Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = membrane-type acoustic metamaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3341 KiB  
Article
Digitally Controlled Piezoelectric Metamaterial for Low-Frequency and High-Efficiency Sound Absorption
by Xiaodong Zhang, Jing Nie, Jinhong He, Fengbin Lin and Yang Liu
Materials 2025, 18(9), 2102; https://doi.org/10.3390/ma18092102 - 3 May 2025
Cited by 1 | Viewed by 598
Abstract
This study proposes a membrane-type metamaterial with digitally controlled piezoelectric actuation for low-frequency sound absorption applications. The hybrid structure integrates an aluminum membrane functionally bonded with programmable piezoelectric patches (PZTs) and a sealed air cavity. Two innovative control strategies—Resistance Enhancement and Resonance Enhancement—dynamically [...] Read more.
This study proposes a membrane-type metamaterial with digitally controlled piezoelectric actuation for low-frequency sound absorption applications. The hybrid structure integrates an aluminum membrane functionally bonded with programmable piezoelectric patches (PZTs) and a sealed air cavity. Two innovative control strategies—Resistance Enhancement and Resonance Enhancement—dynamically adjust circuit impedance to maximize electromechanical energy conversion efficiency, thereby optimizing absorption at targeted frequencies. These strategies are implemented via a real-time digital feedback system. A coupled piezoelectric-structural-acoustic model is established to characterize the system’s transfer function, with validation through both finite element simulations and impedance tube experiments. Numerical and experimental results demonstrate nearly complete absorption around the resonant frequency, and the bandwidth can be further broadened through multi-resonance superposition. Theoretical analysis confirms that the active control strategies simultaneously modulate the acoustic impedance components (resistance and reactance), thereby optimizing electromechanical energy conversion efficiency. This work establishes a novel active-control methodology for low-frequency and high-efficiency noise mitigation. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

13 pages, 5193 KiB  
Article
Deep-Subwavelength Composite Metamaterial Unit for Concurrent Ventilation and Broadband Acoustic Insulation
by Xiaodong Zhang, Jinhong He, Jing Nie, Yang Liu, Huiyong Yu, Qi Chen and Jianxing Yang
Materials 2025, 18(9), 2029; https://doi.org/10.3390/ma18092029 - 29 Apr 2025
Viewed by 570
Abstract
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents [...] Read more.
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents a ventilated composite metamaterial unit (VCMU) co-integrating optimized labyrinth channels and the Helmholtz resonators within a single-plane architecture. This design achieves exceptional ventilation efficiency through a central flow channel while maintaining sub-λ/30 thickness (λ/31 at 860 Hz). Coupled transfer matrix modeling and finite-element simulations reveal that Fano–Helmholtz resonance mechanisms synergistically generate broadband transmission loss (STL) spanning 860–1634 Hz, with six STL peaks in the 860 and 1634 Hz bands (mean 18.4 dB). Experimental validation via impedance tube testing confirmed excellent agreement with theoretical and simulation results. The geometric scalability allows customizable acoustic bandgaps through parametric control. This work provides a promising solution for integrated ventilation and noise reduction, with potential applications in building ventilation systems, industrial pipelines, and other noise-sensitive environments. Full article
Show Figures

Graphical abstract

12 pages, 4404 KiB  
Article
Development and Characterization of a Flexible Soundproofing Metapanel for Noise Reduction
by Dongil Jang, Sanha Kang, Jinyoung Kim, Hyeonghoon Kim, Sinwoo Lee and Bongjoong Kim
Appl. Sci. 2024, 14(19), 8833; https://doi.org/10.3390/app14198833 - 1 Oct 2024
Viewed by 1640
Abstract
This study addresses the critical challenge of developing lightweight, flexible soundproofing materials for contemporary applications by introducing an innovative Flexible Soundproofing Metapanel (FSM). The FSM represents a significant advancement in acoustic metamaterial design, engineered to attenuate noise within the 2000–5000 Hz range—a frequency [...] Read more.
This study addresses the critical challenge of developing lightweight, flexible soundproofing materials for contemporary applications by introducing an innovative Flexible Soundproofing Metapanel (FSM). The FSM represents a significant advancement in acoustic metamaterial design, engineered to attenuate noise within the 2000–5000 Hz range—a frequency band associated with significant human auditory discomfort. The FSM’s novel structure, comprising a box-shaped frame and vibrating membrane, was optimized through rigorous finite element analysis and subsequently validated via comprehensive open field tests for enclosure-type soundproofing. Our results demonstrate that the FSM, featuring an optimized configuration of urethane rubber (Young’s modulus 6.5 MPa) and precisely tuned unit cell dimensions, significantly outperforms conventional mass-law-based materials in sound insulation efficacy across target frequencies. The FSM exhibited superior soundproofing performance across a broad spectrum of frequency bands, with particularly remarkable results in the crucial 2000–5000 Hz range. Its inherent flexibility enables applications to diverse surface geometries, substantially enhancing its practical utility. This research contributes substantially to the rapidly evolving field of acoustic metamaterials, offering a promising solution for noise control in applications where weight and spatial constraints are critical factors. Full article
Show Figures

