Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane-Washer Acoustic Metamaterial
2.2. Measurement of the Acoustic Properties of the Metamaterial
2.3. Modeling of the Acoustic Behavior of the Metamaterial Based on Artificial Neural Networks
- Artificial neural networks are quantitative models inspired by the structure and functioning of the human brain [60,61,62,63]. They are identified in non-linear regressors that express the functional relationships existing between an input vector and one or more output variables [64,65]. Specifically, each artificial neural network is composed of several elements:
- The input layer is made up of the data that the network receives and thanks to which it is activated;
- One or more intermediate units, called hidden layers, which process the inputs received thanks to the classification capacity for which the network has been trained;
- The output status, which collects the results and models them up to the presentation of the definitive solution to the problem to which the network has been submitted;
- The weights, which are the most important factors in the process of converting an input to impact the output; and
- The bias, a parameter that is used to adjust the output together with the weighted sum of the inputs to the neuron.
2.4. Metamaterial Design Optimization Using Brute-Force Search
3. Results and Discussion
3.1. Impedance Tube Measurements
3.2. Artificial Neural Network Model
- xi is the measured value.
- is the predicted value.
- N is the number of the observations.
3.3. Design Optimization Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennetts, H.; Radford, A.; Williamson, T. Understanding Sustainable Architecture; Psychology Press: Oxford, UK, 2003. [Google Scholar]
- Guy, S.; Farmer, G. Reinterpreting sustainable architecture: The place of technology. J. Arch. Educ. 2001, 54, 140–148. [Google Scholar] [CrossRef]
- Bauer, M.; Mösle, P.; Schwarz, M. Green Building: Guidebook for Sustainable Architecture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Park, J.; Tucker, R. Overcoming barriers to the reuse of construction waste material in Australia: A review of the literature. Int. J. Constr. Manag. 2017, 17, 228–237. [Google Scholar] [CrossRef]
- Grohens, Y.; Kumar, S.K.; Boudenne, A.; Weimin, Y. (Eds.) Recycling and Reuse of Materials and Their Products; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Alting, L. Life Cycle Engineering and Design. CIRP Ann. 1995, 44, 569–580. [Google Scholar] [CrossRef]
- Tingley, D.D.; Davison, B. Design for deconstruction and material reuse. Proc. Inst. Civ. Eng. Energy 2011, 164, 195–204. [Google Scholar] [CrossRef]
- Sivaloganathan, S.; Shahin, T.M.M. Design reuse: An overview. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1999, 213, 641–654. [Google Scholar] [CrossRef]
- Brilliant, R.; Kinney, D. (Eds.) Reuse Value: Spolia and Appropriation in Art and Architecture from Constantine to Sherrie Levine; Ashgate Publishing, Ltd.: Farnham, UK, 2011. [Google Scholar]
- Iannace, G.; Berardi, U.; De Rossi, F.; Mazza, S.; Trematerra, A.; Ciaburro, G. Acoustic enhancement of a modern church. Building 2019, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Demian, P.; Fruchter, R. An ethnographic study of design knowledge reuse in the architecture, engineering, and construction industry. Res. Eng. Des. 2006, 16, 184–195. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Lombardi, I.; Trematerra, A. Acoustic Design of Ancient Buildings: The Odea of Pompeii and Posillipo. Buildings 2020, 10, 224. [Google Scholar] [CrossRef]
- Shin, J.; Song, H.; Shin, Y. Analysis on the characteristic of living noise in residential buildings. J. Korea Inst. Build. Constr. 2015, 15, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.S.; Kim, H.J.; Jeon, J.Y. Scale-model method for measuring noise reduction in residential buildings by vegetation. Build. Environ. 2015, 86, 81–88. [Google Scholar] [CrossRef]
- Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials. Annu. Rev. Mater. Sci. 2017, 47, 83–114. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Acoustic characterization of rooms using reverberation time estimation based on supervised learning algorithm. Appl. Sci. 2021, 11, 1661. [Google Scholar] [CrossRef]
