Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = mast mounted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3122 KiB  
Article
Ac2–26 Hydrogel Modulates IL-1β-Driven Inflammation via Mast Cell-Associated and Immune Regulatory Pathways in Diabetic Wounds
by Monielle Sant’Ana, Rafael André da Silva, Luiz Philipe S. Ferreira, Cristiane D. Gil, Fernando L. Primo, Ana Paula Girol, Karin V. Greco and Sonia M. Oliani
Cells 2025, 14(13), 999; https://doi.org/10.3390/cells14130999 - 30 Jun 2025
Viewed by 529
Abstract
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac [...] Read more.
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac2–26 hydrogel in a streptozotocin-induced diabetic wound model. Treatment significantly accelerated wound closure, improved tissue architecture, and reduced leukocyte infiltration. Immunohistochemical analysis revealed diminished mast cell accumulation and IL-1β expression in treated wounds. Complementary transcriptomic profiling supported the downregulation of pro-inflammatory genes, including Il1b and mast cell-related mediators, confirming the peptide’s regulatory effect on the wound immune landscape. Mounting evidence suggests that dysregulated mast cell activity plays a role in the heightened inflammatory tone and delayed tissue repair observed in diabetic wounds. In our model, Ac2–26 hydrogel treatment attenuated IL-1β expression, suggesting an indirect downregulation of NLRP3 inflammasome activation, potentially mediated through mast cell modulation, though effects on other cell types within the wound microenvironment cannot be excluded. While definitive causality cannot be assigned, the integration of histological and transcriptomic data highlights mast cells as contributors to the IL-1β-driven inflammatory burden in diabetic wounds. These findings underscore the immunomodulatory capacity of Ac2–26 and its potential to restore resolution pathways in chronic wound settings, positioning it as a promising candidate for future therapeutic development. Full article
Show Figures

Figure 1

13 pages, 504 KiB  
Article
Type 2 Innate Lymphoid Cell (Ilc2)-Deficient Mice Are Transcriptionally Constrained During Nippostrongylus brasiliensis Infection
by Damarius S. Fleming, Fang Liu, Joseph F. Urban and Robert W. Li
Pathogens 2025, 14(6), 571; https://doi.org/10.3390/pathogens14060571 - 7 Jun 2025
Viewed by 528
Abstract
Mouse models serve as a means of examining immune changes when genes of interest are knocked out (KO). One group of immune gene-producing cells that have been identified is type 2 innate lymphoid cells (Ilc2). These cells are involved in the production of [...] Read more.
Mouse models serve as a means of examining immune changes when genes of interest are knocked out (KO). One group of immune gene-producing cells that have been identified is type 2 innate lymphoid cells (Ilc2). These cells are involved in the production of Th2 equivalent immune responses and signal cytokine production during the resolution of Nippostrongylus brasiliensis parasite infection in mice lungs. However, many questions about Ilc2 activity in the gut remain. To study this, retinoic acid receptor (RAR)-related orphan receptor alpha (RORα)-deficient mice were infected with adult N. brasiliensis and arranged into four treatment groups. Ten days post-infection (dpi), mouse ileum tissue was extracted for RNA-Seq. The RORα-deficient mice showed little change in gene expression at 10 dpi (N = 51) when compared to the WT mice at 10 dpi (N = 915), displaying dysregulation within the mouse gut. Based on the results, the gene expression in the gut of Ilc2-deficient mice denoted that the inability to craft Ilc2 cells left the mice unable to mount classical helminth immune responses involving humoral, mast cell, and antibody Th2-driven reactions. Overall, the results showed the importance of Ilc2 in the gut during N. brasiliensis infections and the effect that the lack of these cells had on immunity. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Figure 1

