Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of AgNPs
2.2. Synthesis of CNSs
2.3. Synthesis of AgNP–CNS Nanocomposite
2.4. Physicochemical Properties of the AgNPs, CNSs, and AgNP–CNS Nanocomposites
2.5. Photocatalytic Performance
2.5.1. Point of Zero Charges (pHPZC) and pH
2.5.2. Effect of the Loading Dose of MB and AgNP–CNS Nanocomposite on Photodegradation
2.6. Reusability Assessment
2.7. Charge-Carrier Trapping
2.8. Liquid Chromatography–Mass Spectrometry (LC–MS) Analysis
3. Results and Discussion
3.1. Optical Characteristics of the AgNP–CNS Nanocomposite, AgNPs, and CNSs
3.2. Shape and Chemical Composition of the AgNPs, CNSs, and AgNP–CNS Nanocomposite
3.3. Thermal Properties of the AgNP–CNS Nanocomposite, AgNPs, and CNSs
3.4. Photocatalytic Performance of the AgNP–CNS Nanocomposite, AgNPs, and CNSs
3.5. Effect of pH and Point of Zero Charge (PZC)
3.6. Effect of MB and AgNP–CNS Loading
3.7. LC–MS Analysis of the AgNP–CNS Nanocomposite
3.8. Reusability and Stability of the AgNP–CNS Nanocomposite
3.9. Scavenger Experiments
3.10. Proposed Mechanism of the Photocatalysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy. Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Sim, L.C.; Leong, K.H.; Ibrahim, S.; Saravanan, P. Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A 2014, 2, 5315–5322. [Google Scholar] [CrossRef]
- Lin, C.; Song, Y.; Cao, L.; Chen, S. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale 2013, 5, 4986–4992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; He, Y. Novel AgCl/Ag/AgFeO2 Z-scheme heterostructure photocatalyst with enhanced photocatalytic and stability under visible light. Appl. Surf. Sci. 2017, 420, 911–918. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Si, Y.; Wang, P.; Yan, Q. Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator. Appl. Surf. Sci. 2019, 498, 143860. [Google Scholar] [CrossRef]
- Ran, J.; Ma, T.Y.; Gao, G.; Du, X.-W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717. [Google Scholar] [CrossRef]
- Yu, D.; Bai, J.; Liang, H.; Wang, J.; Li, C. Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO2 nanoparticles supported on carbon nanofibers. Appl. Surf. Sci. 2015, 349, 241–250. [Google Scholar] [CrossRef]
- Zhu, W.; Li, Z.; Zhou, Y.; Yan, X. Deposition of silver nanoparticles onto two dimensional BiOCl nanodiscs for enhanced visible light photocatalytic and biocidal activities. RSC Adv. 2016, 6, 64911–64920. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Duan, Y.; Luo, Q.; Wang, D. Macroporous polymer resin with conjugated side-chains: An efficient Ag nanoparticle support for preparing a photocatalyst. Catal. Sci. Technol. 2020, 10, 4191–4200. [Google Scholar] [CrossRef]
- Luo, L.; Li, Y.; Hou, J.; Yang, Y. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Appl. Surf. Sci. 2014, 319, 332–338. [Google Scholar] [CrossRef]
- Yu, C.; Wei, L.; Zhou, W.; Chen, J.; Fan, Q.; Liu, H. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction. Appl. Surf. Sci. 2014, 319, 312–318. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; Wang, Y.; Zhou, Y.; Han, Z.; Jin, X.; Chen, G. In-situ synthesis of Z-scheme Ag2CO3/Ag/AgNCO heterojunction photocatalyst with enhanced stability and photocatalytic activity. Appl. Surf. Sci. 2019, 464, 108–114. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Adv. 2014, 4, 26013–26021. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Lee, J.-H.; Ansari, M.O.; Lee, J.; Cho, M.H. Electrochemically active biofilm assisted synthesis of Ag@ CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. J. Colloid Interface Sci. 2014, 431, 255–263. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, J. Synthesis and characterization of Ag/BiVO4 composite photocatalyst. Appl. Surf. Sci. 2010, 256, 3224–3227. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Qian, H.; Wang, J.; Yan, L. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal. J. Bioresour. Bioprod. 2020, 5, 204–210. [Google Scholar] [CrossRef]