Figure 1

14 pages, 1989 KiB  
Article
Acoustic Properties of Surfaces Covered by Multipole Resonators
by Nikolay Kanev
Acoustics 2024, 6(2), 509-522; https://doi.org/10.3390/acoustics6020027 - 25 May 2024
Viewed by 1766
Abstract
Different types of resonators are used to create acoustic metamaterials and metasurfaces. Recent studies focused on the use of multiple resonators of the dipole, quadrupole, octupole, and even hexadecapole types. This paper considers the theory of an acoustic metasurface, which is a flat [...] Read more.
Different types of resonators are used to create acoustic metamaterials and metasurfaces. Recent studies focused on the use of multiple resonators of the dipole, quadrupole, octupole, and even hexadecapole types. This paper considers the theory of an acoustic metasurface, which is a flat surface with a periodic arrangement of multipole resonators. The sound field reflected by the metasurface is determined. If the distance between the resonators is less than half the wavelength of the incident plane wave, the far field can be described by a reflection coefficient that depends on the angle of incidence. This allows us to characterize the acoustic properties of the metasurface by a homogenized boundary condition, which is a high-order tangential impedance boundary condition. The tangential impedance depending on the multipole order of the resonators is introduced. In addition, we analyze the sound absorption properties of these metasurfaces, which are a critical factor in determining their performance. The paper presents a theoretical model for the subwavelength case that accounts for the multipole orders of resonators and their impact on sound absorption. The maximum absorption coefficient for a diffuse sound field, as well as the optimal value for the homogenized impedance, are calculated for arbitrary multipole orders. The examples of the multipole resonators, which can be made from a set of Helmholtz resonators or membrane resonators, are discussed as well. Full article
(This article belongs to the Special Issue Resonators in Acoustics (2nd Edition))
Show Figures

Figure 1

33 pages, 9289 KiB  
Review
Research Progress on Thin-Walled Sound Insulation Metamaterial Structures
by Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li
Acoustics 2024, 6(2), 298-330; https://doi.org/10.3390/acoustics6020016 - 26 Mar 2024
Cited by 7 | Viewed by 5729
Abstract
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation performance of thin-walled structures commonly used in engineering applications with restricted space, for example, [...] Read more.
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation performance of thin-walled structures commonly used in engineering applications with restricted space, for example, vehicles’ body structures, and the latest studies on the sound insulation of thin-walled metamaterial structures, are comprehensively discussed in this paper. First, the definition and math law of sound insulation are introduced, alongside the primary methods of sound insulation testing of specimens. Secondly, the main sound insulation acoustic metamaterial structures are summarized and classified, including membrane-type, plate-type, and smart-material-type sound insulation metamaterials, boundaries, and temperature effects, as well as the sound insulation research on composite structures combined with metamaterial structures. Finally, the research status, challenges, and trends of sound insulation metamaterial structures are summarized. It was found that combining the advantages of metamaterial and various composite panel structures with optimization methods considering lightweight and proper wide frequency band single evaluator has the potential to improve the sound insulation performance of composite metamaterials in the full frequency range. Relative review results provide a comprehensive reference for the sound insulation metamaterial design and application. Full article
(This article belongs to the Special Issue Acoustic Materials)
Show Figures