25 pages, 42422 KiB  
Article
Conceptualization and First Realization Steps for a Multi-Camera System to Capture Tree Streamlining in Wind
by Frederik O. Kammel and Alexander Reiterer
Forests 2024, 15(11), 1846; https://doi.org/10.3390/f15111846 - 22 Oct 2024
Viewed by 994
Abstract
Forests and trees provide a variety of essential ecosystem services. Maintaining them is becoming increasingly important, as global and regional climate change is already leading to major changes in the structure and composition of forests. To minimize the negative effects of storm damage [...] Read more.
Forests and trees provide a variety of essential ecosystem services. Maintaining them is becoming increasingly important, as global and regional climate change is already leading to major changes in the structure and composition of forests. To minimize the negative effects of storm damage risk, the tree and stand characteristics on which the storm damage risk depends must be known. Previous work in this field has consisted of tree-pulling tests and targets attached to selected branches. They fail, however, since the mass of such targets is very high compared to the mass of the branches, causing the targets to influence the tree’s response significantly, and because they cannot model dynamic wind loads. We, therefore, installed a multi-camera system consisting of nine cameras that are mounted on four masts surrounding a tree. With those cameras acquiring images at a rate of 10 Hz, we use photogrammetry and a semi-automatic feature-matching workflow to deduce a 3D model of the tree crown over time. Together with motion sensors mounted on the tree and tree-pulling tests, we intended to learn more about the wind-induced tree response of all dominant aerial tree parts, including the crown, under real wind conditions, as well as dampening processes in tree motion. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

19 pages, 8047 KiB  
Article
Experimental Characterization of Propeller-Induced Flow (PIF) below a Multi-Rotor UAV
by Alexander A. Flem, Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, Tor Olav Kristensen and Joachim Reuder
Atmosphere 2024, 15(3), 242; https://doi.org/10.3390/atmos15030242 - 20 Feb 2024
Cited by 2 | Viewed by 2118
Abstract
The availability of multi-rotor UAVs with lifting capacities of several kilograms allows for a new paradigm in atmospheric measurement techniques, i.e., the integration of research-grade sonic anemometers for airborne turbulence measurements. With their ability to hover and move very slowly, this approach yields [...] Read more.
The availability of multi-rotor UAVs with lifting capacities of several kilograms allows for a new paradigm in atmospheric measurement techniques, i.e., the integration of research-grade sonic anemometers for airborne turbulence measurements. With their ability to hover and move very slowly, this approach yields unrevealed flexibility compared to mast-based sonic anemometers for a wide range of boundary layer investigations that require an accurate characterization of the turbulent flow. For an optimized sensor placement, potential disturbances by the propeller-induced flow (PIF) must be considered. The PIF characterization can be done by CFD simulations, which, however, require validation. For this purpose, we conducted an experiment to map the PIF below a multi-rotor drone using a mobile array of five sonic anemometers. To achieve measurements in a controlled environment, the drone was mounted inside a hall at a 90° angle to its usual flying orientation, thus leading to the development of a horizontal downwash, which is not subject to a pronounced ground effect. The resulting dataset maps the PIF parallel to the rotor plane from two rotor diameters, beneath, to 10 D, and perpendicular to the rotor plane from the center line of the downwash to a distance of 3 D. This measurement strategy resulted in a detailed three-dimensional picture of the downwash below the drone in high spatial resolution. The experimental results show that the PIF quickly decreases with increasing distance from the centerline of the downwash in the direction perpendicular to the rotor plane. At a distance of 1 D from the centerline, the PIF reduced to less than 4 ms−1 within the first 5 D beneath the drone, and no conclusive disturbance was measured at 2 D out from the centerline. A PIF greater than 4 ms−1 was still observed along the center of the downwash at a distance of 10 D for both throttle settings tested (35% and 45%). Within the first 4 D under the rotor plane, flow convergence towards the center of the downwash was measured before changing to diverging, causing the downwash to expand. This coincides with the transition from the four individual downwash cores into a single one. The turbulent velocity fluctuations within the downwash were found to be largest towards the edges, where the shear between the PIF and the stagnant surrounding air is the largest. Full article
Show Figures

