Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = meso-combustor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 23546 KB  
Article
Optimizing Asymmetric Meso-Scale Vortex Combustors for Swirl-Induced Flame Stabilization: A Computational Analysis
by Azri Hariz Roslan, Mohd Al-Hafiz Mohd Nawi, Chu Yee Khor, Mohd Sharizan Md Sarip, Muhammad Lutfi Abd Latif, Mohammad Azrul Rizal Alias, Hazrin Jahidi Jaafar, Mohd Fathurrahman Kamarudin, Abdul Syafiq Abdull Sukor and Mohd Aminudin Jamlos
Eng 2025, 6(11), 293; https://doi.org/10.3390/eng6110293 - 1 Nov 2025
Viewed by 2278
Abstract
Combustion at the meso-scale is constrained by large surface-to-volume ratios that shorten residence time and intensify wall heat loss. We perform steady, three-dimensional CFD of two asymmetric vortex combustors: Model A (compact) and Model B (larger-volume) over inlet-air mass flow rates m˙ [...] Read more.
Combustion at the meso-scale is constrained by large surface-to-volume ratios that shorten residence time and intensify wall heat loss. We perform steady, three-dimensional CFD of two asymmetric vortex combustors: Model A (compact) and Model B (larger-volume) over inlet-air mass flow rates m˙ (40–170 mg s−1) and equivalence ratios ϕ (0.7–1.5), using an Eddy-Dissipation closure for turbulence–chemistry interactions. A six-mesh independence study (the best mesh is 113,133 nodes) yields ≤ 1.5% variation in core fields and ~2.6% absolute temperature error at a benchmark station. Results show that swirl-induced CRZ governs mixing and flame anchoring: Model A develops higher swirl envelopes (S up to ~6.5) and strong near-inlet heat-flux density but becomes breakdown-prone at the highest loading; Model B maintains a centered, coherent Central Recirculation Zone (CRZ) with lower uθ (~3.2 m s−1) and S ≈ 1.2–1.6, distributing heat more uniformly downstream. Peak flame temperatures (~2100–2140 K) occur at ϕ ≈ 1.0–1.3, remaining sub-adiabatic due to wall heat loss and dilution. Within this regime and m˙ ≈ 85–130 mg s−1, the system balances intensity against flow coherence, defining a stable, thermally efficient operating window for portable micro-power and thermoelectric applications. Full article
Show Figures

Figure 1

17 pages, 3877 KB  
Article
Numerical Elucidation on the Dynamic Behaviour of Non-Premixed Flame in Meso-Scale Combustors
by Muhammad Lutfi Abd Latif, Mohd Al-Hafiz Mohd Nawi, Mohammad Azrul Rizal Alias, Chu Yee Khor, Mohd Fathurrahman Kamarudin, Azri Hariz Roslan and Hazrin Jahidi Jaafar
Modelling 2025, 6(3), 94; https://doi.org/10.3390/modelling6030094 - 1 Sep 2025
Cited by 1 | Viewed by 743
Abstract
Meso-scale combustors face persistent challenges in sustaining stable combustion and efficient heat transfer due to high surface-to-volume ratios and attendant heat losses. In contrast, larger outlet diameters exhibit weaker recirculation and more diffused temperature zones, resulting in reduced combustion efficiency and thermal confinement. [...] Read more.
Meso-scale combustors face persistent challenges in sustaining stable combustion and efficient heat transfer due to high surface-to-volume ratios and attendant heat losses. In contrast, larger outlet diameters exhibit weaker recirculation and more diffused temperature zones, resulting in reduced combustion efficiency and thermal confinement. The behavior of non-premixed flames in meso-scale combustor has been investigated through a comprehensive numerical study, utilizing computational fluid dynamics (CFD) under stoichiometric natural gas (methane)–air conditions; three outlet configurations (6 mm, 8 mm, and 10 mm) were analysed to evaluate their impact on temperature behaviour, vortex flow, swirl intensity, and central recirculation zone (CRZ) formation. Among the tested geometries, the 6 mm outlet produced the most robust central recirculation, intensifying reactant entrainment and mixing and yielding a sharply localised high-temperature core approaching 1880 K. The study highlights the critical role of geometric parameters in governing heat release distribution, with the 6 mm configuration achieving the highest exhaust temperature (920 K) and peak wall temperature (1020 K), making it particularly suitable for thermoelectric generator (TEG) integration. These findings underscore the interplay between combustor geometry, flow dynamics, and heat transfer mechanisms in meso-scale systems, providing valuable insights for optimizing portable power generation devices. Full article
Show Figures