Figure 1

15 pages, 6422 KiB  
Article
Acoustic Insulation Characteristics and Optimal Design of Membrane-Type Metamaterials Loaded with Asymmetric Mass Blocks
by Renjie Jiang, Geman Shi, Chengmao Huang, Weiguang Zheng and Shande Li
Materials 2023, 16(3), 1308; https://doi.org/10.3390/ma16031308 - 3 Feb 2023
Cited by 15 | Viewed by 3396
Abstract
Membrane-type acoustic metamaterials (MAMs) are the focus of the current research due to their lightweight, small size, and good low-frequency sound insulation performance. However, there exists difficulties for extensive application because of the narrow sound insulation band. In order to achieve broadband sound [...] Read more.
Membrane-type acoustic metamaterials (MAMs) are the focus of the current research due to their lightweight, small size, and good low-frequency sound insulation performance. However, there exists difficulties for extensive application because of the narrow sound insulation band. In order to achieve broadband sound isolation under the premise of lightweight, a novel MAM with asymmetric rings is firstly proposed in this paper. The sound transmission loss (STL) of this MAM is calculated by an analytical method and is verified by the finite element model. The different properties of the membrane when it is loaded with one, two, or four mass blocks are analyzed. The comparison with the traditional MAM proves the superior performance of this novel MAM. Moreover, by discussing the influence of the eccentricity and distribution position of the masses on the results, the tunability of the sound insulation performance of this MAM is proven. Finally, the Isight platform is used to optimize the MAM to further improve the broadband sound insulation performance: the average STL of the MAM is improved by 15.7%, the bandwidth above 30 dB is improved by 11.5%, and the mass density is reduced by 30.01%. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 3291 KiB  
Article
Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers
by Giuseppe Ciaburro, Rosaria Parente, Gino Iannace and Virginia Puyana-Romero
Sustainability 2022, 14(7), 4218; https://doi.org/10.3390/su14074218 - 1 Apr 2022
Cited by 27 | Viewed by 3822
Abstract
Waste management represents a critical issue that industrialized countries must necessarily deal with. Sustainable architecture involves the reuse of materials with the aim of significantly reducing the amount of waste produced. In this study, a new layered membrane metamaterial was developed based on [...] Read more.
Waste management represents a critical issue that industrialized countries must necessarily deal with. Sustainable architecture involves the reuse of materials with the aim of significantly reducing the amount of waste produced. In this study, a new layered membrane metamaterial was developed based on three layers of a reused PVC membrane and reused metal washers attached. The membranes were fixed to a rigid support, leaving a cavity between the stacked layers. The samples were used to measure the sound absorption coefficient with an impedance tube. Different configurations were analyzed, changing the number of masses attached to each layer and the geometry of their position. These measurements were subsequently used to train a model based on artificial neural networks for the prediction of the sound absorption coefficient. This model was then used to identify the metamaterial configuration that returns the best absorption performance. The designed metamaterial behaves like an acoustic absorber even at low frequencies. Full article
(This article belongs to the Special Issue Sustainable Materials for Thermal and Noise Insulation of Buildings)
Show Figures

Figure 1

16 pages, 16370 KiB  
Article
Acoustic Insulation Mechanism of Membrane-Type Acoustic Metamaterials Loaded with Arbitrarily Shaped Mass Blocks of Variable Surface Density
by Junyu Li, Yuanyuan Shi, Renjie Jiang, Zhifu Zhang and Qibai Huang
Materials 2022, 15(4), 1556; https://doi.org/10.3390/ma15041556 - 18 Feb 2022
Cited by 21 | Viewed by 3386
Abstract
Membrane-type acoustic metamaterials (MAMs) have recently received widespread attention due to their good low-frequency sound-transmission-loss (STL) performance. A fast prediction method for the STL of rectangular membranes loaded with masses of arbitrary shapes and surface density values is proposed as a semi-analytical model [...] Read more.
Membrane-type acoustic metamaterials (MAMs) have recently received widespread attention due to their good low-frequency sound-transmission-loss (STL) performance. A fast prediction method for the STL of rectangular membranes loaded with masses of arbitrary shapes and surface density values is proposed as a semi-analytical model for calculating the STL of membrane-type acoustic metamaterials. Through conformal mapping theory, the mass blocks of arbitrary shapes were transformed into regular shapes, which simplified the calculation model of acoustic propagation loss prediction, and the prediction results were verified by finite element simulations. The results show that the change in mass surface density was closely related to the size and frequency distribution of STL. The influence of the mass center on the STL and characteristic frequency of the film metamaterial is discussed. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

