators (porosity ratio (e) and collapsibility coefficient (δs)). The measured data and the model’s output agree quite well, with a determination coefficient (R2) of 0.893 for porosity and 0.746 for collapsibility, verifying the reliability of the model. This study provides a novel quantitative tool for loess deformation prediction, offering significant value for engineering settlement assessment in controlled cementation and moisture conditions, though its application to natural loess requires further validation. Full article
Show Figures

Figure 1

19 pages, 3879 KB  
Article
Expanded Nanofibrous Polymeric Mats Incorporating Tetracycline-Loaded Silica Mesoporous Nanoparticles for Antimicrobial Applications
by Federico Fookes, Silvestre Bongiovanni Abel, Josefa F. Martucci, Diana Estenoz, Gustavo A. Abraham and Carlos A. Busatto
Pharmaceutics 2025, 17(10), 1335; https://doi.org/10.3390/pharmaceutics17101335 - 15 Oct 2025
Abstract
Background/Objectives: In this work, expanded electrospun poly(vinyl alcohol) (PVA) nanofiber mats incorporating tetracycline-loaded mesoporous silica nanoparticles (MSNs) were fabricated for antimicrobial wound dressing applications. Methods: MSNs with high surface area were synthesized and efficiently loaded with tetracycline, achieving sustained drug release. These nanoparticles [...] Read more.
Background/Objectives: In this work, expanded electrospun poly(vinyl alcohol) (PVA) nanofiber mats incorporating tetracycline-loaded mesoporous silica nanoparticles (MSNs) were fabricated for antimicrobial wound dressing applications. Methods: MSNs with high surface area were synthesized and efficiently loaded with tetracycline, achieving sustained drug release. These nanoparticles were then embedded into both conventional (2D) and gas-expanded (3D) electrospun PVA mats. Results: The gas-foaming process significantly enhanced the mat’s thickness, promoting improved nanoparticle loading and diffusion properties. Physicochemical characterization confirmed the structural integrity, thermal stability, and successful drug incorporation within the hybrid scaffolds. Antimicrobial tests against Escherichia coli and Staphylococcus aureus demonstrated excellent bactericidal effects, with superior inhibition observed in 3D mats due to their higher drug loading capacity and faster drug release related to the expanded structure. Conclusions: These results highlight the potential of combining electrospinning, gas expansion, and nanocarriers to engineer advanced, drug-loaded fibrous scaffolds for wound healing. Full article
Show Figures

Graphical abstract

12 pages, 1839 KB  
Article
Study of the Reaction Pathways for the Hydrogenation of Quinoline over Nickel Phosphide Catalysts
by Yuan Qiao, Chunming Xu, Zhao Lv, Yuan Zhao and Peng Huang
Catalysts 2025, 15(10), 976; https://doi.org/10.3390/catal15100976 (registering DOI) - 13 Oct 2025
Viewed by 265
Abstract
Nickel phosphide catalysts (Ni2P) were prepared using mesoporous molecular sieves as supports during isobaric co-impregnation. Ni2P catalysts with different loading values were characterized, showing that the active phase on the surface of the catalysts was mainly Ni2P [...] Read more.
Nickel phosphide catalysts (Ni2P) were prepared using mesoporous molecular sieves as supports during isobaric co-impregnation. Ni2P catalysts with different loading values were characterized, showing that the active phase on the surface of the catalysts was mainly Ni2P and the catalysts still retained the mesoporous structural characteristics of the supports. The catalysts were evaluated using a 10 mL fixed-bed hydrogenation unit. The results showed that the nickel phosphide catalysts had a higher hydrogenation capacity than the sulfide catalysts and were able to preferentially hydrogenate and saturate most of the quinolines to decahydroquinolines, reduce the conversion of 1,2,3,4-tetrahydroquinoline to o-propylaniline, and reduce the inhibition of reactivity due to competitive adsorption. The effect of the catalyst on the path selectivity of quinoline hydrogenation was investigated, and the products of quinoline hydrogenation and denitrogenation consisted mainly of propylbenzene and propylcyclohexane, with propylcyclohexane accounting for 91.7% of the product and propylbenzene for 4.8%, under the conditions of nickel phosphide catalysts. Furthermore, the 25 wt% Ni2P/SBA-15 catalyst exhibited no significant loss of catalytic activity during a 72 h stability evaluation conducted at 360 °C. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

