Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = mesophase separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 49774 KiB  
Review
Structural Rheology in the Development and Study of Complex Polymer Materials
by Sergey O. Ilyin
Polymers 2024, 16(17), 2458; https://doi.org/10.3390/polym16172458 - 29 Aug 2024
Cited by 20 | Viewed by 3144
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, [...] Read more.
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology—a valuable tool for the development and study of novel materials. This work summarizes the author’s structural–rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties. Full article
(This article belongs to the Special Issue Rheology and Processing of Polymer Materials)
Show Figures

Figure 1

22 pages, 2313 KiB  
Review
An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review
by Jordi Guardià, José Antonio Reina, Marta Giamberini and Xavier Montané
Polymers 2024, 16(16), 2293; https://doi.org/10.3390/polym16162293 - 14 Aug 2024
Cited by 16 | Viewed by 7843
Abstract
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in [...] Read more.
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted. Full article
Show Figures

Figure 1

20 pages, 6266 KiB  
Article
Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light
by Md. Akherul Islam, Jeasmin Akter, Insup Lee, Santu Shrestha, Anil Pandey, Narayan Gyawali, Md. Monir Hossain, Md. Abu Hanif, Se Gyu Jang and Jae Ryang Hahn
Nanomaterials 2022, 12(22), 3959; https://doi.org/10.3390/nano12223959 - 10 Nov 2022
Cited by 9 | Viewed by 2156
Abstract
The combination of organic and inorganic materials is attracting attention as a photocatalyst that promotes the decomposition of organic dyes. A facile thermal procedure has been proposed to produce spherical silver nanoparticles (AgNPs), carbon nanospheres (CNSs), and a bispherical AgNP–CNS nanocomposite. The AgNPs [...] Read more.
The combination of organic and inorganic materials is attracting attention as a photocatalyst that promotes the decomposition of organic dyes. A facile thermal procedure has been proposed to produce spherical silver nanoparticles (AgNPs), carbon nanospheres (CNSs), and a bispherical AgNP–CNS nanocomposite. The AgNPs and CNSs were each synthesized from silver acetate and glucose via single- and two-step annealing processes under sealed conditions, respectively. The AgNP–CNS nanocomposite was synthesized by the thermolysis of a mixture of silver acetate and a mesophase, where the mesophase was formed by annealing glucose in a sealed vessel at 190 °C. The physicochemical features of the as-prepared nanoparticles and composite were evaluated using several analytical techniques, revealing (i) increased light absorption, (ii) a reduced bandgap, (iii) the presence of chemical interfacial heterojunctions, (iv) an increased specific surface area, and (v) favorable band-edge positions of the AgNP–CNS nanocomposite compared with those of the individual AgNP and CNS components. These characteristics led to the excellent photocatalytic efficacy of the AgNP–CNS nanocomposite for the decomposition of three pollutant dyes under ultraviolet (UV) radiation. In the AgNP–CNS nanocomposite, the light absorption and UV utilization capacity increased at more active sites. In addition, effective electron–hole separation at the heterojunction between the AgNPs and CNSs was possible under favorable band-edge conditions, resulting in the creation of reactive oxygen species. The decomposition rates of methylene blue were 95.2, 80.2, and 73.2% after 60 min in the presence of the AgNP–CNS nanocomposite, AgNPs, and CNSs, respectively. We also evaluated the photocatalytic degradation efficiency at various pH values and loadings (catalysts and dyes) with the AgNP–CNS nanocomposite. The AgNP–CNS nanocomposite was structurally rigid, resulting in 93.2% degradation of MB after five cycles of photocatalytic degradation. Full article
(This article belongs to the Special Issue Degradation and Photocatalytic Properties of Nanocomposites)
Show Figures