Figure 1

15 pages, 16639 KiB  
Article
Effect of Vertical Confinement and Blade Flexibility on Cross-Flow Turbines
by Mohamed-Larbi Kara-Mostefa, Ludovic Chatellier and Lionel Thomas
Energies 2023, 16(9), 3693; https://doi.org/10.3390/en16093693 - 25 Apr 2023
Viewed by 1649
Abstract
Both scientific and industrial communities have a growing interest in marine renewable energies. There is a wide variety of technologies in this domain, with different degrees of maturity. This study focuses on two models of a mast-free vertical axis Darrieus tidal turbine with [...] Read more.
Both scientific and industrial communities have a growing interest in marine renewable energies. There is a wide variety of technologies in this domain, with different degrees of maturity. This study focuses on two models of a mast-free vertical axis Darrieus tidal turbine with the objective of characterizing the effect of vertical confinement, rotor configuration, and fluid–structure interactions on their performances in free-surface flows. The first model comprised four straight rigid blades maintained by circular flanges on both ends of the rotor and the second model is equipped with free-ended interchangeable blades attached to a single upper flange. Two configurations of the second model mounted with either rigid or flexible blades were used, first for comparison with the dual-flange turbine, then in order to address the effect of fluid–structure interactions on the turbine performances. While the single-flange models exhibit a significantly lower efficiency at all operating points, it is observed that the use of flexible blades tends to enhance turbine performances at low Reynolds numbers. The flow topology obtained from PIV measurement at selected operating points is discussed with respect to the performance of each turbine model in order to highlight the role of the dynamic stall and blade–vortex interactions. Full article
(This article belongs to the Special Issue Tidal Turbines II)
Show Figures

Figure 1

18 pages, 3263 KiB  
Article
Performance Monitoring of Mast-Mounted Cup Anemometers Multivariate Analysis with ROOT
by Salvatore Mangano, Enrique Vega, Alejandro Martínez, Daniel Alfonso-Corcuera, Ángel Sanz-Andrés and Santiago Pindado
Sensors 2022, 22(24), 9774; https://doi.org/10.3390/s22249774 - 13 Dec 2022
Cited by 2 | Viewed by 2996
Abstract
This paper analyzes the field performance of two cup anemometers installed in Zaragoza (Spain). Data acquired over almost three years, from January 2015 to December 2017, were analyzed. The effect of the different variables (wind speed, temperature, harmonics, wind speed variations, etc.) on [...] Read more.
This paper analyzes the field performance of two cup anemometers installed in Zaragoza (Spain). Data acquired over almost three years, from January 2015 to December 2017, were analyzed. The effect of the different variables (wind speed, temperature, harmonics, wind speed variations, etc.) on two cup anemometers was studied. Data analysis was performed with ROOT, an open-source scientific software toolkit developed by CERN (Conseil Européen pour la Recherche Nucléaire) for the study of particle physics. The effects of temperature, wind speed, and wind dispersion (as a first approximation to atmospheric turbulence) on the first and third harmonics of the anemometers’ rotation speed (i.e., the anemometers’ output signature) were studied together with their evolution throughout the measurement period. The results are consistent with previous studies on the influence of velocity, turbulence, and temperature on the anemometer performance. Although more research is needed to assess the effect of the anemometer wear and tear degradation on the harmonic response of the rotor’s angular speed, the results show the impact of a recalibration on the performance of an anemometer by comparing this performance with that of a second anemometer. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

12 pages, 1166 KiB  
Review
B Cells at the Cross-Roads of Autoimmune Diseases and Auto-Inflammatory Syndromes
by Moncef Zouali
Cells 2022, 11(24), 4025; https://doi.org/10.3390/cells11244025 - 12 Dec 2022
Cited by 8 | Viewed by 3319
Abstract
Whereas autoimmune diseases are mediated primarily by T and B cells, auto-inflammatory syndromes (AIFS) involve natural killer cells, macrophages, mast cells, dendritic cells, different granulocyte subsets and complement components. In contrast to autoimmune diseases, the immune response of patients with AIFS is not [...] Read more.
Whereas autoimmune diseases are mediated primarily by T and B cells, auto-inflammatory syndromes (AIFS) involve natural killer cells, macrophages, mast cells, dendritic cells, different granulocyte subsets and complement components. In contrast to autoimmune diseases, the immune response of patients with AIFS is not associated with a breakdown of immune tolerance to self-antigens. Focusing on B lymphocyte subsets, this article offers a fresh perspective on the multiple cross-talks between both branches of innate and adaptive immunity in mounting coordinated signals that lead to AIFS. By virtue of their potential to play a role in adaptive immunity and to exert innate-like functions, B cells can be involved in both promoting inflammation and mitigating auto-inflammation in disorders that include mevalonate kinase deficiency syndrome, Kawasaki syndrome, inflammatory bone disorders, Schnitzler syndrome, Neuro-Behçet’s disease, and neuromyelitis optica spectrum disorder. Since there is a significant overlap between the pathogenic trajectories that culminate in autoimmune diseases, or AIFS, a more detailed understanding of their respective roles in the development of inflammation could lead to designing novel therapeutic avenues. Full article
(This article belongs to the Special Issue B Lymphocytes in Auto-Inflammatory Diseases)
Show Figures