- Veselago, V.; Braginsky, L.; Shklover, V.; Hafner, C. Negative refractive index materials. J. Comput. Theor. Nanosci. 2006, 3, 189–218. [Google Scholar] [CrossRef]
- Fok, L.; Ambati, M.; Zhang, X. Acoustic metamaterials. MRS Bull. 2008, 33, 931–934. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Fan, Y.; Fu, Q.; Wu, H.; Jin, Y.; Zheng, J.; Zhang, F. A review of tunable acoustic metamaterials. Appl. Sci. 2018, 8, 1480. [Google Scholar] [CrossRef] [Green Version]
- Craster, R.V.; Guenneau, S. (Eds.) Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 166. [Google Scholar]
- Tan, K.T.; Huang, H.H.; Sun, C.T. Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett. 2012, 101, 241902. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Fleury, R. Acoustic birefringence via non-Eulerian metamaterials. J. Appl. Phys. 2019, 126, 034902. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lin, W.; Gu, J. Study on one-way transmission of acoustic wave based on metasurface. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1978, p. 012025. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Metamaterials acoustic barrier. Appl. Acoust. 2021, 181, 108172. [Google Scholar] [CrossRef]
- Li, Y.; Yu, G.; Liang, B.; Zou, X.-Y.; Li, G.; Cheng, S.; Cheng, J. Three-Dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 2015, 4, 6830. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756. [Google Scholar] [CrossRef] [Green Version]
- Urbán, D.; Roozen, N.B.; Jandák, V.; Brothánek, M.; Jiříček, O. On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements. Appl. Sci. 2021, 11, 10357. [Google Scholar] [CrossRef]
- Pai, P.F.; Peng, H.; Jiang, S. Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 2014, 79, 195–205. [Google Scholar] [CrossRef]
- Frenzel, T.; David Brehm, J.; Bückmann, T.; Schittny, R.; Kadic, M.; Wegener, M. Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 2013, 103, 061907. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Shen, C.; Jing, Y. Membrane- and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 2016, 139, 3240–3250. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G.; Iannace, G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network. J. Acoust. Soc. Am. 2021, 150, 51–63. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, C.M.; Seo, Y.M.; Wang, Z.G.; Kim, C.K. Acoustic metamaterial with negative density. Phys. Lett. A 2009, 373, 4464–4469. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-Type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, H.M.; Chan, N.H.; Ma, G.; Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 041906. [Google Scholar] [CrossRef]
- Aravantinos-Zafiris, N.; Sigalas, M.M.; Katerelos, D.T. Phononic metamaterial for efficient sound attenuation applications. Build. Acoust. 2022, 1351010X221078937. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 2014, 13, 873–878. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials. Appl. Acoust. 2022, 189, 108605. [Google Scholar] [CrossRef]
- Yang, M.; Ma, G.; Yang, Z.; Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 2013, 110, 134301. [Google Scholar] [CrossRef]
- Lu, K.; Wu, J.H.; Guan, D.; Gao, N.; Jing, L. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial. AIP Adv. 2016, 6, 025116. [Google Scholar] [CrossRef] [Green Version]
- Sagartzazu, X.; Hervella-Nieto, L.; Pagalday, J.M. Review in sound absorbing materials. Arch. Comput. Methods Eng. 2008, 15, 311–342. [Google Scholar] [CrossRef]
- Guarnaccia, C.; Tronchin, L.; Viscardi, M. Special issue on modelling, simulation and data analysis in acoustical problems. Appl. Sci. 2019, 9, 5261. [Google Scholar] [CrossRef] [Green Version]
- Arenas, J.P.; Crocker, M.J. Recent trends in porous sound-absorbing materials. Sound Vib. 2010, 44, 12–18. [Google Scholar]
- Bolt, R.H. On the design of perforated facings for acoustic materials. J. Acoust. Soc. Am. 1947, 19, 917–921. [Google Scholar] [CrossRef]