- Jian, S.; Tian, Z.; Zhang, K.; Duan, G.; Yang, W.; Jiang, S. Hydrothermal synthesis of Ce-doped ZnO heterojunction supported on carbon nanofibers with high visible light photocatalytic activity. Chem. Res. Chin. Univ. 2021, 37, 565–570. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292322. [Google Scholar] [CrossRef]
- Mahajan, M.; Singla, G.; Singh, K.; Pandey, O.P. Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst. J. Solid State Chem. 2015, 232, 108–117. [Google Scholar] [CrossRef]
- Ren, C.; Yang, B.; Wu, M.; Xu, J.; Fu, Z.; Iv, Y.; Guo, T.; Zhao, Y.; Zhu, C. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 2010, 182, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Li, J.; Xia, Z.; Ma, D.; Liu, G.; Song, N.; Xiang, D.; Xin, Y.; Zhang, G.; Chen, Q. Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO2 nanobelt photocatalyst for eliminating norfloxacin from water. J. Colloid Interface Sci. 2021, 586, 243–256. [Google Scholar] [CrossRef]
- Sescu, A.M.; Harja, M.; Favier, L.; Berthou, L.O.; de Castro, C.G.; Pui, A.; Lutic, D. Zn/La mixed oxides prepared by coprecipitation: Synthesis, characterization and photocatalytic studies. Materials 2020, 13, 4916. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Dixit, S.; Shukla, A.K. Self-assembly of the Ag deposited ZnO/carbon nanospheres: A resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water. Adv. Powder Technol. 2018, 29, 3483–3492. [Google Scholar] [CrossRef]
- Manoj, B. A comprehensive analysis of various structural parameters of Indian coals with the aid of advanced analytical tools. Int. J. Coal Sci. Technol. 2016, 3, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Wei, L.; Su, M.; Wang, G.; Shen, J. Template-free and one-pot synthesis of N-doped hollow carbon tube@ hierarchically porous carbon supporting homogeneous AgNP for robust oxygen reduction catalyst. Carbon 2017, 112, 27–36. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, C.; Li, X.; Zhang, P.; Sun, Y.; Su, C.; Zhang, X.; Ren, J.; Liu, Y. Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale 2012, 4, 750. [Google Scholar] [CrossRef]
- Shima, H.; Hossain, M.M.; Lee, I.; Son, S.; Hahn, J.R. Carbon-ZnO core-shell nanospheres: Facile fabrication and application in the visible-light photocatalytic decomposition of organic pollutant dyes. Mater. Chem. Phys. 2017, 185, 73–82. [Google Scholar] [CrossRef]
- Sapkota, K.P.; Lee, I.; Hanif, M.; Islam, M.; Akter, J.; Hahn, J.R. Enhanced visible-light photocatalysis of nanocomposites of copper oxide and single-walled carbon nanotubes for the degradation of methylene blue. Catalysts 2020, 10, 297. [Google Scholar] [CrossRef]
- Islam, M.A.; Sapkota, K.P.; Riaz, T.A.; Hossain, M.A.; Hanif, M.A.; Akter, J.; Hossain, M.M.; Jang, S.G.; Chae, H.J.; Hahn, J.R. Subnanometer thick carbon-layer-encapsulated silver nanoparticles selectively neutralizing human cancer cells and pathogens through controlled release of Ag+ ions. ACS Appl. Nano Mater. 2021, 4, 7295–7308. [Google Scholar] [CrossRef]
- Hossain, M.M.; Islam, M.A.; Shima, H.; Hasan, M.; Hilal, M.; Lee, M. Recrystallization techniques for the synthesis of ZnO nanorods: An in situ process for carbon doping and enhancing the dispersion concentration of ZnO nanorods. RSC Adv. 2018, 8, 16927–16936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidhu, V.; Philip, D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim. Acta A 2014, 117, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T. Degradation of dyes from aqueous solution by Fenton processes: A review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
