Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = medium-carbon low-alloy steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 125
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 11000 KiB  
Article
A Novel Low-Cost Fibrous Tempered-Martensite/Ferrite Low-Alloy Dual-Phase Steel Exhibiting Balanced High Strength and Ductility
by Xianguang Zhang, Yiwu Pei, Haoran Han, Shouli Feng and Yongjie Zhang
Materials 2025, 18(6), 1292; https://doi.org/10.3390/ma18061292 - 14 Mar 2025
Viewed by 635
Abstract
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been [...] Read more.
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been proposed. The microstructure and mechanical performance of fibrous DP steel obtained via partial reversion from martensite in Fe-C-Mn-Si low-alloy steel have been investigated. The TS of the as-quenched DP steel is above 1300 MPa, while the total elongation is less than 6%. The total elongation was increased to above 13%, with an acceptable loss in TS by performing additional tempering. The fibrous tempered-martensite/ferrite DP steel exhibits an excellent balance of strength and ductility, surpassing the current low-alloy DP steels with the same strength grade. Plate-like or quasi-spherical fine carbides were precipitated, and the relatively high-density dislocations were maintained due to the delay of lath recovery by the enrichment of Mn and C in martensite (austenite before quenching), contributing to the tempering softening resistance. In addition, nanotwins and a very small amount of retained austenite were present due to the martensite chemistry. High-density dislocations, fine carbide precipitation, and partially twinned structures strengthened the tempered martensite while maintaining relatively high ductility. Quantitative strengthening models and calculations were not included in the present work, which is an interesting topic and will be studied in the future. Full article
Show Figures

Figure 1

16 pages, 6269 KiB  
Article
Improved Uniformity Properties and Corrosion Resistance of Zinc–Nickel Composite Coating Enhanced by Nano-SiO2
by Sujie Chang, Yuanhao Wang, Jianpeng Wang, Zerui Hao, Yang Yang, Yi Wang, Xinyi Wang, Fan Cao and Lei Shi
Coatings 2025, 15(1), 71; https://doi.org/10.3390/coatings15010071 - 10 Jan 2025
Cited by 3 | Viewed by 1026
Abstract
In this study, pre-treated low-carbon steel substrates were electroplated with Zinc–Nickel (ZN) alloy composite coatings enhanced by the incorporation of nano-silicon dioxide (SiO2) particles in an alkaline solution. ZN deposits with varying concentrations of nano-SiO2—specifically, 1, 2, 3, 5, [...] Read more.
In this study, pre-treated low-carbon steel substrates were electroplated with Zinc–Nickel (ZN) alloy composite coatings enhanced by the incorporation of nano-silicon dioxide (SiO2) particles in an alkaline solution. ZN deposits with varying concentrations of nano-SiO2—specifically, 1, 2, 3, 5, and 10 wt%—were achieved by adjusting the ratio between the nano-SiO2 and ZN alloy electroplating solutions. The influence of the nano-SiO2 content on both the quality of the coating and its corrosion behavior was investigated in detail. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and an atomic force microscope (AFM) were utilized to assess the surface, cross-section structure, elemental composition, and thickness of the coatings. Notably, the addition of nano-SiO2 improved the microstructure of the coating, leading to a reduction in grain size as well as enhancements in uniformity and density while revealing that co-deposition reached an optimal concentration at 3 wt% nano-SiO2. The corrosion behavior of coated specimens was evaluated through electrochemical impedance spectroscopy (EIS) and polarization techniques within a 3.5 wt% NaCl solution serving as a corrosive medium. Specifically, for typical prepared coatings, the corrosion current density decreased from 1.410 × 10−4 A·cm−2 to 5.762 × 10−6 A·cm−2, which is a remarkable reduction by one to two orders of magnitude relative to the SiO2-free coatings mentioned previously. These findings provide a straightforward approach for selecting 3 wt% nano-SiO2 as an effective additive in ZN composite coatings. Full article
(This article belongs to the Special Issue Advanced Corrosion Protection through Coatings and Surface Rebuilding)
Show Figures