Figure 1

29 pages, 8164 KiB  
Article
Design and Development of Bladeless Vibration-Based Piezoelectric Energy–Harvesting Wind Turbine
by Adel Younis, Zuomin Dong, Mohamed ElBadawy, Abeer AlAnazi, Hayder Salem and Abdullah AlAwadhi
Appl. Sci. 2022, 12(15), 7769; https://doi.org/10.3390/app12157769 - 2 Aug 2022
Cited by 13 | Viewed by 6922
Abstract
To meet the growing energy demand and increasing environmental concerns, clean and renewable fluid energy, such as wind and ocean energy, has received considerable attention. This study proposes a bladeless wind energy–harvesting device based vortex-induced vibrations (VIV). The proposed design is mainly composed [...] Read more.
To meet the growing energy demand and increasing environmental concerns, clean and renewable fluid energy, such as wind and ocean energy, has received considerable attention. This study proposes a bladeless wind energy–harvesting device based vortex-induced vibrations (VIV). The proposed design is mainly composed of a base, a hollow mast, and an elastic rod. The proposed design takes advantage of vortices generated when the airflow interacts with the mast, and the flow splits and then separates and generates vortices that eventually make the elastic rod oscillate, and out of these oscillations, energy can be harvested. Different airflow disruption geometries are studied and tested numerically and experimentally to identify the most effective shape and orientation for converting wind energy to electric energy. Computational fluid dynamics (CFD) modeling and simulations were performed on the elastic mast, a VIV device’s core wind energy–collecting component, to guide the device’s design. These simulations examined the mast-produced lift coefficient, velocity, pressure, and vorticity contours of different mast geometries. The mast’s vibration energy under different wind intensities was also experimentally tested using a scaled model in the wind tunnel. The level of converted electric power was measured and monitored using piezoelectric sensors mounted at different locations on the mast. The experimental study identified the ideal orientation angle of the mast and the best location for the piezoelectric sensors for harnessing more energy. The experiments confirmed the CFD simulation results that a complex cylinder design produces more power. The combined numerical and experimental studies led to an environmentally friendly, new VIV design with much improved power generation capabilities. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 1085 KiB  
Review
The Framework for Human Host Immune Responses to Four Types of Parasitic Infections and Relevant Key JAK/STAT Signaling
by Tsung-Han Wen, Kuo-Wang Tsai, Yan-Jun Wu, Min-Tser Liao, Kuo-Cheng Lu and Wan-Chung Hu
Int. J. Mol. Sci. 2021, 22(24), 13310; https://doi.org/10.3390/ijms222413310 - 10 Dec 2021
Cited by 24 | Viewed by 7776
Abstract
The human host immune responses to parasitic infections are complex. They can be categorized into four immunological pathways mounted against four types of parasitic infections. For intracellular protozoa, the eradicable host immunological pathway is TH1 immunity involving macrophages (M1), interferon gamma (IFNγ) CD4 [...] Read more.