27 pages, 4953 KB  
Article
Genome-Wide Analysis and Functional Correlation of Tomato JAZ Genes Under Tuta absoluta Infestation and Nanoparticle-Induced Defense
by Inzamam Ul Haq, Abdul Basit, Moazam Hyder, Mirza Naveed Shahzad, Asim Abbasi, Yasir Sharif, Muhammad Adeel Ghafar, Xiangyun Cai, Nazih Y. Rebouh and Youming Hou
Insects 2025, 16(10), 1046; https://doi.org/10.3390/insects16101046 - 13 Oct 2025
Viewed by 378
Abstract
Tomato (Solanum lycopersicum) production is increasingly threatened by Tuta absoluta, a destructive pest that compromises yield and quality. To explore sustainable alternatives to conventional insecticides, we investigated the jasmonate-mediated defense pathway by performing a genome-wide characterization of the JAZ gene [...] Read more.
Tomato (Solanum lycopersicum) production is increasingly threatened by Tuta absoluta, a destructive pest that compromises yield and quality. To explore sustainable alternatives to conventional insecticides, we investigated the jasmonate-mediated defense pathway by performing a genome-wide characterization of the JAZ gene family in S. lycopersicum. A total of 39 SlJAZ genes were identified and mapped to 12 chromosomes. Detailed analysis revealed conserved motifs, diverse exon–intron structures, four major phylogenetic groups, and the presence of multiple MeJA- and stress-responsive cis-elements. Synteny analysis indicated gene duplication events and evolutionary conservation with Arabidopsis and potato. Small RNA predictions suggested that 33 SlJAZ genes are targeted by 69 microRNAs, implying multilayered regulation. Transcriptome analysis under four treatment conditions—mesoporous silica nanoparticles (MSNs) ± pest infestation—revealed 21 differentially expressed SlJAZ genes. SlJAZ1, SlJAZ19, SlJAZ20, and SlJAZ22 were notably upregulated under the combined MSN and pest treatment, with expression patterns validated by qRT-PCR (R2 = 0.92). Phenotypic assessment of leaf damage index, larval survival rate, and number of leaf mines showed reduced pest activity in MSN-treated plants. Regression analysis demonstrated significant negative correlations between expression levels of SlJAZ20, SlJAZ26, and SlJAZ29 and pest-related damage traits. These findings indicate that MSNs function as effective elicitors of JA-responsive defense in tomato and modulate the expression of specific JAZ genes linked to enhanced resistance. The study provides a valuable foundation for integrating nanotechnology with molecular defense strategies to promote sustainable pest management. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