Figure 1

17 pages, 7644 KiB  
Article
Kinetics of Austenite Formation in a Medium-Carbon, Low-Alloy Steel with an Initial Martensite Microstructure: Influence of Prior Austenite Grain Size
by Navneeth Rajakrishnan, Morteza Sadeghifar, Pinaki Bhattacharjee, Henri Champliaud and Mohammad Jahazi
J. Manuf. Mater. Process. 2025, 9(1), 10; https://doi.org/10.3390/jmmp9010010 - 2 Jan 2025
Cited by 1 | Viewed by 1411
Abstract
The impact of prior austenite grain size (PAGS) on the kinetics of austenite formation with an initial martensite microstructure was investigated in a medium-carbon, low-alloy steel. Two distinct PAGS of 117 and 330 μm, representing the range of grain sizes encountered in industries, [...] Read more.
The impact of prior austenite grain size (PAGS) on the kinetics of austenite formation with an initial martensite microstructure was investigated in a medium-carbon, low-alloy steel. Two distinct PAGS of 117 and 330 μm, representing the range of grain sizes encountered in industries, were considered. In this analysis, high-resolution dilatometry was used to study the formation of austenite during continuous heating experiments. The analysis of the dilatometry results revealed that grain refinement accelerated the rate of austenite formation without impacting its austenite formation temperature. Intermittent quenching tests were conducted to elucidate the nucleation and growth mechanisms of austenite formation using a combination of optical, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The differences in austenite formation kinetics as a function of prior austenite grain size were quantified and modeled in the framework of diffusion-controlled nucleation and growth theories using the genetic algorithm optimization. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
A Review of High-Speed Turning of AISI 4340 Steel with Minimum Quantity Lubrication (MQL)
by Haniff Abdul Rahman, Nabil Jouini, Jaharah A. Ghani and Mohammad Rasidi Mohammad Rasani
Coatings 2024, 14(8), 1063; https://doi.org/10.3390/coatings14081063 - 19 Aug 2024
Cited by 2 | Viewed by 2581
Abstract
AISI 4340 is a medium-carbon low-alloy steel that has gained distinctive attention due to its advanced properties including high strength, high toughness, and heat resistance. This has led to its commercial usage in a wide variety of industries such as construction, automotive, and [...] Read more.
AISI 4340 is a medium-carbon low-alloy steel that has gained distinctive attention due to its advanced properties including high strength, high toughness, and heat resistance. This has led to its commercial usage in a wide variety of industries such as construction, automotive, and aerospace. AISI 4340 is usually machined in a hardened state through a hard-turning process, which results in high heat generation, accelerated tool wear, low productivity, and poor surface quality. The application of high-speed machining helps improve the material removal rate and surface finish quality, yet the elevated temperature at the cutting zone still poses problems to the tool’s lifespan. Apart from using advanced cutting tool materials, which is costly, researchers have also explored various cooling methods to tackle the heat problem. This paper presents a review of a sustainable cooling method known as minimum quantity lubrication (MQL) for its application in the high-speed turning of AISI 4340 steel. This study is centered on high-speed turning and the application of MQL systems in machining AISI 4340 steel. It has been observed that the hard part turning of materials with a hardness exceeding 45 HRC offers advantages such as improved accuracy and tighter tolerances compared to traditional grinding methods. However, this process leads to increased temperatures, and MQL proves to be a viable alternative to dry conditions. Challenges in optimizing MQL performance include fluid penetration and lubrication effectiveness. Full article
(This article belongs to the Special Issue Latest Insights in Metal Fatigue, Failure, and Fracture)
Show Figures