The human host immune responses to parasitic infections are complex. They can be categorized into four immunological pathways mounted against four types of parasitic infections. For intracellular protozoa, the eradicable host immunological pathway is TH1 immunity involving macrophages (M1), interferon gamma (IFNγ) CD4 T cells, innate lymphoid cells 1 (NKp44+ ILC1), CD8 T cells (Effector-Memory4, EM4), invariant natural killer T cells 1 (iNKT1) cells, and immunoglobulin G3 (IgG3) B cells. For intracellular protozoa, the tolerable host immunological pathway is TH1-like immunity involving macrophages (M2), interferon gamma (IFNγ)/TGFβ CD4 T cells, innate lymphoid cells 1 (NKp44- ILC1), CD8 T cells (EM3), invariant natural killer T 1 (iNKT1) cells, and immunoglobulin A1 (IgA1) B cells. For free-living extracellular protozoa, the eradicable host immunological pathway is TH22 immunity involving neutrophils (N1), interleukin-22 CD4 T cells, innate lymphoid cells 3 (NCR+ ILC3), iNKT17 cells, and IgG2 B cells. For free-living extracellular protozoa, the tolerable host immunological pathway is TH17 immunity involving neutrophils (N2), interleukin-17 CD4 T cells, innate lymphoid cells 3 (NCR- ILC3), iNKT17 cells, and IgA2 B cells. For endoparasites (helminths), the eradicable host immunological pathway is TH2a immunity with inflammatory eosinophils (iEOS), interleukin-5/interleukin-4 CD4 T cells, interleukin-25 induced inflammatory innate lymphoid cells 2 (iILC2), tryptase-positive mast cells (MCt), iNKT2 cells, and IgG4 B cells. For ectoparasites (parasitic insects and arachnids), the eradicable host immunological pathway is TH2b immunity with inflammatory basophils, chymase- and tryptase-positive mast cells (MCct), interleukin-3/interleukin-4 CD4 T cells, interleukin-33 induced nature innate lymphoid cells 2 (nILC2), iNKT2 cells, and immunoglobulin E (IgE) B cells. The tolerable host immunity against ectoparasites and endoparasites is TH9 immunity with regulatory eosinophils, regulatory basophils, interleukin-9 mast cells (MMC9), thymic stromal lymphopoietin induced innate lymphoid cells 2, interleukin-9 CD4 T cells, iNKT2 cells, and IgA2 B cells. In addition, specific transcription factors important for specific immune responses were listed. This JAK/STAT signaling is key to controlling or inducing different immunological pathways. In sum, Tfh is related to STAT5β, and BCL6 expression. Treg is related to STAT5α, STAT5β, and FOXP3. TH1 immunity is related to STAT1α, STAT4, and T-bet. TH2a immunity is related to STAT6, STAT1α, GATA1, and GATA3. TH2b immunity is related to STAT6, STAT3, GATA2, and GATA3. TH22 immunity is associated with both STAT3α and AHR. THαβ immunity is related to STAT1α, STAT1β, STAT2, STAT3β, and ISGF. TH1-like immunity is related to STAT1α, STAT4, STAT5α, and STAT5β. TH9 immunity is related to STAT6, STAT5α, STAT5β, and PU.1. TH17 immunity is related to STAT3α, STAT5α, STAT5β, and RORG. TH3 immunity is related to STAT1α, STAT1β, STAT2, STAT3β, STAT5α, STAT5β, and ISGF. This categorization provides a complete framework of immunological pathways against four types of parasitic infections. This framework as well as relevant JAK/STAT signaling can provide useful knowledge to control allergic hypersensitivities and parasitic infections via development of vaccines or drugs in the near future. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Host-Pathogen Interaction)
Show Figures