19 pages, 3322 KB  
Article
The Use of Metal/ZSM-5 Nanosheet for Efficient Catalytic Cracking of Cross-Linked Polyethylene for High-Voltage Cable Insulation
by Zhenfei Fu, Yuqi Pan, Rui Wang, Shilong Suo, Zheng Wang, Xiangyang Peng and Pengfei Fang
Materials 2025, 18(20), 4675; https://doi.org/10.3390/ma18204675 - 11 Oct 2025
Viewed by 275
Abstract
Cross-linked polyethylene (XLPE) has been widely used in high-voltage cables due to its superior properties, but its thermoset cross-linked structure makes it difficult to recycle. Catalytic pyrolysis offers a feasible pathway for converting XLPE into high-value chemicals. In this study, a systematic study [...] Read more.
Cross-linked polyethylene (XLPE) has been widely used in high-voltage cables due to its superior properties, but its thermoset cross-linked structure makes it difficult to recycle. Catalytic pyrolysis offers a feasible pathway for converting XLPE into high-value chemicals. In this study, a systematic study on the catalytic cracking of XLPE using metal ion-loaded ZSM-5 nanosheets was conducted, and ZSM-5 nanosheets loaded with Ag, Mo, Ni, and Ce were prepared via ion exchange. After metal loading, ZSM-5 retained the MFI framework structure, but the specific surface area and mesopore volume varied depending on the type of metal. Temperature-Programmed Desorption of Ammonia results indicated that metal–support interactions enhanced the acidity of ZSM-5. Among the catalysts, Ag-loaded ZSM-5 exhibited the highest efficiency: with 10 wt% Ag, at 380 °C, the conversion reached 94.1%, with 52.5% light olefins in the gas phase and 59.4% benzene, toluene, and xylene (BTX) in the liquid products. Further studies on different Ag loadings revealed that moderate Ag loading (5 wt%) provided the best overall balance, maintaining 92.3% conversion, 56.1% selectivity to light olefins, and 58.2% BTX in the liquid fraction. These findings demonstrate that tuning the metal loading effectively optimizes the acidity and pore structure of ZSM-5, thereby enabling controlled regulation of XLPE pyrolysis product distribution. Full article
(This article belongs to the Special Issue Recycling Conductive and Electrical Insulating Polymer Composites)
Show Figures

Figure 1

22 pages, 14258 KB  
Article
Reservoir Characteristics and Shale Oil Enrichment of Shale Laminae in the Chang 7 Member, Ordos Basin
by Mengying Li, Wenzheng Li, Mingfeng Gu, Songtao Wu, Pengwan Wang, Yuce Wang, Quanbin Cao, Zhehang Xu and Yi Hao
Energies 2025, 18(20), 5342; https://doi.org/10.3390/en18205342 - 10 Oct 2025
Viewed by 214
Abstract
The laminae of lacustrine shale in China have been systematically identified and characterized by a combination of core/slice observations, mineral compositions, geochemical analysis, pore structure characterization, and oil-bearing evaluation. The shale of the Chang 7 Member, Yanchang Formation, Ordos Basin was examined as [...] Read more.
The laminae of lacustrine shale in China have been systematically identified and characterized by a combination of core/slice observations, mineral compositions, geochemical analysis, pore structure characterization, and oil-bearing evaluation. The shale of the Chang 7 Member, Yanchang Formation, Ordos Basin was examined as an example in the study. Four types of laminae are developed in the Chang 7 Member, including felsic laminae (FQL), clay laminae (CLL), organic matter laminae (OML), and tuff laminae (TUL). The shale reservoirs exhibit significant heterogeneity. Of these, FQL and TUL have superior reservoir characteristics. The pore diameter of TUL is primarily composed of micrometer-sized secondary pores that are generated during the diagenesis process, while mesopore and macropore development are dominant in FQL. The main source laminae in the Chang 7 Member of the Ordos Basin are the OML and CLL, while the main reservoir laminae are the FQL and TUL. Some of the hydrocarbons produced by hydrocarbon generation are stored in the pore space inside the laminae, while the majority migrate to the inorganic pores of the adjacent FQL and TUL. It confirms that OML and CLL afford abundant shale oil, the combination of organic pores and inorganic pores in FQL and TUL serve as reservoir space, and the “clay generation-siliceous reservoir” shale oil enrichment model is established in the Chang 7 Member of Ordos Basin. Full article
Show Figures