Figure 1

17 pages, 8596 KiB  
Article
Corrosion Efficiency of Zn-Ni/ZrO2 and Zn-Co/ZrO2 Bi-Layer Systems: Impact of Zn-Alloy Sublayer Thickness
by Nelly Boshkova, Daniela Stoyanova, Irina Stambolova, Ognian Dimitrov, Sylviya Simeonova, Georgi Avdeev, Miglena Peshova, Vasil Bachvarov, Sonya Smrichkova and Nikolai Boshkov
Coatings 2024, 14(7), 792; https://doi.org/10.3390/coatings14070792 - 25 Jun 2024
Cited by 2 | Viewed by 1711
Abstract
The presented manuscript demonstrates the effect of the thickness of a zinc alloy sublayer on the corrosion resistance and stability of three types of bi-layer systems composed of Co- or Ni-modified zinc coatings (both as sublayers) and a top sol–gel ZrO2 film [...] Read more.
The presented manuscript demonstrates the effect of the thickness of a zinc alloy sublayer on the corrosion resistance and stability of three types of bi-layer systems composed of Co- or Ni-modified zinc coatings (both as sublayers) and a top sol–gel ZrO2 film in a 5% NaCl solution. In order to obtain more detailed information, the alloy sublayers were electrodeposited with three different thicknesses (1, 5 and 10 µm, respectively) on a low-carbon steel substrate. Three consecutive dip-coated ZrO2 sol–gel layers were deposited thereafter on the individual zinc alloy sublayers. For comparison, an ordinary electrodeposited zinc coating was obtained and investigated. The aim of this study was to evaluate the effect of the thickness of the zinc-based sublayer on the protective characteristics of the bi-layer systems. The surface morphology features and the phase composition of the latter systems were examined using scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurements and X-ray diffraction (XRD) analyses. The corrosion stability was evaluated by means of potentiodynamic polarization (PDP) curves and polarization resistance (Rp) measurements. The zirconia finish layers possessed an amorphous, dense and hydrophobic nature, while the sublayers were multicrystalline. The results confirmed the increased corrosion resistance of the protective system, which contains electrodeposited sublayer of Zn-Co alloy with a 10 µm thickness in a corrosive test medium. Full article
Show Figures

Figure 1

19 pages, 9702 KiB  
Article
Vibration-Assisted Welding of 42CrMo4 Steel: Optimizing Parameters for Improved Properties and Weldability
by Mihai Alexandru Luca, Ionut Claudiu Roata, Cătălin Croitoru and Alina Luciana Todi-Eftimie
Materials 2024, 17(11), 2708; https://doi.org/10.3390/ma17112708 - 3 Jun 2024
Viewed by 1113
Abstract
This study advances the vibration-assisted welding (VAW) technique for joining medium-carbon, low-alloy steels, which are typically challenging to weld. Traditional welding methods suggest low linear energy and mandatory pre- and post-heating due to these steels’ poor weldability. However, VAW employs a vibrating table [...] Read more.
This study advances the vibration-assisted welding (VAW) technique for joining medium-carbon, low-alloy steels, which are typically challenging to weld. Traditional welding methods suggest low linear energy and mandatory pre- and post-heating due to these steels’ poor weldability. However, VAW employs a vibrating table to maintain part vibration throughout the automatic MIG/MAG welding process. This study tested the VAW technique on 42CrMo4 steel samples, achieving satisfactory weld quality without the need for pre- and post-heating treatments. This research revealed that while vibration frequencies between 550 Hz and 9.5 kHz minimally affect the appearance of the weld joint, the oscillation acceleration has a significant impact. The acceleration along the weld axis (ax), combined with the welding speed and vibration frequency, affects the weld surface’s appearance, particularly its scaly texture and size. Lateral acceleration (ay) alters the seam width, whereas vertical acceleration (az) affects penetration depth at the root. Notably, if the effective acceleration (aef) surpasses 40 m/s2, there is a risk of molten metal expulsion from the weld pool or piercing at the joint’s base. The quality of the joints was assessed through macroscopic and microscopic structural analyses, micro-hardness tests in the weld zone, and bending trials. The mechanical properties of the VAW samples were found to be acceptable, with hardness slightly exceeding that of the samples subjected to pre- and post-heating. Moreover, the VAW process significantly reduced energy consumption and operational time. The employed vibration system, with a power rating of 100 W, operates for just a few minutes, resulting in substantially lower energy usage compared to the traditional pre- and post-heating method, which typically requires a 5 kW electric furnace. Full article
Show Figures