Figure 1

12 pages, 4576 KB  
Article
The Combustion of Lean Ethanol–Air Mixtures in a Swiss-Roll Combustor
by Dmitry Podlesniy, Eugene Polianczyk, Maxim Tsvetkov, Leonid Yanovsky and Andrey Zaichenko
Processes 2024, 12(12), 2690; https://doi.org/10.3390/pr12122690 - 28 Nov 2024
Viewed by 1291
Abstract
A novel meso-scale 3-channel 5-turn Swiss-roll type combustor was designed and tested. The non-catalytic combustion of lean ethanol–air mixtures was experimentally investigated in relation to the oxygen excess ratio (α), which varied from 1.5 to 7. Depending on the control parameters used, two [...] Read more.
A novel meso-scale 3-channel 5-turn Swiss-roll type combustor was designed and tested. The non-catalytic combustion of lean ethanol–air mixtures was experimentally investigated in relation to the oxygen excess ratio (α), which varied from 1.5 to 7. Depending on the control parameters used, two distinct regimes of combustion were experimentally observed: one with a combustion zone within the central chamber and another with a combustion zone in the inflow channel. The combustion temperature was virtually independent of stoichiometry. For richer mixtures and lower flow rates, the combustion zone is established in the inflow channel, thus limiting the combustion temperature. A qualitative model was proposed for the process and solved analytically; it described how the combustion regime self-adjusted, with the reaction zone moving into the inflow channel from the central chamber. This study confirmed the possibility of the sustainable combustion of ultra-lean fuel mixtures in a Swiss-roll combustor. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

41 pages, 8042 KB  
Review
Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review
by Vinay Sankar, Sreejith Sudarsanan, Sudipto Mukhopadhyay, Prabhu Selvaraj, Aravind Balakrishnan and Ratna Kishore Velamati
Energies 2023, 16(10), 4035; https://doi.org/10.3390/en16104035 - 11 May 2023
Cited by 10 | Viewed by 2916
Abstract
As the demand for powerful, light energy sources continues to grow, traditional electrochemical batteries are no longer sufficient and combustion-based power generation devices have become an attractive alternative due to their high energy density, compact size, fast recharging time and long service life. [...] Read more.
As the demand for powerful, light energy sources continues to grow, traditional electrochemical batteries are no longer sufficient and combustion-based power generation devices have become an attractive alternative due to their high energy density, compact size, fast recharging time and long service life. While most research on miniature-scale combustors has focused on gaseous fuels, the use of commonly available liquid fuels has the potential to be highly portable and economical. However, the complexity of droplet atomization, evaporation, mixing and burning in a limited volume and short residence time has presented significant challenges for researchers. This review focuses on various methodologies proposed by researchers (like flow burring injector, fuel film injection, injecting into porous media, electrospray and some self-aspirating designs) to overcome these challenges, the combustion behaviour and different instabilities associated with liquid fuels at small scales. The current review intends to present a clear direction to channel the efforts made by researchers to overcome the difficulties associated with liquid fuel combustion at small scales for power generation applications. Additionally, this review aims to give an overview of power systems at the micro and meso scales that operate using liquid fuels. The methodologies introduced like electrospray requires external power, which again makes the system complex. Towards the development of standalone type power generators, the self-aspirating design which makes use of hydrostatic pressure, fuel film injection or taking advantage of exhaust gas enthalpy to preheat and evaporate the liquid fuel are the promising methodologies. Full article
Show Figures