Figure 1

28 pages, 9489 KiB  
Article
Quantification and Correction of Wave-Induced Turbulence Intensity Bias for a Floating LIDAR System
by Thibault Désert, Graham Knapp and Sandrine Aubrun
Remote Sens. 2021, 13(15), 2973; https://doi.org/10.3390/rs13152973 - 28 Jul 2021
Cited by 9 | Viewed by 3886
Abstract
Floating LIDAR systems (FLS) are a cost-effective way of surveying the wind energy potential of an offshore area. However, as turbulence intensity estimates are strongly affected by wave-induced buoy motion, it is essential to correct them. In this study, we quantify the turbulence [...] Read more.
Floating LIDAR systems (FLS) are a cost-effective way of surveying the wind energy potential of an offshore area. However, as turbulence intensity estimates are strongly affected by wave-induced buoy motion, it is essential to correct them. In this study, we quantify the turbulence intensity measurement error of a WindCube v2® mounted on a 12-ton anchored buoy as a function of met-ocean conditions, and we construct a subsequently applied correction method suitable for 10-min wind LIDAR data storage. To this end, we build a model to simulate the effect of buoyancy movements on the LIDAR’s wind measurements. We first apply the model to understand the mechanisms responsible for the wind LIDAR measurement error. The effect of the buoy’s rotational and translational motions on the radial wind speed measurements of the individual beams is first studied. Second, the temporality induced by the LIDAR operation is taken into account; the effect of motion subsampling and the interaction between the different measurement beam positions. From this model, a correction method is developed and successfully applied to a 13-week experimental campaign conducted off the shores of Fécamp (Normandie, France) involving the buoy-mounted WindCube v2® compared with cup anemometers from a met mast and a fixed WindCube v2® on a platform. The correction improves the linear regression against the fixed LIDAR turbulence intensity measurements, shifting the offset from ~0.03 to ~0.005 without post-processing the remaining peaks. Full article
Show Figures

Figure 1

24 pages, 14754 KiB  
Article
Field Measurements of Wind Characteristics Using LiDAR on a Wind Farm with Downwind Turbines Installed in a Complex Terrain Region
by Tetsuya Kogaki, Kenichi Sakurai, Susumu Shimada, Hirokazu Kawabata, Yusuke Otake, Katsutoshi Kondo and Emi Fujita
Energies 2020, 13(19), 5135; https://doi.org/10.3390/en13195135 - 2 Oct 2020
Cited by 12 | Viewed by 3178
Abstract
Downwind turbines have favorable characteristics such as effective energy capture in up-flow wind conditions over complex terrains. They also have reduced risk of severe accidents in the event of disruptions to electrical networks during strong storms due to the free-yaw effect of downwind [...] Read more.
Downwind turbines have favorable characteristics such as effective energy capture in up-flow wind conditions over complex terrains. They also have reduced risk of severe accidents in the event of disruptions to electrical networks during strong storms due to the free-yaw effect of downwind turbines. These favorable characteristics have been confirmed by wind-towing tank experiments and computational fluid dynamics (CFD) simulations. However, these advantages have not been fully demonstrated in field experiments on actual wind farms. In this study—although the final objective was to demonstrate the potential advantages of downwind turbines through field experiments—field measurements were performed using a vertical-profiling light detection and ranging (LiDAR) system on a wind farm with downwind turbines installed in complex terrains. To deduce the horizontal wind speed, vertical-profiling LiDARs assume that the flow of air is uniform in space and time. However, in complex terrains and/or in wind farms where terrain and/or wind turbines cause flow distortion or disturbances in time and space, this assumption is not valid, resulting in erroneous wind speed estimates. The magnitude of this error was evaluated by comparing LiDAR measurements with those obtained using a cup anemometer mounted on a meteorological mast and detailed analysis of line-of-sight wind speeds. A factor that expresses the nonuniformity of wind speed in the horizontal measurement plane of vertical-profiling LiDAR is proposed to estimate the errors in wind speed. The possibility of measuring and evaluating various wind characteristics such as flow inclination angles, turbulence intensities, wind shear and wind veer, which are important for wind turbine design and for wind farm operation is demonstrated. However, additional evidence of actual field measurements on wind farms in areas with complex terrains is required in order to obtain more universal and objective evaluations. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

