Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = melanose disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4645 KB  
Article
YOLOv10-LGDA: An Improved Algorithm for Defect Detection in Citrus Fruits Across Diverse Backgrounds
by Lun Wang, Rong Ye, Youqing Chen and Tong Li
Plants 2025, 14(13), 1990; https://doi.org/10.3390/plants14131990 - 29 Jun 2025
Viewed by 1139
Abstract
Citrus diseases can lead to surface defects on citrus fruits, adversely affecting their quality. This study aims to accurately identify citrus defects against varying backgrounds by focusing on four types of diseases: citrus black spot, citrus canker, citrus greening, and citrus melanose. We [...] Read more.
Citrus diseases can lead to surface defects on citrus fruits, adversely affecting their quality. This study aims to accurately identify citrus defects against varying backgrounds by focusing on four types of diseases: citrus black spot, citrus canker, citrus greening, and citrus melanose. We propose an improved YOLOv10-based disease detection method that replaces the traditional convolutional layers in the Backbone network with LDConv to enhance feature extraction capabilities. Additionally, we introduce the GFPN module to strengthen multi-scale information interaction through cross-scale feature fusion, thereby improving detection accuracy for small-target diseases. The incorporation of the DAT mechanism is designed to achieve higher efficiency and accuracy in handling complex visual tasks. Furthermore, we integrate the AFPN module to enhance the model’s detection capability for targets of varying scales. Lastly, we employ the Slide Loss function to adaptively adjust sample weights, focusing on hard-to-detect samples such as blurred features and subtle lesions in citrus disease images, effectively alleviating issues related to sample imbalance. The experimental results indicate that the enhanced model YOLOv10-LGDA achieves impressive performance metrics in citrus disease detection, with accuracy, recall, mAP@50, and mAP@50:95 rates of 98.7%, 95.9%, 97.7%, and 94%, respectively. These results represent improvements of 4.2%, 3.8%, 4.5%, and 2.4% compared to the original YOLOv10 model. Furthermore, when compared to various other object detection algorithms, YOLOv10-LGDA demonstrates superior recognition accuracy, facilitating precise identification of citrus diseases. This advancement provides substantial technical support for enhancing the quality of citrus fruit and ensuring the sustainable development of the industry. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

12 pages, 2035 KB  
Brief Report
Identification and Characterization of Diaporthe citri as the Causal Agent of Melanose in Lemon in China
by Yang Zhou, Liangfen Yin, Wei Han, Chingchai Chaisiri, Xiangyu Liu, Xiaofeng Yue, Qi Zhang, Chaoxi Luo and Peiwu Li
Plants 2025, 14(12), 1771; https://doi.org/10.3390/plants14121771 - 10 Jun 2025
Cited by 1 | Viewed by 1386
Abstract
Lemon, widely used in food, medicine, cosmetics, and other industries, has considerable value as a commodity and horticultural product. Previous research has shown that the fungus Diaporthe citri infects several citrus species, including mandarin, lemon, sweet orange, pomelo, and grapefruit, in China. Although [...] Read more.
Lemon, widely used in food, medicine, cosmetics, and other industries, has considerable value as a commodity and horticultural product. Previous research has shown that the fungus Diaporthe citri infects several citrus species, including mandarin, lemon, sweet orange, pomelo, and grapefruit, in China. Although D. citri has been reported to cause melanose disease in lemons in China, key pathological evidence, such as Koch’s postulates fulfillment on lemon fruits and detailed morphological characterization, is still lacking. In May 2018, fruits, leaves, and twigs were observed to be infected with melanose disease in lemon orchards in Chongqing municipality in China. The symptoms appeared as small black discrete spots on the surface of fruits, leaves, and twigs without obvious prominent and convex pustules. D. citri was isolated consistently from symptomatic organs and identified provisionally based on the morphological characteristics. The identification was confirmed using sequencing and multigene phylogenetic analysis of ITS, TUB, TEF, HIS, and CAL regions. Pathogenicity tests were performed using a conidium suspension, and melanose symptoms similar to those observed in the field were reproduced. To our knowledge, this study provides the first comprehensive evidence for D. citri as a causal agent of melanose disease in lemons in China, including morphological characterization and pathogenicity assays on lemon fruits. This report broadens the spectrum of hosts of D. citri in China and provides useful information for the management of melanose in lemons. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