Figure 1

22 pages, 9878 KiB  
Article
Effect of Boron on Microstructures and Low-Temperature Impact Toughness of Medium-Carbon CrMo Alloy Steels with Different Quenching Temperatures
by Qiang Wang, Qian Wang, Qingfeng Wang, Chongchong Li and Kefu Li
Processes 2024, 12(5), 852; https://doi.org/10.3390/pr12050852 - 23 Apr 2024
Cited by 2 | Viewed by 1828
Abstract
The effect of boron (B) on the microstructures and low-temperature impact toughness of medium-carbon CrMo steel quenched at 870~1050 °C and tempered at 600 °C was studied via Charpy impact testing and microstructure characterizations. The results showed that with an increasing B content [...] Read more.
The effect of boron (B) on the microstructures and low-temperature impact toughness of medium-carbon CrMo steel quenched at 870~1050 °C and tempered at 600 °C was studied via Charpy impact testing and microstructure characterizations. The results showed that with an increasing B content from 0 to 50 ppm, the low-temperature impact toughness deteriorated significantly at quenching temperatures (Tq) lower than 950 °C but increased at a higher Tq of 1050 °C. Undissolved M2B particles remained and coarsened during the holding process due to the low Tq, decreasing the critical stress required for crack initiation and deteriorating the impact toughness accordingly. However, this detrimental effect of B could be mitigated by a higher Tq, and the favorable influences on the impact toughness improvement could be attributed to (1) the finer M2B particles formed during quenching effectively pinning the austenite grain boundaries (GBs), leading to a finer block size and a high density of high-angle grain boundaries, which reduced the critical stress for crack initiation; and (2) the fact that the coarsening of M23C6 on the GBs during tempering was slightly suppressed by the segregated B, eventually increasing the energy required for crack propagation. However, the degree of the favorable effect due to B was still lower than the negative effect of a high Tq. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

12 pages, 15824 KiB  
Article
The Influence of Rapid Tempering on the Mechanical and Microstructural Characteristics of 51CrV4 Steel
by Antti Kaijalainen, Oskari Haiko, Saeed Sadeghpour, Vahid Javaheri and Jukka Kömi
Metals 2024, 14(1), 60; https://doi.org/10.3390/met14010060 - 3 Jan 2024
Viewed by 1846
Abstract
The microstructure and mechanical properties of a low-alloy medium carbon steel (Fe-0.5C-0.9Mn-1Cr-0.16V, in wt.%) were investigated after rapid tempering and compared with a conventionally tempered counterpart. The conventional thermal cycle was performed in a laboratory-scale box furnace while rapid heat treatments were carried [...] Read more.
The microstructure and mechanical properties of a low-alloy medium carbon steel (Fe-0.5C-0.9Mn-1Cr-0.16V, in wt.%) were investigated after rapid tempering and compared with a conventionally tempered counterpart. The conventional thermal cycle was performed in a laboratory-scale box furnace while rapid heat treatments were carried out using the Gleeble 3800 thermomechanical simulator machine. In the rapid heat treatments, the heating rate was 50 °C/s for austenitizing and 60 °C/s for the tempering process, with a cooling rate of 60 °C/s for both treatments. Austenitization was performed at 900 °C for 3 s and tempering was conducted at 300 °C and 500 °C for 2 s. For conventional routes, the heating rate for both austenitization and tempering was 5 °C/s. Likewise, the austenitization was carried out at 900 °C for 45 min and tempering was carried out at 300 °C and 500 °C for 30 min. The results revealed that rapid tempering resulted in a significantly increased impact toughness compared to conventional tempering, while maintaining a consistent high strength level. The quenched samples showed the highest hardness and tensile strength but obtained the lowest toughness values. The optimum combination of strength and toughness was achieved with the sample rapidly tempered at 300 °C, resulting in a tensile strength of 2050 MPa and impact energy of 14 J for sub-sized CVN samples. These desirable mechanical properties were achieved throughout the tempered martensitic microstructure with a minor fraction of pearlitic strings. Full article
(This article belongs to the Special Issue Feature Papers in Structural Integrity of Metals)
Show Figures