Figure 1

25 pages, 4125 KB  
Article
Enhanced Killing of Colon Cancer Cells by Mesoporous Silica Nanoparticles Loaded with Ellagic Acid
by Khaled AbouAitah, Amr Nassrallah, Ahmed A. F. Soliman, Anna Swiderska-Sroda, Tadeusz Chudoba, Julita Smalc-Koziorowska, Beom Soo Kim and Witold Łojkowski
Nanomaterials 2025, 15(20), 1547; https://doi.org/10.3390/nano15201547 - 10 Oct 2025
Viewed by 198
Abstract
Background: Natural compounds, including ellagic acid (ELG), are promising anticancer agents with low adverse effects. In this paper, we test in vitro the effectiveness of mesoporous silica nanoparticles (MSN) as an ELG carrier against colon cancer. Methods: We produced MSNs functionalized with triptycene [...] Read more.
Background: Natural compounds, including ellagic acid (ELG), are promising anticancer agents with low adverse effects. In this paper, we test in vitro the effectiveness of mesoporous silica nanoparticles (MSN) as an ELG carrier against colon cancer. Methods: We produced MSNs functionalized with triptycene (TRP) and loaded with ELG, further called MSNTRPELG nanoformulation. The nanoformulation contained over 11 wt.% TRP and approximately 25 wt.% ELG in the mesoporous structure and on the surface of particles. It was assessed for anticancer effects against two colon cancer cells: HCT-116 and HT-29 for treatment with up to 200 µM. Results: Comparing to free ELG, we have shown a three times higher cancer inhibition. The lowest IC50 values were for HCT-116 (88.1 ± 0.1 µM) and HT-29 (77.6 ± 0.1 µM). When treated with free ELG, the values were 187.1 ± 0.1 µM and 300.0 ± 0.1 µM, respectively. MSNTRPELG enhanced apoptosis primarily by activating caspase-3, p53, and Bax while downregulating Bcl-2 in HCT-116 and HT-29 cells. It also inhibited receptor tyrosine kinases (HER2 and VEGFR2). Preliminary Western blot observations suggest suppression of B-RAF, C-RAF, and K-RAS oncogenes, with stronger inhibition by the nanoformulation than by free ELG. Conclusions: This work highlights the potential of MSNs to enhance the efficacy of natural prodrugs, particularly ELG, in cancer therapy. Full article
(This article belongs to the Special Issue Metal Nanostructures in Biological Applications)
Show Figures

Graphical abstract

14 pages, 1566 KB  
Article
Development of Silica Nanoparticles Embedded Adipose Spheroid Platform for Probing Bacteriophage Sequestration and Its Implications for Phage Therapy
by Rafael Levandowski, Su Yati Htun and Laura Ha
Nanomaterials 2025, 15(19), 1537; https://doi.org/10.3390/nano15191537 - 9 Oct 2025
Viewed by 212
Abstract
We engineer an enhanced three-dimensional (3D) adipose model by integrating mesoporous silica (mSiO2) nanoparticles into human adipose-derived stem cell spheroids. The mSiO2 is highly cytocompatible, enables stable dispersion, and yields spheroids that preserve structural integrity and roundness for at least [...] Read more.
We engineer an enhanced three-dimensional (3D) adipose model by integrating mesoporous silica (mSiO2) nanoparticles into human adipose-derived stem cell spheroids. The mSiO2 is highly cytocompatible, enables stable dispersion, and yields spheroids that preserve structural integrity and roundness for at least 14 days, accompanied by higher metabolic activity and reduced hypoxic stress. Under adipogenic induction, the nanoparticles embedded spheroids exhibit deeper lipid accumulation and increased expression of PPARγ, adiponectin, and FABP4. As a proof of concept, we leveraged this 3D platform to examine phage uptake and tissue-level distribution in adipose spheroids in comparison with conventional 2D cultures. These experiments reveal that both the cellular differentiation state and the tissue architecture govern phage association and uptake. Together, our findings indicate that phages engage mammalian cells beyond their bacterial hosts, a consideration that should inform future phage therapy design with implications for innate immune responses and overall therapeutic efficacy. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