- Lee, C.-M.; Xu, Y. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials. J. Sound Vib. 2009, 326, 290–301. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.-M.; McKnight, G.; Nutt, S. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 2010, 108, 114905. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, G.; Zhou, X.; Hu, G.; Sun, C.-T. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J. Acoust. Soc. Am. 2014, 136, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Cheng, Y.; Chen, M.; Yuan, X.; Fang, D. A compact multifunctional metastructure for Low-frequency broadband sound absorption and crash energy dissipation. Mater. Des. 2022, 215, 110462. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Xiao, Y.; Wen, X.; Wang, J. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys. Lett. A 2012, 376, 1489–1494. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.-M.; McKnight, G.; Scheulen, F.; Nutt, S. Membrane-type metamaterials: Transmission loss of multi-celled arrays. J. Appl. Phys. 2011, 109, 104902. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Halim, D.; Yi, X. Study of bandgap property of a bilayer membrane-type metamaterial applied on a thin plate. Int. J. Mech. Sci. 2020, 184, 105708. [Google Scholar] [CrossRef]
- UNI EN ISO 10534-2. Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method; ISO: Geneva, Switzerland, 1991. [Google Scholar]
- Ciaburro, G.; Iannace, G.; Ali, M.; Alabdulkarem, A.; Nuhait, A. An artificial neural network approach to modelling absorbent asphalts acoustic properties. J. King Saud Univ.-Eng. Sci. 2021, 33, 213–220. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A comparison between numerical simulation models for the prediction of acoustic behavior of giant reeds shredded. Appl. Sci. 2020, 10, 6881. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326. [Google Scholar]
- Chatterjee, S.; Hadi, A.S.; Chatterjee, S.; Hadi, A.S. Regression Analysis by Example, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Liang, K.Y.; Zeger, S.L. Regression analysis for correlated data. Annu. Rev. Public Health 1993, 14, 43–68. [Google Scholar] [CrossRef]
- Allen, M.P. Understanding Regression Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Hopfield, J.J. Artificial neural networks. IEEE Circuits Devices Mag. 1988, 4, 3–10. [Google Scholar] [CrossRef]
- Hassoun, M.H.; Intrator, N.; McKay, S.; Christian, W. Fundamentals of artificial neural networks. Comput. Phys. 1996, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Graupe, D. Principles of Artificial Neural Networks; World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Mehrotra, K.; Mohan, C.; Ranka, S. Elements of Artificial Neural Networks; The MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Fabio, S.; Giovanni, D.N.; Mariano, P. Airborne sound insulation prediction of masonry walls using artificial neural networks. Build. Acoust. 2021, 28, 391–409. [Google Scholar] [CrossRef]
- Yang, G.R.; Wang, X.-J. Artificial neural networks for neuroscientists: A Primer. Neuron 2020, 107, 1048–1070. [Google Scholar] [CrossRef]
- Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks; Springer International Publishing: Cham, Switzerland, 2017; Volume 39. [Google Scholar]
- Walczak, S. Artificial neural networks. In Encyclopedia of Information Science and Technology, 4th ed.; IGI Global: Hershey, PA, USA, 2018; pp. 120–131. [Google Scholar]
- Basheer, I.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Towell, G.G.; Shavlik, J.W. Knowledge-based artificial neural networks. Artif. Intell. 1994, 70, 119–165. [Google Scholar] [CrossRef]
- Schaeffer, J.; Lu, P.; Szafron, D.; Lake, R. A re-examination of brute-force search. In Proceedings of the AAAI Fall Symposium on Games: Planning and Learning, Edmonton, AB, Canada, 22–24 October 1993; pp. 51–58. [Google Scholar]
- Fellows, M.R.; Fomin, F.V.; Lokshtanov, D.; Rosamond, F.; Saurabh, S.; Villanger, Y. Local search: Is brute-force avoidable? J. Comput. Syst. Sci. 2012, 78, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, T.; Campbell, M.S.; Hsu, F.-H. Singular extensions: Adding selectivity to brute-force searching. Artif. Intell. 1990, 43, 99–109. [Google Scholar] [CrossRef]
- Riddle, P.; Segal, R.; Etzioni, O. Representation design and brute-force induction in a Boeing manufacturing domain. Appl. Artif. Intell. 1994, 8, 125–147. [Google Scholar] [CrossRef]
- Rota, G.-C.; Kahaner, D.; Odlyzko, A. On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 1973, 42, 684–760. [Google Scholar] [CrossRef] [Green Version]