Figure 1

19 pages, 8114 KiB  
Article
Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment
by Li Li, Shudong Guo, Lu Jia, Li Zhang, Jiangang Li, Xigang Wang, Nannan Zhang, Hongyan Gan, Yanhui Guo and Suyan Zhao
Coatings 2023, 13(12), 2024; https://doi.org/10.3390/coatings13122024 - 30 Nov 2023
Cited by 1 | Viewed by 1958
Abstract
This study aims to explore the effects of ultrasonic impact parameters on the surface modification of a stainless steel coating deposited on a medium-carbon low-alloy steel using argon arc surfacing welding. Ultrasonic impact treatment (UIT), at three different vibration strike numbers (40,000 times/(mm [...] Read more.
This study aims to explore the effects of ultrasonic impact parameters on the surface modification of a stainless steel coating deposited on a medium-carbon low-alloy steel using argon arc surfacing welding. Ultrasonic impact treatment (UIT), at three different vibration strike numbers (40,000 times/(mm2), 57,600 times/(mm2), and 75,000 times/(mm2)) marked UIT–1, UIT–2, and UIT–3, respectively, was carried out to modify the surface structure and properties of the stainless steel coating. The surface morphological and structural features, phase compositions, grain size, topography, micro-mechanical properties, as well as the wear resistance of the coating before and after UIT with different impact parameters were experimentally investigated. The results of optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) analyses revealed that the grain refinement accompanied by the formation of the strain-induced α′–martensite occurred on the UIT-treated coating surface. With the increase in the vibration strike number, the surface grain size and roughness decreased, while the α′–martensite content increased. Micro-hardness after UIT was increased by about 19% (UIT–1), 39% (UIT–2), and 57% (UIT–3), and the corresponding wear rate obtained was decreased by 39%, 72%, and 85%, respectively. Significant improvements in wear resistance were achieved using UIT. However, an excessive vibration strike number on the per unit area (/mm2) might result in unwanted micro-cracks and delamination on the treated surface, deteriorating the performance of the coating. These findings validate that UIT parameters (such as the vibration strike number on per unit area) are of great importance to bringing about improvements in wear performance, and UIT is found to have a high potential in modifying the surface characteristics and optimizing the mechanical performances of the deposited coating for a wide range of potential applications. Full article
Show Figures

Figure 1

14 pages, 12260 KiB  
Article
Achieving High Plasticity and High Toughness of Low-Carbon Low-Alloy Steel through Intercritical Heat Treatment
by Long Huang, Jia Liu, Xiangtao Deng and Zhaodong Wang
Metals 2023, 13(10), 1737; https://doi.org/10.3390/met13101737 - 13 Oct 2023
Cited by 1 | Viewed by 2291
Abstract
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements [...] Read more.
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements through intercritical heat treatment. The influence of intercritical quenching temperature on the content and characteristics of the retained austenite, as well as the functional mechanism of the retained austenite during low-temperature impact, was studied. The results showed that the content of the retained austenite increased from 12% to 17%, and its distribution extended from grain boundaries to martensite lath boundaries, with increasing intercritical quenching temperature. The retained austenite on the grain boundaries was in blocks, and that on the martensitic lath boundaries formed slender domains. The stability of the retained austenite was achieved through the enrichment of C and Mn during intercritical heat treatment. The contribution of retained austenite to low-temperature mechanical properties was closely related to its stability. The retained austenite with poor stability underwent martensite transformation at low temperatures, and the high-carbon martensite was a brittle phase that became the nucleation site of cracks or the path of crack growth during impact. Stable retained austenite passivated crack tips and hindered crack propagation during impacts, which improved the impact performance of the steel. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