18 pages, 5569 KB  
Article
Supervised Hyperspectral Band Selection Using Texture Features for Classification of Citrus Leaf Diseases with YOLOv8
by Quentin Frederick, Thomas Burks, Jonathan Adam Watson, Pappu Kumar Yadav, Jianwei Qin, Moon Kim and Megan M. Dewdney
Sensors 2025, 25(4), 1034; https://doi.org/10.3390/s25041034 - 9 Feb 2025
Cited by 6 | Viewed by 2176
Abstract
Citrus greening disease (HLB) and citrus canker cause financial losses in Florida citrus groves via smaller fruits, blemishes, premature fruit drop, and/or eventual tree death. Management of these two diseases requires early detection and distinction from other leaf defects and infections. Automated leaf [...] Read more.
Citrus greening disease (HLB) and citrus canker cause financial losses in Florida citrus groves via smaller fruits, blemishes, premature fruit drop, and/or eventual tree death. Management of these two diseases requires early detection and distinction from other leaf defects and infections. Automated leaf inspection with hyperspectral imagery (HSI) is tested in this study. Citrus leaves bearing visible symptoms of HLB, canker, scab, melanose, greasy spot, zinc deficiency, and a control class were collected, and images were taken with a line-scan HSI camera. YOLOv8 was trained to classify multispectral images from this image dataset, created by selecting bands with a novel variance-based method. The ‘small’ network using an intensity-based band combination yielded an overall weighted F1 score of 0.8959, classifying HLB and canker with F1 scores of 0.788 and 0.941, respectively. The network size appeared to exert greater influence on performance than the HSI bands selected. These findings suggest that YOLOv8 relies more heavily on intensity differences than on the texture properties of citrus leaves and is less sensitive to the choice of wavelengths than traditional machine vision classifiers. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 10750 KB  
Article
Classification of Citrus Leaf Diseases Using Hyperspectral Reflectance and Fluorescence Imaging and Machine Learning Techniques
by Hyun Jung Min, Jianwei Qin, Pappu Kumar Yadav, Quentin Frederick, Thomas Burks, Megan Dewdney, Insuck Baek and Moon Kim
Horticulturae 2024, 10(11), 1124; https://doi.org/10.3390/horticulturae10111124 - 22 Oct 2024
Cited by 4 | Viewed by 3520
Abstract
Citrus diseases are significant threats to citrus groves, causing financial losses through reduced fruit size, blemishes, premature fruit drop, and tree death. The detection of citrus diseases via leaf inspection can improve grove management and mitigation efforts. This study explores the potential of [...] Read more.
Citrus diseases are significant threats to citrus groves, causing financial losses through reduced fruit size, blemishes, premature fruit drop, and tree death. The detection of citrus diseases via leaf inspection can improve grove management and mitigation efforts. This study explores the potential of a portable reflectance and fluorescence hyperspectral imaging (HSI) system for detecting and classifying a control group and citrus leaf diseases, including canker, Huanglongbing (HLB), greasy spot, melanose, scab, and zinc deficiency. The HSI system was used to simultaneously collect reflectance and fluorescence images from the front and back sides of the leaves. Nine machine learning classifiers were trained using full spectra and spectral bands selected through principal component analysis (PCA) from the HSI with pixel-based and leaf-based spectra. A support vector machine (SVM) classifier achieved the highest overall classification accuracy of 90.7% when employing the full spectra of combined reflectance and fluorescence data and pixel-based analysis from the back side of the leaves, whereas a discriminant analysis classifier yielded the best accuracy of 94.5% with the full spectra of combined reflectance and fluorescence data and leaf-based analysis. Among the diseases, control, scab, and melanose were classified most accurately, each with over 90% accuracy. Therefore, the integration of the reflectance and fluorescence HSI with advanced machine learning techniques demonstrated the capability to accurately detect and classify these citrus leaf diseases with high precision. Full article
Show Figures