Graphical abstract

19 pages, 6461 KiB  
Article
Optimization of Molecular Composition Distribution of Slurry Oil by Supercritical Fluid Extraction to Improve the Structure and Performance of Mesophase Pitch
by Xiaoyu Dai, Yuanen Ma, Linzhou Zhang, Zhiming Xu, Xuewen Sun and Suoqi Zhao
Energies 2022, 15(19), 7041; https://doi.org/10.3390/en15197041 - 25 Sep 2022
Cited by 10 | Viewed by 2574
Abstract
The composition distribution of slurry oil has a significant impact on the structure and performance of the mesophase. In this study, supercritical fluid extraction oil (SFEO) and extraction components were extracted from two slurry oils (SLOs) using the supercritical fluid extraction (SFE) technique. [...] Read more.
The composition distribution of slurry oil has a significant impact on the structure and performance of the mesophase. In this study, supercritical fluid extraction oil (SFEO) and extraction components were extracted from two slurry oils (SLOs) using the supercritical fluid extraction (SFE) technique. The fundamental properties and composition distribution of two SLOs and associated SFEOs were thoroughly investigated. Electron microscopy and spectroscopic techniques were employed to study the morphology and structures of mesophase pitch produced by carbonizing SLOs and their extraction components under the same conditions. The findings revealed that, compared to SLO–LH, SLO–SH has a higher proportion of 4–5 aromatic rings and a narrower hydrocarbon distribution range. In SLO–LH, O1, N1, and N1O1 molecules with long side chains and poor flatness make up the majority of the heterocyclic aromatic hydrocarbons. The distribution of CH compounds can be narrowed by using supercritical fluid extraction to efficiently separate various heteroatom-containing compounds with a higher condensation degree. After supercritical extraction, the mesophase content, texture distribution, and graphitization degree of the mesophase were improved. Polycyclic aromatic hydrocarbons with high planarity help polymer macromolecules stick together and build up in an orderly way. Heterocyclic aromatic hydrocarbons with high condensation and low planarity, on the other hand, play an important role in the formation of mosaic structures. Full article
(This article belongs to the Special Issue Petroleum Chemistry and Processing)
Show Figures

Figure 1

13 pages, 2466 KiB  
Article
Study of Segregation in Non-Dilute Solutions of Linear Diblock Copolymers and Symmetric Miktoarm (or Janus Star) Polymers Using Monte Carlo Simulations with the Bond Fluctuation Model
by Juan J. J. Freire
Polymers 2021, 13(14), 2377; https://doi.org/10.3390/polym13142377 - 20 Jul 2021
Cited by 2 | Viewed by 1976
Abstract
The bond fluctuation model was employed to characterize the approach to the mesophase separation transition of pure linear AB copolymers and symmetric miktoarms, also called Janus, star polymers, Af/2Bf/2 , where f = 6 or 12 is the [...] Read more.
The bond fluctuation model was employed to characterize the approach to the mesophase separation transition of pure linear AB copolymers and symmetric miktoarms, also called Janus, star polymers, Af/2Bf/2 , where f = 6 or 12 is the total number of arms, in a common good solvent. We consider a concentration sufficiently high to mimic the melting behavior and also a lower concentration. The segregation between A and B units is represented by a repulsive interaction parameter, . Different total numbers of units are also considered. Results for different properties, such as the molecular size, the asphericity and orientational correlation of blocks, or arms, of different compositions are obtained as a function of the segregation parameter. We also calculate scattering structure factors. The initial effect of segregation on the scattering with opposite contrast factors between the A and B blocks can be explained with a common description based on the random phase approximation for both the linear copolymers and the f = 6 miktoarms, once the numerical form factors of the different molecules in their particular systems are considered. However, the results for f = 12 clearly deviate from this description probably due to some degree of ordering in the position of highly armed molecules. Full article
(This article belongs to the Special Issue Self-Assembly in Polymer Blends and Melts)
Show Figures