21 pages, 3449 KB  
Article
Synthesis and Characterization of Chromium Ion-Imprinted Biochar for Selective Removal of Cr(VI) from Wastewater
by Xinchi Zong, Tianliang Duan, Linyan Chen, Zhengwei Luo, Hui Jiang and Wenhua Geng
Water 2025, 17(19), 2910; https://doi.org/10.3390/w17192910 - 9 Oct 2025
Viewed by 265
Abstract
The escalating issue of water pollution driven by rapid industrialization necessitates the development of advanced remediation technologies. In this study, a novel method for producing chromium (Cr(VI)) ion-imprinted biochar (Cr(VI)-IIP-PEI@NBC) from wheat residue was proposed. After acid-oxidative modifications, polyethyleneimine (PEI) and glutaraldehyde (GA) [...] Read more.
The escalating issue of water pollution driven by rapid industrialization necessitates the development of advanced remediation technologies. In this study, a novel method for producing chromium (Cr(VI)) ion-imprinted biochar (Cr(VI)-IIP-PEI@NBC) from wheat residue was proposed. After acid-oxidative modifications, polyethyleneimine (PEI) and glutaraldehyde (GA) were employed as the functional monomer and crosslinker, respectively, to enhance the biochar’s selectivity and adsorption capacity. Under optimized conditions (pH 2.0, 55 °C), the adsorbent achieved a maximum Cr(VI) uptake of 212.63 mg/g, which was 2.3 times higher than that of the non-imprinted biochar. The material exhibited exceptional specificity (99.64%) for Cr(VI) and maintained >80% adsorption efficiency after five regeneration cycles, demonstrating excellent reusability. Comprehensive structural characterization via Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner–Emmet–Teller measurements (BET), and Scanning Electron Microscopy (SEM) confirmed successful Cr(VI) imprinting in the biochar and its high thermal stability and mesoporous architecture, elucidating the mechanisms behind its superior performance. This study presents a sustainable and high-performance adsorbent for the efficient treatment of chromium-contaminated wastewater, with significant potential for industrial applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

36 pages, 1058 KB  
Systematic Review
Functionalization Strategies of Chitosan-Based Scaffolds with Growth Factors for Bone Regeneration: A Systematic Review
by Jan Kiryk, Mateusz Michalak, Zuzanna Majchrzak, Marzena Laszczyńska, Sylwia Kiryk, Sylwia Szotek, Hanna Gerber, Izabela Nawrot-Hadzik, Jacek Matys and Maciej Dobrzyński
Mar. Drugs 2025, 23(10), 396; https://doi.org/10.3390/md23100396 - 9 Oct 2025
Viewed by 458
Abstract
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search [...] Read more.
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search was conducted in July 2025 across the PubMed, Scopus, and Web of Science databases. Search terms included combinations of (chitosan scaffold) AND (growth factor OR BMP-2 OR VEGF OR FGF OR TGF-beta OR periostin OR PDGF OR IGF-1 OR EGF OR ANG-1 OR ANG-2 OR GDF-5 OR SDF-1 OR osteopontin). The study selection process followed PRISMA 2020 guidelines and the PICO framework. Out of 367 records, 226 were screened, and 17 studies met the eligibility criteria for qualitative analysis. BMP-2 was the most frequently investigated growth factor, studied in both in vitro and in vivo models, with rats and rabbits as the most common animal models. Scaffold compositions varied, incorporating hydroxyapatite, heparin, polyethylene glycol diacrylate, octacalcium phosphate-mineralized graphene, silk fibroin, and aloe vera. Growth factors were introduced using diverse methods, including microspheres, chemical grafting, covalent coupling, protein carriers, and nanohydroxyapatite mesopores. Most studies reported enhanced bone regeneration, although differences in models, scaffold composition, and delivery methods preclude definitive conclusions. The addition of growth factors generally improved osteoblast proliferation, angiogenesis, bone density, and expression of osteogenic markers (RunX2, COL1, OPN, OCN). Combining two bioactive agents further amplified osteoinduction and vascularization. Sustained-release systems, particularly those using heparin or hydroxyapatite, prolonged biological activity and improved regenerative outcomes. In conclusion, functionalization of chitosan-based scaffolds with growth factors shows promising potential for bone regeneration. Controlled-release systems and combinations of different bioactive molecules may offer synergistic effects on osteogenesis and angiogenesis. Further research should focus on optimizing scaffold compositions and delivery methods to tailor bioactive agent release for specific clinical applications. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