Figure 1

13 pages, 1750 KB  
Article
Disease Occurrence and Climatic Factors Jointly Structure Pomelo Leaf Fungal Succession in Disturbed Agricultural Ecosystem
by Feng Huang, Jinfeng Ling, Guohua Li, Xiaobing Song and Rui Liu
Microorganisms 2024, 12(6), 1157; https://doi.org/10.3390/microorganisms12061157 - 6 Jun 2024
Cited by 2 | Viewed by 1967
Abstract
For perennial plants, newly emerged organs are fresh hot spots for environmental microbes to occupy and assemble to form mature microbial communities. In the microbial community, some commensal fungi can play important roles in microbial succession, thus significantly improving host plant growth and [...] Read more.
For perennial plants, newly emerged organs are fresh hot spots for environmental microbes to occupy and assemble to form mature microbial communities. In the microbial community, some commensal fungi can play important roles in microbial succession, thus significantly improving host plant growth and disease resistance. However, their participating patterns in microbial assembly and succession remain largely unknown. In this study, we profiled the fungal community and found a similar fungal succession pattern of spring-emerged leaves from March to October in two pomelo orchards. Specifically, the fungal species, tracked on the old leaves, dominated the spring leaves after emergence and then decreased in relative abundance. This reduction in priority effects on the spring leaves was then followed by an increase in the number of observed species, Shannon and phylogenetic diversity indices, and the pathogen-associated fungal groups. In addition, we found that the temporal fungal succession on the spring leaves highly correlated with the disease occurrence in the orchards and with the temperature and precipitation variation from spring to summer. Of the pathogen-associated fungal groups, an increase in the relative abundance of Mycosphaerellaceae, hosting the causal agent of citrus greasy spot, correlated with the occurrence of the disease, while the relative abundance of Diaporthaceae, hosting the causal agent of melanose, was extremely low during the fungal succession. These results confirm that the two kinds of pathogen-associated fungal groups share different lifestyles on citrus, and also suggest that the study of temporal fungal succession in microbial communities can add to our understanding of the epidemiology of potential plant pathogens. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 1739 KB  
Review
Diaporthe citri: A Fungal Pathogen Causing Melanose Disease
by Chingchai Chaisiri, Xiangyu Liu, Yang Lin and Chaoxi Luo
Plants 2022, 11(12), 1600; https://doi.org/10.3390/plants11121600 - 17 Jun 2022
Cited by 26 | Viewed by 8416
Abstract
Citrus melanose is a fungal disease caused by Diaporthe citri F.A. Wolf. It is found in various citrus-growing locations across the world. The host range of D. citri is limited to plants of the Citrus genus. The most economically important hosts are Citrus [...] Read more.
Citrus melanose is a fungal disease caused by Diaporthe citri F.A. Wolf. It is found in various citrus-growing locations across the world. The host range of D. citri is limited to plants of the Citrus genus. The most economically important hosts are Citrus reticulata (mandarin), C. sinensis (sweet orange), C. grandis or C. maxima (pumelo), and C. paradisi (grapefruit). In the life cycle of D. citri throughout the citrus growing season, pycnidia can be seen in abundance on dead branches, especially after rain, with conidia appearing as slimy masses discharged from the dead twigs. Raindrops can transmit conidia to leaves, twigs, and fruits, resulting in disease dispersion throughout small distances. Persistent rains and warm climatic conditions generally favor disease onset and development. The melanose disease causes a decline in fruit quality, which lowers the value of fruits during marketing and exportation. High rainfall areas should avoid planting susceptible varieties. In this article, information about the disease symptoms, history, geographic distribution, epidemiology, impact, and integrated management practices, as well as the pathogen morphology and identification, was reviewed and discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