Graphical abstract

16 pages, 4247 KiB  
Review
A Global View on Block Copolymers
by Massimo Lazzari and Mercedes Torneiro
Polymers 2020, 12(4), 869; https://doi.org/10.3390/polym12040869 - 10 Apr 2020
Cited by 21 | Viewed by 6104
Abstract
In this systematic review, a total of 45,143 publications on block copolymers, issued between 1952 and 2019, are analyzed in terms of number, source, language, institution, country, keywords, and block copolymer type, to find out their evolution and predict research trends. The number [...] Read more.
In this systematic review, a total of 45,143 publications on block copolymers, issued between 1952 and 2019, are analyzed in terms of number, source, language, institution, country, keywords, and block copolymer type, to find out their evolution and predict research trends. The number of publications devoted to block copolymers has been growing for over six decades, maintaining a consistent level throughout the last few years. In their majority, documents came out of the United States, although more recently, Chinese institutions are those displaying the largest production. Keywords analysis indicated that one-third of the publications concerned synthesis, around 20% explored self-assembly and morphological aspects, and another 20% referred to block copolymer applications in solution. In particular, 2019 confirmed the expansion of studies related to drug delivery, and in minor extent, to a deeper view of self-assembling. Styrene–butadiene–styrene block copolymer was the most popular in studies covering both basic and industrially oriented aspects. Other highly investigated copolymers are PEO-b–PPO-b–PEO (Pluronic©) and amphiphilic block copolymers based on polycaprolactone or poly(lactic acid), which owed their success to their potential as delivery vehicles. Future trending topics will concern nanomedicine challenges and technology-related applications, with a special attention toward the orientation and ordering of mesophase-separated morphologies. Full article
(This article belongs to the Collection The Next Generation in Polymer Research)
Show Figures

Graphical abstract

10 pages, 3645 KiB  
Article
Fatty Acid-Derived Ionic Liquid Lubricant. Protic Ionic Liquid Crystals as Protic Ionic Liquid Additives
by María-Dolores Avilés, Ramón Pamies, José Sanes, Francisco-José Carrión and María-Dolores Bermúdez
Coatings 2019, 9(11), 710; https://doi.org/10.3390/coatings9110710 - 31 Oct 2019
Cited by 17 | Viewed by 4065
Abstract
Fatty acids are natural products which have been studied as green lubricants. Ionic liquids are considered efficient friction reducing and wear preventing lubricants and lubricant additives. Fatty acid-derived ionic liquids have shown potential as neat lubricant and additives. Protic ionic liquid crystals (PILCs) [...] Read more.
Fatty acids are natural products which have been studied as green lubricants. Ionic liquids are considered efficient friction reducing and wear preventing lubricants and lubricant additives. Fatty acid-derived ionic liquids have shown potential as neat lubricant and additives. Protic ionic liquid crystals (PILCs) are protic ionic liquids (PILs) where cations and anions form ordered mesophases that show liquid crystalline behavior. The adsorption of carboxylate units on sliding surfaces can enhance the lubricant performance. Ionic liquid crystal lubricants with longer alkyl chains can separate sliding surfaces more efficiently. However, they are usually solid at room temperature and, when used as additives in water, transitions to high friction coefficients and wear rates, with tribocorrosion processes occur when water evaporation takes place at the interface. In order to avoid these inconveniences, in the present work, a protic ammonium palmitate (DPA) ionic liquid crystal has been added in 1 wt.% proportion to a short chain citrate ionic liquid (DCi) with the same protic ammonium cation. A spin coated layer of (DCi + DPA) was deposited on AISI316L steel surface before the sliding test against sapphire ball. Synergy between DCi PIL and DPA PILC additive reduces friction coefficient and wear rate, without tribocorrosion processes, as shown by scanning electron microscopy (SEM)/energy dispersive X-ray microanalysis (EDX) and X-ray photoelectron spectroscopy (XPS) results. Full article
(This article belongs to the Special Issue Recent Advances in Green Tribology)
Show Figures

Figure 1

18 pages, 6489 KiB  
Article
Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes
by Feras Rabie, Lenka Poláková, Sebastian Fallas, Zdenka Sedlakova, Eva Marand and Stephen M. Martin
Membranes 2019, 9(8), 104; https://doi.org/10.3390/membranes9080104 - 20 Aug 2019
Cited by 3 | Viewed by 3715
Abstract
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. [...] Read more.
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic–sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

11 pages, 1390 KiB  
Article
Determination of Optical Purity of Lactic Acid-Based Chiral Liquid Crystals and Corresponding Building Blocks by Chiral High-Performance Liquid Chromatography and Supercritical Fluid Chromatography
by Anna Poryvai, Terezia Vojtylová-Jurkovičová, Michal Šmahel, Natalie Kolderová, Petra Tomášková, David Sýkora and Michal Kohout
Molecules 2019, 24(6), 1099; https://doi.org/10.3390/molecules24061099 - 20 Mar 2019
Cited by 23 | Viewed by 4258
Abstract
Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid [...] Read more.
Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis. Full article
Show Figures