17 pages, 1651 KB  
Article
Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater
by Ju Guo, Wei Liu, Tianzhu Shi, Wei Shi, Fuyong Wu and Yi Xie
Nanomaterials 2025, 15(19), 1530; https://doi.org/10.3390/nano15191530 - 7 Oct 2025
Viewed by 312
Abstract
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes [...] Read more.
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes the use of biochemical sludge as a raw material. Coupled with iron salt activation and mechanical ball milling technology, a low-cost, high-performance iron-doped mesoporous nano-sludge biochar material is prepared. This material was employed as a particle electrode to construct a three-dimensional electro-Fenton system for the degradation of organic wastewater from sauce-flavor liquor brewing. The results demonstrate that the sludge-based biochar produced through this approach possesses a mesoporous structure, with an average particle size of 187 nm, a specific surface area of 386.28 m2/g, and an average pore size of 4.635 nm. Iron is present in the material as multivalent iron ions, which provide more electrochemical reaction sites. Utilizing response surface methodology, the optimized treatment process achieves a maximum COD degradation rate of 71.12%. Compared to the control sample, the average particle size decreases from 287 μm to 187 nm, the specific surface area increases from 44.89 m2/g to 386.28 m2/g, and the COD degradation rate improves by 61.1%. Preliminary investigations suggest that the iron valence cycle (Fe2+/Fe3+) and the mass transfer enhancement effect of the mesoporous nano-structure are keys to efficient degradation. The Fe-O-Si structure enhances material stability, with a degradation capacity retention rate of 88.74% after 30 cycles of use. When used as a particle electrode to construct a three-dimensional electro-Fenton system, this material demonstrates highly efficiency in organic matter degradation and shows promising potential for application in the treatment of organic wastewater from sauce-flavor liquor brewing. Full article
Show Figures

Figure 1

17 pages, 11740 KB  
Article
Structural Characterization of Ordered Mesoporous Silica Prepared by a Sol–Gel Process Using Urea-Based Cationic Gemini Surfactants
by Sarvarjon Kurbonov, Zsolt Czigány, Zoltán Kovács, László Péter, Martin Pisárčik, Miloš Lukáč, Manfred Kriechbaum, Vasyl Ryukhtin, Ana-Maria Lacrămă and László Almásy
Gels 2025, 11(10), 804; https://doi.org/10.3390/gels11100804 - 7 Oct 2025
Viewed by 298
Abstract
Mesoporous silica nanoparticles have been synthesized through sol–gel synthesis in basic conditions. Gemini surfactants having urea in the headgroups were used as pore-forming agents. The effect of the spacer length of the surfactant on the particle morphology was studied on the sub-micrometer and [...] Read more.
Mesoporous silica nanoparticles have been synthesized through sol–gel synthesis in basic conditions. Gemini surfactants having urea in the headgroups were used as pore-forming agents. The effect of the spacer length of the surfactant on the particle morphology was studied on the sub-micrometer and nanometer scales using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, and scanning and transmission electron microscopy (SEM, TEM). Depending on the spacer, spherical and/or cylindrical nanoparticles formed in different proportions, as revealed by statistical analysis of SEM micrographs. All prepared materials showed the hexagonal pore structure characteristic of the MCM-41 molecular sieves, with the exception of the sample prepared using the gemini surfactant with the shortest spacer length. The influence of the spacer length on the lattice parameter of the pore network, as well as the average size of the ordered domains, has been assessed by SAXS and TEM. Detailed analysis of the TEM images revealed a spread of the lattice parameter in a range of 10–20%. The broadening of the diffraction peaks was shown to be due to the combination of the effects of the finite domain size and the variance of the lattice parameter across the crystalline domains. The structural differences between the silica gels synthesized with the different surfactants were related to the variation of the micelle morphologies, reported in previous light scattering and small-angle scattering experiments. No connection could be revealed between the micelle shape and size and the pore sizes, showing that surfactants with a broad range of spacer lengths can equally well be used for the preparation of MCM-41 materials. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