Sample | Bandgap (eV) | Crystallite Size (nm) | Specific Surface Area (SBET, m2 g−1) | Total Pore Volume (Vpore, cm3 g−1) |
---|---|---|---|---|
AgNPs | 2.55 | 34.75 ± 1.99 | 9.10 | 0.027 |
CNSs | 2.90 | 0.72 | 8.24 | 0.020 |
AgNP–CNS | 2.52 | 25.48 ± 1.46 | 15.67 | 0.045 |
Catalyst | Preparation | Dye | Dye Conc. (mg/L) | Catalyst Dose (mg) | Time (min) | Deg. Rate (%) | Rate Const. (min−1) | Ref. |
---|---|---|---|---|---|---|---|---|
BiOCl–AgNP 1 | Solvothermal | SAM | 10 | NA | 300 | 82.4 | N/A | [12] |
Ag/ZnO 2 | Chemical | MB | 2 | NA | 60 | 49.3 | 0.0056 | [25] |
CQD/MH + H2O2 3 | Solvothermal | MB | 20 | 50 | 90 | 97.3 | N/A | [26] |
Ag–SnO2 4 | EAB | MB/MO | 10 | 20 | 300/360 | ~99 | 0.0048 | [20] |
Ag@CeO2 5 | EAB | MB | 10 | 2 | 360 | ~85 | N/A | [21] |
GO–Ag–TNTs 6 | Impregnation | MB | 5 | NA | 400 | 68.3 | N/A | [10] |
GO/ZnO 7 | Hydrothermal | MB | 20 | 50 | 450 | 90 | N/A | [1] |
CNS 8 | Solvothermal | MO | N/A | 50 | 300 | 65 | N/A | [2] |
C-TiO2 9 | Sol–gel | MO | 2 | N/A | 240 | 91.89 | N/A | [3] |
Ag/BiVO4 10 | Hydrothermal | MO | 10 | 200 | 240 | 75 | N/A | [22] |
AgI/Ag2CO3 11 | Coprecipitation | MO | 20 | 50 | 300 | 92 | 0.009 | [4] |
Ag-AgI-TiO2/CNFs 12 | Calcination | MO | 10 | 100 | 180 | 97 | 0.0015 | [5] |
β-Ag2MoO4/BiVO4 13 | Precipitation | RhB | 10 | 50 | 80 | 92.6 | N/A | [6] |
Ag2CO3/Ag/AgNCO 14 | Ion exchange | RhB | 10 | 50 | 80 | 95 | 0.0354 | [7] |
Bi-spherical AgNP–CNS | Thermolysis | MB | 17.5 | 20 | 60 | 95 | 0.056 | Our work |
RhB | 17.5 | 20 | 60 | 83 | 0.029 | |||
MO | 17.5 | 20 | 60 | 76 | 0.028 |
Catalyst | Dye | Time (min) | Deg. Rate at First Recycle (%) | Deg. Rate after Fifth Recycle (%) | Reduction Deg. Rate (%) | Ref. |
---|---|---|---|---|---|---|
Ag@macroporous-resin | 4-Nitrophenol | 80 | 99 | 95 | 4 | [9] |
ZnO-CNTF | MB | 75 | 97.6 | 93.5 | 4.1 | [1] |
GO–Ag–TNTs | MB | 400 | ~72.5 | ~46 | 26.5 | [2] |
BiOCl–AgNP | SAM | 300 | 82.4 | 69 | 13.4 | [8] |
AgCl/Ag/AgFeO2 | RhB | 60 | 97.47 | 76.3 (3 cycles) | 21.17 | [4] |
β-Ag2MoO4/BiVO4 | RhB | 80 | 92.6 | 75.0 (4 cycles) | 17.6 | [5] |
Ag-AgI-TiO2/CNFs | MO | 180 | 97 | Around 50 | 47 | [7] |
Ag3PO4 | MO | 50 | 79.4 | 26.8 (3 cycles) | 52.6 | [10] |
AgI/Ag2CO3 | MO | 300 | 92 | 30 | 62 | [9] |
AgNP-CNS | MB | 60 | 95.22 | 93.21 | 2.01 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Akter, J.; Lee, I.; Shrestha, S.; Pandey, A.; Gyawali, N.; Hossain, M.M.; Hanif, M.A.; Jang, S.G.; Hahn, J.R. Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. Nanomaterials 2022, 12, 3959. https://doi.org/10.3390/nano12223959
Islam MA, Akter J, Lee I, Shrestha S, Pandey A, Gyawali N, Hossain MM, Hanif MA, Jang SG, Hahn JR. Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. Nanomaterials. 2022; 12(22):3959. https://doi.org/10.3390/nano12223959
Chicago/Turabian StyleIslam, Md. Akherul, Jeasmin Akter, Insup Lee, Santu Shrestha, Anil Pandey, Narayan Gyawali, Md. Monir Hossain, Md. Abu Hanif, Se Gyu Jang, and Jae Ryang Hahn. 2022. "Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light" Nanomaterials 12, no. 22: 3959. https://doi.org/10.3390/nano12223959
APA StyleIslam, M. A., Akter, J., Lee, I., Shrestha, S., Pandey, A., Gyawali, N., Hossain, M. M., Hanif, M. A., Jang, S. G., & Hahn, J. R. (2022). Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. Nanomaterials, 12(22), 3959. https://doi.org/10.3390/nano12223959