23 pages, 13100 KiB  
Article
Quench and Tempered Embrittlement of Ultra-High-Strength Steels with Transition Carbides
by Roman Mishnev, Yuliya Borisova, Tatiana Kniaziuk, Sergey Gaidar and Rustam Kaibyshev
Metals 2023, 13(8), 1399; https://doi.org/10.3390/met13081399 - 5 Aug 2023
Cited by 16 | Viewed by 2645
Abstract
The effect of tempering after water quenching on the strength and fracture toughness of two steels with chemical compositions of 0.34%C-1.77%Si-1.35Mn-0.56%Cr-0.2%Mo-0.04%Nb-0.03Ti-0.002B and 0.44%C-1.81%Si-1.33%Mn-0.82%Cr-0.28%Mo was examined. The last steel exhibits quenching embrittlement in an as-quenched condition. At a tempering temperature of 280 °C, the [...] Read more.
The effect of tempering after water quenching on the strength and fracture toughness of two steels with chemical compositions of 0.34%C-1.77%Si-1.35Mn-0.56%Cr-0.2%Mo-0.04%Nb-0.03Ti-0.002B and 0.44%C-1.81%Si-1.33%Mn-0.82%Cr-0.28%Mo was examined. The last steel exhibits quenching embrittlement in an as-quenched condition. At a tempering temperature of 280 °C, the precipitation of transition η–Fe2C carbides in martensitic matrix leads to increasing fracture toughness and eliminates quench embrittlement in the steel with 0.44 wt.%C. Tempered martensite embrittlement at 400 °C appears as decreased values of the Charpy V-notch impact energy, ductility and the product of strength and elongation, σB×δ (MPa×%) and is attributed to increased effective grain size for fracture, mainly. The precipitation of boundary cementite takes place at tempering at 500 °C and provides increased ductility and fracture toughness despite a decohesion along carbide/ferrite interfaces. The low severity of TME in Si-rich low-alloy medium carbon steels is attributed to the suppression of boundary cementite precipitation at tempering temperatures ≤400 °C. Full article
(This article belongs to the Special Issue Fatigue, Fracture and Damage of Steels)
Show Figures

Figure 1

18 pages, 9645 KiB  
Article
Tempering Behavior of a Si-Rich Low-Alloy Medium-Carbon Steel
by Sergey Borisov, Yuliya Borisova, Evgeniy Tkachev, Tatiana Kniaziuk and Rustam Kaibyshev
Metals 2023, 13(8), 1403; https://doi.org/10.3390/met13081403 - 5 Aug 2023
Cited by 9 | Viewed by 2369
Abstract
Owing to the addition of Si, 0.33C-1.8Si-1.44Mn-0.58Cr steel exhibits a unique tempering behavior. The tempering takes place in two distinct sequential stages that are significantly different from those in steels containing 0.2–0.5 wt.% of Si. Stage I is associated with the precipitation of [...] Read more.
Owing to the addition of Si, 0.33C-1.8Si-1.44Mn-0.58Cr steel exhibits a unique tempering behavior. The tempering takes place in two distinct sequential stages that are significantly different from those in steels containing 0.2–0.5 wt.% of Si. Stage I is associated with the precipitation of transition carbides in a paraequilibrium manner, can take place in temperatures ranging from ~200 to ~474 °C, and concurrently increases strength, ductility, and toughness. Stage II is associated with the decomposition of retained austenite to bainitic ferrite and transition carbides. As a result, no significant effect of overlapping of Stage I with Stage II takes place. Stage III does not occur at temperatures below ~474 °C, since the precipitation of cementite in a orthoequilibrium manner is suppressed by the addition of 1.8 wt.% of Si. It was shown that a major portion of carbon atoms redistributes to Cottrell atmospheres under quenching. During low-temperature tempering at 200–400 °C, the precipitation of transition carbides consumes a large portion of carbon atoms, thereby increasing the number of ductile fractures and improving the impact toughness without strength degradation. The formation of chains of cementite particles on boundaries takes place in Stage IV at a tempering temperature of 500 °C. This process results in the full depletion of excess carbon from a ferritic matrix that provides increased ductility and toughness but decreased strength. Full article
Show Figures