Figure 1

44 pages, 14103 KB  
Review
A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges
by Gurunadh Velidi and Chun Sang Yoo
Energies 2023, 16(9), 3968; https://doi.org/10.3390/en16093968 - 8 May 2023
Cited by 14 | Viewed by 5297
Abstract
Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating [...] Read more.
Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating engines, turbine engines, and Wankel engines. Recent advancements in engine design, such as the use of ceramic materials and microscale combustion, have the potential to enhance engine performance and durability. This article explores the potential use of combustion-based engines, particularly microjet engines, as an alternative to electrically powered unmanned aerial vehicle (UAV) systems. It provides a review of recent developments in UAV engines and micro combustors, as well as studies on flame stabilization techniques aimed at enhancing engine performance. Heat recirculation methods have been proposed to minimize heat loss to the combustor walls. It has been demonstrated that employing both bluff-body stabilization and heat recirculation methods in narrow channels can significantly improve combustion efficiency. The combination of flame stabilization and heat recirculation methods has been observed to significantly improve the performance of micro and mesoscale combustors. As a result, these technologies hold great promise for enhancing the performance of UAV engines. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

18 pages, 4643 KB  
Article
A Development of Meso-Scale Vortex Combustion for a Micro Power Generator Based on a Thermoelectric Generator
by Herman Saputro, Laila Fitriana, Aris Purwanto, Fudhail A Munir and Wei-Cheng Wang
Fluids 2022, 7(12), 386; https://doi.org/10.3390/fluids7120386 - 14 Dec 2022
Cited by 5 | Viewed by 3394
Abstract
The development of portable electronic devices has increased; this development needs to be accompanied by the development of reliable power sources. In this study, two different vortex combustor sets were used in conjunction with a thermoelectric generator to determine their energy output. This [...] Read more.
The development of portable electronic devices has increased; this development needs to be accompanied by the development of reliable power sources. In this study, two different vortex combustor sets were used in conjunction with a thermoelectric generator to determine their energy output. This study focuses on the development of a meso-scale vortex combustor to obtain the electric energy for a micro power generator; different materials and different vortex designs are analyzed. Numerical and experimental methods have been used to analyze the development of the vortex combustor. A horizontal vortex combustor made from stainless steel had higher wall temperature and voltage output measurements. To analyze the energy output for the micro power generator, a single TEG and double TEG are analyzed; according to the results, a double TEG with a water-cooled system has the highest electric power compared with the other results. Full article
Show Figures

Figure 1

27 pages, 2752 KB  
Review
Multiscale Eulerian CFD of Chemical Processes: A Review
by Son Ich Ngo and Young-Il Lim
ChemEngineering 2020, 4(2), 23; https://doi.org/10.3390/chemengineering4020023 - 31 Mar 2020
Cited by 55 | Viewed by 10853
Abstract
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are [...] Read more.
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches, the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing and turbulence equations, is described for single and multiple phases. The Reynolds-averaged Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented, which is commonly used for industrial flow conditions. Following the general CFD theories based on the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains is introduced. Next, the applications of single-scale CFD are presented for chemical and biological processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed. The need for experimental validation of CFD results is also presented to lay the groundwork for digital twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) of Chemical Processes)
Show Figures