- Puyana-Romero, V.; Iannace, G.; Cajas-Camacho, L.G.; Garzón-Pico, C.; Ciaburro, G. Acoustic characterization and modeling of silicone-bonded cocoa crop waste using a model based on the gaussian support vector machine. Fibers 2022, 10, 25. [Google Scholar] [CrossRef]
- Ciaburro, G.; Puyana-Romero, V.; Iannace, G.; Jaramillo-Cevallos, W.A. Characterization and modeling of corn stalk fibers tied with clay using support vector regression algorithms. J. Nat. Fibers 2021, 1–16, 1–16. [Google Scholar] [CrossRef]
- Ingard, U. On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 1953, 25, 1037–1061. [Google Scholar] [CrossRef]
- Lyapina, A.A.; Maksimov, D.N.; Pilipchuk, A.S.; Sadreev, A.F. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 2015, 780, 370–387. [Google Scholar] [CrossRef] [Green Version]
- Iannace, G.; Umberto, B.; Luis, B.M.; Ciaburro, G.; Puyana-Romero, V. Organic waste as absorbent materials. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Seoul, Korea, 12 October 2020; Institute of Noise Control Engineering: Beijing, China, 2020; Volume 261, pp. 1821–1830. [Google Scholar]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Delany, M.; Bazley, E. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Champoux, Y.; Allard, J. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 1991, 70, 1975–1979. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials. Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. E 1990, 11, 19–24. [Google Scholar] [CrossRef]
- Hamet, J.F.; Berengier, M. Acoustical characteristics of porous pavements: A new phenomenological model. In Proceedings of the 1993 International Congress on Noise Control Engineering, Leuven, Belgium, 24–26 August 1993. [Google Scholar]
- Iannace, G.; Ali, M.; Berardi, U.; Ciaburro, G.; Alabdulkarem, A.; Nuhait, A.; Al-Salem, K. Development and characterization of sound-absorbing materials produced from agricultural wastes in Saudi Arabia. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Seoul, Korea, 12 October 2020; Institute of Noise Control Engineering: Beijing, China, 2020; Volume 261, pp. 1806–1812. [Google Scholar]
- Latif, H.A.; Zaman, I.; Yahya, M.N.; Sambu, M.; Meng, Q. Analysis on sound absorber panel made of oil palm mesocarp fibre using Delany-Bazley and Johnson-Champoux-Allard models. Int. J. Nanoelectron. Mater. 2020, 13, 393–406. [Google Scholar]
- Akasaka, S.; Kato, T.; Azuma, K.; Konosu, Y.; Matsumoto, H.; Asai, S. Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models. Appl. Acoust. 2019, 152, 13–20. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G. Modelling sound absorption properties for recycled polyethylene terephthalate-based material using Gaussian regression. Build. Acoust. 2021, 28, 185–196. [Google Scholar] [CrossRef]
- Alber, S.; Ressel, W.; Liu, P.; Wang, D.; Oeser, M. Influence of soiling phenomena on air-void microstructure and acoustic performance of porous asphalt pavement. Constr. Build. Mater. 2018, 158, 938–948. [Google Scholar] [CrossRef]
- Chattopadhyay, S. Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys. 2007, 55, 369–382. [Google Scholar] [CrossRef]
- Paduszyński, K.; Domańska, U. Viscosity of Ionic liquids: An extensive database and a new group contribution model based on a feed-forward artificial neural network. J. Chem. Inf. Model. 2014, 54, 1311–1324. [Google Scholar] [CrossRef]
- Pani, A.K.; Amin, K.G.; Mohanta, H.K. Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network. Alex. Eng. J. 2016, 55, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- Karaboga, D.; Akay, B.; Ozturk, C. Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. In International Conference on Modeling Decisions for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 318–329. [Google Scholar]
- Li, J.; Cheng, J.-H.; Shi, J.-Y.; Huang, F. Brief Introduction of Back Propagation (BP) Neural Network Algorithm and its Improvement. In Proceedings of the Advances in Computer Science and Information Engineering, 11 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 553–558. [Google Scholar] [CrossRef]
- Jayalakshmi, T.; Santhakumaran, A. Statistical normalization and back propagation for classification. Int. J. Comput. Theory Eng. 2011, 3, 1793–8201. [Google Scholar]
- MATLAB. Available online: https://www.mathworks.com/products/matlab.html (accessed on 29 March 2022).