Figure 1

13 pages, 25857 KiB  
Article
Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings
by Artem Okulov, Yury Korobov, Alexander Stepchenkov, Aleksey Makarov, Olga Iusupova, Yulia Korkh, Tatyana Kuznetsova, Evgeny Kharanzhevskiy and Kun Liu
Materials 2023, 16(15), 5479; https://doi.org/10.3390/ma16155479 - 4 Aug 2023
Cited by 6 | Viewed by 1903
Abstract
Equiatomic medium-entropy alloy (MEA) FeNiCr-B4C (0, 1, and 3 wt.% B4C) coatings were deposited onto an AISI 1040 steel substrate using pulsed laser cladding. Based on an SEM microstructural analysis, it was found that the cross-sections of all the [...] Read more.
Equiatomic medium-entropy alloy (MEA) FeNiCr-B4C (0, 1, and 3 wt.% B4C) coatings were deposited onto an AISI 1040 steel substrate using pulsed laser cladding. Based on an SEM microstructural analysis, it was found that the cross-sections of all the obtained specimens were characterized by an average coating thickness of 400 ± 20 μm, a sufficiently narrow (100 ± 20 μm) “coating–substrate” transition zone, and the presence of a small number of defects, including cracks and pores. An XRD analysis showed that the formed coatings consisted of a single face-centered cubic (FCC) γ-phase and the space group Fm-3m, regardless of the B4C content. However, additional TEM analysis of the FeNiCr coating with 3 wt.% B4C revealed a two-phase FCC structure consisting of grains (FCC-1 phase, Fm-3m) up to 1 µm in size and banded interlayers (FCC-2 phase, Fm-3m) between the grains. The grains were clean with a low density of dislocations. Raman spectroscopy confirmed the presence of B4C carbides inside the FeNiCr (1 and 3 wt.% B4C) coatings, as evidenced by detected peaks corresponding to amorphous carbon and peaks indicating the stretching of C-B-C chains. The mechanical characterization of the FeNiCr-B4C coatings specified that additions of 1 and 3 wt.% B4C resulted in a notable increase in microhardness of 16% and 38%, respectively, with a slight decrease in ductility of 4% and 10%, respectively, compared to the B4C-free FeNiCr coating. Thus, the B4C addition can be considered a promising method for strengthening laser-cladded MEA FeNiCr-B4C coatings. Full article
(This article belongs to the Special Issue Advances in Steel Materials: Structure, Processing, and Properties)
Show Figures

Figure 1

26 pages, 9852 KiB  
Article
Titanium Carbide and Vibration Effect on the Structure and Mechanical Properties of Medium-Carbon Alloy Steel
by Tatyana Kovalyova, Yevgeniy Skvortsov, Svetlana Kvon, Michot Gerard, Aristotle Issagulov, Vitaliy Kulikov and Anna Skvortsova
Coatings 2023, 13(7), 1135; https://doi.org/10.3390/coatings13071135 - 22 Jun 2023
Viewed by 2026
Abstract
This study aimed to improve the hardness and wear behavior of medium-carbon alloy steel through the addition of titanium carbide ultradispersed powder and low-frequency vibration treatment during solidification. It was shown that the complex effect of low-frequency vibration with the additional introduction of [...] Read more.
This study aimed to improve the hardness and wear behavior of medium-carbon alloy steel through the addition of titanium carbide ultradispersed powder and low-frequency vibration treatment during solidification. It was shown that the complex effect of low-frequency vibration with the additional introduction of a small amount of titanium carbide ultradispersed powder with the size of 0.5–0.7 μm during the casting process had a positive effect on structural changes and led to improved mechanical properties, and so increasing the value of microhardness by 37.2% was notable. In the process of shock dynamic impact, imprints with crater depths of 13.69 µm (500 N) and 14.73 (700 N) were obtained, which, respectively, are 23.34 and 42.34% less than that on the original cast sample. In the process of tribological testing, decreasing the depth of the wear track (50.25%) was revealed with decreasing the value of the friction coefficient by 14.63%. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

Back to TopTop