20 pages, 4232 KB  
Article
Abundant Genetic Diversity and Extensive Differentiation among Geographic Populations of the Citrus Pathogen Diaporthe citri in Southern China
by Tao Xiong, Yating Zeng, Wen Wang, Pudong Li, Yunpeng Gai, Chen Jiao, Zengrong Zhu, Jianping Xu and Hongye Li
J. Fungi 2021, 7(9), 749; https://doi.org/10.3390/jof7090749 - 13 Sep 2021
Cited by 10 | Viewed by 3094
Abstract
The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. [...] Read more.
The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples: among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease. Full article
(This article belongs to the Special Issue Fungal Biodiversity and Ecology 2.0)
Show Figures

Figure 1

19 pages, 3699 KB  
Brief Report
Morphology Characterization, Molecular Phylogeny, and Pathogenicity of Diaporthe passifloricola on Citrus reticulata cv. Nanfengmiju in Jiangxi Province, China
by Chingchai Chaisiri, Xiang-Yu Liu, Wei-Xiao Yin, Chao-Xi Luo and Yang Lin
Plants 2021, 10(2), 218; https://doi.org/10.3390/plants10020218 - 23 Jan 2021
Cited by 15 | Viewed by 6470
Abstract
The Nanfengmiju (Citrus reticulata cv. Nanfengmiju), a high-quality local variety of mandarin, is one of the major fruit crops in Jiangxi Province, China. Citrus melanose and stem-end rot, two common fungal diseases of Nanfengmiju, are both caused by Diaporthe spp. (syn. Phomopsis [...] Read more.
The Nanfengmiju (Citrus reticulata cv. Nanfengmiju), a high-quality local variety of mandarin, is one of the major fruit crops in Jiangxi Province, China. Citrus melanose and stem-end rot, two common fungal diseases of Nanfengmiju, are both caused by Diaporthe spp. (syn. Phomopsis spp.). Identification of the Diaporthe species is essential for epidemiological studies, quarantine measures, and management of diseases caused by these fungi. Melanose disease was observed on Nanfengmiju fruit in Jiangxi Province of China in 2016. Based on morphological characterization and multi-locus phylogenetic analyses, three out of 39 isolates from diseased samples were identified as D. passifloricola. Since these three isolates did not cause melanose on citrus fruit in the pathogenicity tests, they were presumed to be endophytic fungi present in the diseased tissues. However, our results indicate that D. passifloricola may persist as a symptom-less endophyte in the peel of citrus fruit, yet it may cause stem-end if it invades the stem end during fruit storage. To the best of our knowledge, this is the first report of D. passifloricola as the causal agent of the stem-end rot disease in Citrusreticulata cv. Nanfengmiju. Full article
(This article belongs to the Special Issue Citrus Fungal and Oomycete Diseases)
Show Figures

Figure 1

22 pages, 2607 KB  
Article
Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus
by Chingchai Chaisiri, Xiang-Yu Liu, Yang Lin, Jiang-Bo Li, Bin Xiong and Chao-Xi Luo
Plants 2020, 9(3), 329; https://doi.org/10.3390/plants9030329 - 4 Mar 2020
Cited by 30 | Viewed by 9116
Abstract
Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe [...] Read more.
Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues. The morphological characteristics of representative isolates of D. citri were investigated on different media. Finally, a molecular tool based on the novel species-specific primer pair TUBDcitri-F1/TUBD-R1, which was designed from TUB gene, was developed to detect D. citri efficiently. A polymerase chain reaction (PCR) amplicon of 217 bp could be specifically amplified with the developed molecular tool. The sensitivity of the novel species-specific detection was upon to 10 pg of D. citri genomic DNA in a reaction. Therefore, the D. citri could be unequivocally identified from closely related Diaporthe species by using this simple PCR approach. Full article
(This article belongs to the Special Issue Detection and Diagnostics of Fungal and Oomycete Plant Pathogens)
Show Figures

Figure 1

Back to TopTop