13 pages, 4976 KB  
Article
Nanostructured CeO2-C Derived from Ce-BDC Precursors for Room-Temperature Ammonia Sensing
by Liang Wang, Manyi Liu, Shan Ren, Xiankang Zhong, Bofeng Bai, Shouning Chai, Chi He and Xinzhe Li
Chemosensors 2025, 13(10), 362; https://doi.org/10.3390/chemosensors13100362 - 3 Oct 2025
Viewed by 394
Abstract
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and [...] Read more.
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and inadequate selectivity. Metal–organic frameworks (MOFs) and their derivatives offer a promising approach to address these limitations. In this work, Ce-BDC precursors with tunable particle sizes and crystallinity were synthesized by adjusting the raw material concentration. Controlled pyrolysis yielded a series of CeO2-C-X (X = 0.5, 1, 1.5, 2) materials with nanosized particles. Among them, the CeO2-C-1 sensor delivered a high response of 82% toward NH3 under 40% relative humidity at RT. Moreover, it possessed excellent selectivity, repeatability, and rapid response-recovery behavior compared with the other samples. CeO2-C-1 also remained stable under varying oxygen and humidity conditions, demonstrating high applicability. The superior sensing properties may be attributed to its high specific surface area and optimized mesoporous structure, which facilitated efficient gas adsorption and reaction. These findings demonstrated that precise control of MOF precursors and the structure in CeO2 nanomaterials was critical for achieving high-performance gas sensing and established Ce-MOF-derived CeO2 as a promising sensing material for NH3 detection at RT. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Figure 1

11 pages, 1486 KB  
Article
Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions
by Angel Maroto-Valiente, Carla A. Blanco-Camus, Ana I. Mártir Bueno, Elena M. Mesa-Bribián and Jesús Alvarez-Rodríguez
C 2025, 11(4), 73; https://doi.org/10.3390/c11040073 - 30 Sep 2025
Viewed by 391
Abstract
The controlled incorporation of halogens into carbon materials remains a challenge, particularly under mild and scalable conditions. In this work, we investigate the fixation of iodine on high-surface-area graphite (HSAG-100) using green solvents and moderate temperatures. Commercial HSAG was treated with iodine in [...] Read more.
The controlled incorporation of halogens into carbon materials remains a challenge, particularly under mild and scalable conditions. In this work, we investigate the fixation of iodine on high-surface-area graphite (HSAG-100) using green solvents and moderate temperatures. Commercial HSAG was treated with iodine in aqueous and in organic media, with and without promoters, and characterized by XPS, LEIS, N2 physisorption, TGA/TPD, and XRD. The results reveal that iodine contents up to ~0.6 at% can be achieved, with incorporation strongly influenced by solvent and reaction time. XPS and LEIS confirmed the presence of C–I bonds, while BET analysis showed only moderate decreases in surface area and unchanged mesopore size distribution. Thermogravimetric and TPD analyses demonstrated the high thermal stability of C–I species, and XRD patterns ruled out intercalation between graphene layers. Collectively, these findings demonstrate that iodine can be covalently anchored to HSAG under mild conditions, preserving the graphitic structure and generating stable edge functionalities, thus opening a route for the design of halogen-doped carbons for catalytic and electrochemical applications. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Figure 1

Back to TopTop