Figure 1

16 pages, 4871 KB  
Article
Experimental Investigation into the Effects of Thermal Recuperation on the Combustion Characteristics of a Non-Premixed Meso-Scale Vortex Combustor
by Seyed Ehsan Hosseini, Evan Owens, John Krohn and James Leylek
Energies 2018, 11(12), 3390; https://doi.org/10.3390/en11123390 - 4 Dec 2018
Cited by 17 | Viewed by 3171
Abstract
In small-scale combustors, the ratio of area to the combustor volume increases and hence heat loss from the combustor’s wall is significantly enhanced and flame quenching occurs. To solve this problem, non-premixed vortex flow is employed to stabilize flames in a meso-scale combustion [...] Read more.
In small-scale combustors, the ratio of area to the combustor volume increases and hence heat loss from the combustor’s wall is significantly enhanced and flame quenching occurs. To solve this problem, non-premixed vortex flow is employed to stabilize flames in a meso-scale combustion chamber to generate small-scale power or thrust for propulsion systems. In this experimental investigation, the effects of thermal recuperation on the characteristics of asymmetric non-premixed vortex combustion are studied. The exhaust gases temperature, emissions and the combustor wall temperature are measured to evaluate thermal and emitter efficiencies. The results illustrate that in both combustors (with/without thermal recuperator), by increasing the combustion air mass flowrate, the wall temperature increases while the wall temperature of combustor with thermal recuperator is higher. The emitter efficiency calculated based on the combustor wall temperature is significantly increased by using thermal recuperator. Thermal efficiency of the combustion system increases up to 10% when thermal recuperator is employed especially in moderate Reynolds numbers (combustion air flow rate is 120 mg/s). Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 6526 KB  
Article
Energy Converter with Inside Two, Three, and Five Connected H2/Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations
by Angelo Minotti
Energies 2016, 9(6), 461; https://doi.org/10.3390/en9060461 - 17 Jun 2016
Cited by 5 | Viewed by 4031
Abstract
This work reports the performance of an energy converter characterized by an emitting parallelepiped element with inside two, three, or five swirling connected combustion chambers. In particular, the idea is to adopt the heat released by H2/air combustion, occurring in the [...] Read more.
This work reports the performance of an energy converter characterized by an emitting parallelepiped element with inside two, three, or five swirling connected combustion chambers. In particular, the idea is to adopt the heat released by H2/air combustion, occurring in the connected swirling chambers, to heat up the emitting surfaces of the thermally-conductive emitting parallelepiped brick. The final goal consists in obtaining the highest emitting surface temperature and the highest power delivered to the ambient environment, with the simultaneous fulfillment of four design constraints: dimension of the emitting surface fixed to 30 × 30 mm2, solar mode thermal efficiency greater than 20%, emitting surface peak temperature T > 1000 K, and its relative ∆T < 100 K in the combustion mode operation. The connected swirling meso-combustion chambers, inside the converter, differ only in their diameters. Combustion simulations are carried out adopting 500 W of injected chemical power, stoichiometric conditions, and detailed chemistry. All provide high chemical efficiency, η > 99.9%, and high peak temperature, but the emitting surface ∆T is strongly sensitive to the geometrical configuration. The present work is related to the “EU-FP7-HRC-Power” project, aiming at developing micro-meso hybrid sources of power, compatible with a thermal/electrical conversion by thermo-photovoltaic cells. Full article
(This article belongs to the Special Issue Micro Combustor)
Show Figures

Figure 1

16 pages, 2079 KB  
Article
Swirling Combustor Energy Converter: H2/Air Simulations of Separated Chambers
by Angelo Minotti and Paolo Teofilatto
Energies 2015, 8(9), 9930-9945; https://doi.org/10.3390/en8099930 - 14 Sep 2015
Cited by 7 | Viewed by 4243
Abstract
This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in [...] Read more.
This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios (Z/D = 3, 5 and 11) and equivalence ratios (0.4, 0.7 and 1); all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame. Full article
Show Figures

Graphical abstract

17 pages, 373 KB  
Article
LES of a Meso Combustion Chamber with a Detailed Chemistry Model: Comparison between the Flamelet and EDC Models
by Angelo Minotti and Enrico Sciubba
Energies 2010, 3(12), 1943-1959; https://doi.org/10.3390/en3121943 - 10 Dec 2010
Cited by 17 | Viewed by 8432
Abstract
The goal of this paper is to contribute to the design of high-performance mesocombustors, a field currently under rapid development, in particular for propulsion, e.g., for UAVs, and micro/meso-electrical power generators. This study is focused on a cylindrical combustor of 29 cm3 [...] Read more.
The goal of this paper is to contribute to the design of high-performance mesocombustors, a field currently under rapid development, in particular for propulsion, e.g., for UAVs, and micro/meso-electrical power generators. This study is focused on a cylindrical combustor of 29 cm3, fuelled by methane and air, which provides 2 kW of thermal power. The device was entirely designed and built at the Sapienza University of Rome and coupled with an ultra-micro turbine. Two 3D LES simulations with detailed chemistry are presented. They differ only for the combustion models, so that a model comparison can be carried out. The calculated maximum temperature inside the chamber, the gas exhaust temperature and the combustion efficiency are compared and discussed. The results, reported at two different physical times, show the effects of the different combustion models, which predict different temperature and species concentration maps, but similar values for the combustion efficiency. Thermal, chemical and kinematic maps show that the Eddy Dissipation Concept allows for a more accurate estimatation of the performance parameters for application to first-order design procedures. Full article
(This article belongs to the Special Issue Micro-Combustors)
Show Figures

Figure 1

Back to TopTop