17 pages, 54784 KiB  
Article
Spider Web-Inspired Lightweight Membrane-Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation
by Heyuan Huang, Ertai Cao, Meiying Zhao, Sagr Alamri and Bing Li
Polymers 2021, 13(7), 1146; https://doi.org/10.3390/polym13071146 - 2 Apr 2021
Cited by 44 | Viewed by 5390
Abstract
Membrane-type acoustic metamaterial (MAM) has exhibited superior sound isolation properties, as well as thin and light characteristics. However, the anti-resonance modes of traditional MAMs are generated intermittently in a wide frequency range causing discontinuities in the anti-resonance modes. Achieving broadband low-frequency sound attenuation [...] Read more.
Membrane-type acoustic metamaterial (MAM) has exhibited superior sound isolation properties, as well as thin and light characteristics. However, the anti-resonance modes of traditional MAMs are generated intermittently in a wide frequency range causing discontinuities in the anti-resonance modes. Achieving broadband low-frequency sound attenuation with lightweight MAM design is still a pivotal research aspect. Here, we present a strategy to realize wide sound-attenuation bands in low frequency range by introducing the design concept of bionic configuration philosophy into the MAM structures. Built by a polymeric membrane and a set of resonators, two kinds of MAM models are proposed based on the insight of a spider web topology. The sound attenuation performance and physical mechanisms are numerically and experimentally investigated. Multi-state anti-resonance modes, induced by the coupling of the bio-inspired arrangement and the host polymer film, are systematically explored. Significant sound attenuation is numerically and experimentally observed in both the lightweight bio-inspired designs. Remarkably, compared with a traditional MAM configuration, a prominent enhancement in both attenuation bandwidth and weight-reduction performance is verified. In particular, the bio-inspired MAM Model I exhibits a similar isolation performance as the reference model, but the weight is reduced by nearly half. The bio-inspired Model II broadens the sound attenuation bandwidth greatly; meanwhile, it retains a lighter weight design. The proposed bio-inspired strategies provide potential ways for designing sound isolation devices with both high functional and lightweight performance. Full article
(This article belongs to the Special Issue Polymer and Polymer Composites, Thermal and Acoustic Applications)
Show Figures

Graphical abstract

15 pages, 3312 KiB  
Article
Plate-Type Acoustic Metamaterials: Experimental Evaluation of a Modular Large-Scale Design for Low-Frequency Noise Control
by Linus Yinn Leng Ang, Yong Khiang Koh and Heow Pueh Lee
Acoustics 2019, 1(2), 354-368; https://doi.org/10.3390/acoustics1020019 - 1 Apr 2019
Cited by 10 | Viewed by 7342
Abstract
For industrial applications, the scalability of a finalised design is an important factor to consider. The scaling process of typical membrane-type acoustic metamaterials may pose manufacturing challenges such as stress uniformity of the membrane and spatial consistency of the platelet. These challenges could [...] Read more.
For industrial applications, the scalability of a finalised design is an important factor to consider. The scaling process of typical membrane-type acoustic metamaterials may pose manufacturing challenges such as stress uniformity of the membrane and spatial consistency of the platelet. These challenges could be addressed by plate-type acoustic metamaterials with an internal tonraum resonator. By adopting the concept of modularity in a large-scale design (or meta-panel), the acoustical performance of different specimen configurations could be scaled and modularly combined. This study justifies the viability of two meta-panel configurations for low-frequency (80–500 Hz) noise control. The meta-panels were shown to be superior to two commercially available noise barriers at 80–500 Hz. This superiority was substantiated when the sound transmission class (STC) and the outdoor-indoor transmission class (OITC) were compared. The meta-panels were also shown to provide an average noise reduction of 22.7–27.4 dB at 80–400 Hz when evaluated in different noise environments—traffic noise, aircraft flyby noise, and construction noise. Consequently, the meta-panel may be further developed and optimised to obtain a design that is lightweight and yet has good acoustical performance at below 500 Hz, which is the frequency content of most problematic noises. Full article
Show Figures

Figure 1

14 pages, 522 KiB  
Article
Second-Harmonic Generation in Membrane-Type Nonlinear Acoustic Metamaterials
by Jiangyi Zhang, Vicente Romero-García, Georgios Theocharis, Olivier Richoux, Vassos Achilleos and Dimitris J. Frantzeskakis
Crystals 2016, 6(8), 86; https://doi.org/10.3390/cryst6080086 - 29 Jul 2016
Cited by 16 | Viewed by 5967
Abstract
We study analytically and numerically the second-harmonic generation in a one-dimensional nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, [...] Read more.
We study analytically and numerically the second-harmonic generation in a one-dimensional nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear dispersive wave equation. By applying the perturbation method to the latter, we derive the analytical expressions for the first- and second-harmonics, which are in excellent agreement with the numerical simulations of the nonlinear dynamical lattice model. Apart from the case of dispersionless nonlinear propagation and the Fubini solution, special attention is payed to the role of dispersion. In that regard, it is found that, once dispersion comes into play, second-harmonic beatings in space due to phase-mismatch can be identified. Our results provide many opportunities for the development of new periodic acoustic structures featuring both nonlinearity and dispersion. Full article
(This article belongs to the Special Issue Phononic Crystals)
Show Figures

Graphical abstract

Back to TopTop