Figure 1

47 pages, 4584 KiB  
Review
A Rationale for Mesoscopic Domain Formation in Biomembranes
by Nicolas Destainville, Manoel Manghi and Julie Cornet
Biomolecules 2018, 8(4), 104; https://doi.org/10.3390/biom8040104 - 29 Sep 2018
Cited by 15 | Viewed by 5823
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid [...] Read more.
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective. Full article
(This article belongs to the Special Issue Cellular Membrane Domains and Organization)
Show Figures

Figure 1

15 pages, 4297 KiB  
Article
Thermodynamic Fluid Equations-of-State
by Leslie V. Woodcock
Entropy 2018, 20(1), 22; https://doi.org/10.3390/e20010022 - 4 Jan 2018
Cited by 9 | Viewed by 6021
Abstract
As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with [...] Read more.
As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T) which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc) and pressure (pc) and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB), critical temperature (Tc), critical pressure (pc) and coexisting densities of gas (ρcG) and liquid (ρcL) along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρ)T to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region. Full article
(This article belongs to the Special Issue Selected Papers from 14th Joint European Thermodynamics Conference)
Show Figures

Figure 1

10 pages, 1309 KiB  
Article
Electronic Structure and Mesoscopic Simulations of Nonylphenol Ethoxylate Surfactants. A Combined DFT and DPD Study
by Diego Valencia, Jorge Aburto and Isidoro García-Cruz
Molecules 2013, 18(8), 9441-9450; https://doi.org/10.3390/molecules18089441 - 7 Aug 2013
Cited by 11 | Viewed by 7052
Abstract
The aim of this work was to gain insight into the effect of ethylene oxide (EO) chains on the properties of a series of nonylphenol ethoxylate (NPE) surfactants. We performed a theoretical study of NPE surfactants by means of density functional theory (DFT) [...] Read more.
The aim of this work was to gain insight into the effect of ethylene oxide (EO) chains on the properties of a series of nonylphenol ethoxylate (NPE) surfactants. We performed a theoretical study of NPE surfactants by means of density functional theory (DFT) and dissipative particle dynamics (DPD). Both approximations were used separately to obtain different properties. Four NPEs were selected for this purpose (EO = 4, 7, 11 and 15 length chains). DFT methods provided some electronic properties that are related to the EO units. One of them is the solvation Gibbs energy, which exhibited a linear trend with EO chain length. DPD calculations allow us to observe the dynamic behavior in water of the NPE surfactants. We propose a coarse-grained model which properly simulates the mesophases of each surfactant. This model can be used in other NPEs applications. Full article
(This article belongs to the Special Issue Computational Chemistry)
Show Figures

Graphical abstract

17 pages, 598 KiB  
Article
The Effect of Liquid Crystalline Structures on Antiseizure Properties of Aqueous Solutions of Ethoxylated Alcohols
by Marian Wlodzimierz Sulek and Anna Bak
Int. J. Mol. Sci. 2010, 11(1), 189-205; https://doi.org/10.3390/ijms11010189 - 12 Jan 2010
Cited by 14 | Viewed by 13975
Abstract
Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40–80%) were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the [...] Read more.
Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40–80%) were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the case of alcohol solutions with ethoxylation degrees of 3, 5, 7 and 10. Microscopic images and viscosity coefficient values characteristic of various mesophases were obtained. As expected, the viscosity of LLCs decreases considerably with an increase in shearing rate which is characteristic of liquid crystals being non-Newtonian liquids. Antiseizure properties were determined by means of a four-ball machine (T-02 Tester) and characterized by scuffing load (Pt), seizure load (Poz) and limiting pressure of seizure (poz). Alcohol ethoxylates forming mesophases in aqueous solutions have the strongest effect on the Pt values which are several times higher than those measured in the presence of water. Ethoxylates with higher degrees of ethoxylation exhibit higher values of scuffing load. Those changes have been interpreted as a result of higher cloud points at which those compounds lose their amphiphilic properties. In general, the presence of mesophases in the bulk phase and particularly in the surface phase may lead to the formation of a lubricant film which separates the frictionally cooperating elements of a friction pair. The antiseizure efficiency of alcohol solutions is highest up to the load value which does not exceed the scuffing load value. Full article
(This article belongs to the Special Issue Liquid Crystals)
Show Figures

Back to TopTop