- Köksoy, O. Multiresponse robust design: Mean square error (MSE) criterion. Appl. Math. Comput. 2006, 175, 1716–1729. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Chisari, C.; Guarnaccia, C.; Rizzano, G. Numerical simulation of acoustic emission activity in reinforced concrete structures by means of finite element modelling at the macroscale. Struct. Health Monit. 2019, 19, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Di Loreto, S.; Serpilli, F.; Lori, V.; Squartini, S. Sound quality evaluation of kitchen hoods. Appl. Acoust. 2020, 168, 107415. [Google Scholar] [CrossRef]
Input: Configuration (Frequency, L1, L2, L3) |
Output: Optimal Configuration (Frequency, L1, L2, L3) |
max = 0 |
for each configuration |
alpha = ANN model prediction (configuration) |
if alpha > max then |
max = alpha |
conf = configuration |
Model Type | Artificial Neural Network |
---|---|
Number of nodes in the input layer | 4 |
Number of Hidden Layers | 1 |
Number of nodes in the Hidden Layer | 10 |
Number of nodes in the output layer | 1 |
Training algorithm | Levenberg-Marquardt backpropagation |
Parameter | Initial Value | Stopped Value | Target Value |
---|---|---|---|
Epoch | 0 | 49 | 1000 |
Performance | 0.903 | 0.00122 | 0 |
Gradient | 1.61 | 0.00588 | 1.00 × 10−7 |
Observations | MSE | R | |
---|---|---|---|
Training | 515 | 0.0014 | 0.9853 |
Validation | 110 | 0.0014 | 0.9844 |
Test | 110 | 0.0011 | 0.9896 |
MSE | R | |
---|---|---|
Artificial Neural Network-based model | 0.0011 | 0.9896 |
Multiple Linear Regression Model | 0.1979 | 0.1712 |
Frequency (Hz) | Layer One | Layer Two | Layer Three | SAC |
---|---|---|---|---|
63 | 4 | 5 | 5 | 0.300 |
80 | 4 | 5 | 5 | 0.312 |
100 | 4 | 5 | 5 | 0.327 |
125 | 4 | 4 | 5 | 0.349 |
160 | 3 | 5 | 4 | 0.387 |
200 | 3 | 1 | 5 | 0.448 |
250 | 5 | 0 | 3 | 0.543 |
315 | 5 | 0 | 3 | 0.687 |
400 | 5 | 0 | 0 | 0.860 |
500 | 1 | 5 | 2 | 0.916 |
630 | 1 | 5 | 3 | 0.706 |
800 | 0 | 5 | 4 | 0.568 |
1000 | 0 | 5 | 5 | 0.669 |
1250 | 0 | 5 | 2 | 0.689 |
1600 | 5 | 0 | 0 | 0.563 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaburro, G.; Parente, R.; Iannace, G.; Puyana-Romero, V. Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers. Sustainability 2022, 14, 4218. https://doi.org/10.3390/su14074218
Ciaburro G, Parente R, Iannace G, Puyana-Romero V. Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers. Sustainability. 2022; 14(7):4218. https://doi.org/10.3390/su14074218
Chicago/Turabian StyleCiaburro, Giuseppe, Rosaria Parente, Gino Iannace, and Virginia Puyana-Romero. 2022. "Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers" Sustainability 14, no. 7: 4218. https://doi.org/10.3390/su14074218
APA StyleCiaburro, G., Parente, R., Iannace, G., & Puyana-Romero, V. (2022). Design Optimization of Three-Layered Metamaterial Acoustic Absorbers Based on PVC Reused Membrane and Metal Washers. Sustainability, 14(7), 4218. https://doi.org/10.3390/su14074218