11 pages, 1031 KiB  
Article
A Low-Profile Ferrite Dipole VHF Antenna for Integrated Mast Applications
by Won Bin Park, Son Trinh-Van, Youngoo Yang, Kang-Yoon Lee, Byunggil Yu, Jinwoo Park, Hojeong You and Keum Cheol Hwang
Appl. Sci. 2020, 10(5), 1642; https://doi.org/10.3390/app10051642 - 1 Mar 2020
Cited by 5 | Viewed by 6331
Abstract
In this paper, an extremely low-profile ferrite dipole antenna operating on the VHF band (30–300 MHz) is proposed. The design antenna consists of 44 plate-type ferrite cells arranged into two stacked ferrite layers: a bottom ferrite layer with 2 × 12 grid cells [...] Read more.
In this paper, an extremely low-profile ferrite dipole antenna operating on the VHF band (30–300 MHz) is proposed. The design antenna consists of 44 plate-type ferrite cells arranged into two stacked ferrite layers: a bottom ferrite layer with 2 × 12 grid cells and a top ferrite layer with 2 × 10 grid cells. The antenna is excited by an electric loop feeding structure and maximum gain performance is achieved when the loop feeding structure has five loops. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested at an outdoor range. The antenna weighs 1.45 kg and has electrical dimensions of approximately 0.0636 × 0.0112 × 0.0008 λ L 3 at the lowest operating frequency of 30 MHz. The measured realized gain varies from −31.48 to −2.44 dBi within the VHF band. Reasonable agreement is also obtained between the measurement and simulation results. To assess the performance of the proposed antenna, it was mounted on the integrated mast of an offshore patrol vessel (OPV) model. The antenna on the OPV was also simulated and the results discussed. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 11534 KiB  
Letter
Retrieval of Sediment Filling Factor in a Salt Panne from Multi-View Hyperspectral Imagery
by Rehman S. Eon, Charles M. Bachmann, Christopher S. Lapszynski, Anna Christina Tyler and Sarah Goldsmith
Remote Sens. 2020, 12(3), 422; https://doi.org/10.3390/rs12030422 - 28 Jan 2020
Cited by 8 | Viewed by 3786
Abstract
This work describes a study using multi-view hyperspectral imagery to retrieve sediment filling factor through inversion of a modified version of the Hapke radiative transfer model. We collected multi-view hyperspectral imagery from a hyperspectral imaging system mounted atop a telescopic mast from multiple [...] Read more.
This work describes a study using multi-view hyperspectral imagery to retrieve sediment filling factor through inversion of a modified version of the Hapke radiative transfer model. We collected multi-view hyperspectral imagery from a hyperspectral imaging system mounted atop a telescopic mast from multiple locations and viewing angles of a salt panne on a barrier island at the Virginia Coast Reserve Long-Term Ecological Research site. We also collected ground truth data, including sediment bulk density and moisture content, within the common field of view of the collected hyperspectral imagery. For samples below a density threshold for coherent effects, originally predicted by Hapke, the retrieved sediment filling factor correlates well with directly measured sediment bulk density ( R 2 = 0.85 ). The majority of collected samples satisfied this condition. The onset of the threshold occurs at significantly higher filling factors than Hapke’s predictions for dry sediments because the salt panne sediment has significant moisture content. We applied our validated inversion model to successfully map sediment filling factor across the common region of overlap of the multi-view hyperspectral imagery of the salt panne. Full article
(This article belongs to the Special Issue Monitoring Salt Marsh Condition with Remote Sensing)
Show Figures

Graphical abstract

14 pages, 12158 KiB  
Article
Monitoring and Modeling Roof-Level Wind Speed in a Changing City
by Kathrin Baumann-Stanzer, Sirma Stenzel, Gabriele Rau, Martin Piringer, Felix Feichtinger and Théophane Costabloz
Atmosphere 2020, 11(1), 87; https://doi.org/10.3390/atmos11010087 - 10 Jan 2020
Cited by 2 | Viewed by 2984
Abstract
Results of an observational campaign and model study are presented demonstrating how the wind field at roof-level in the urban area of Vienna changed due to the construction of a new building nearby. The investigation was designed with a focus on the wind [...] Read more.
Results of an observational campaign and model study are presented demonstrating how the wind field at roof-level in the urban area of Vienna changed due to the construction of a new building nearby. The investigation was designed with a focus on the wind energy yield of a roof-mounted small wind turbine but the findings are also relevant for air dispersion applications. Wind speed profiles above roof top are simulated with the complex fluid dynamics (CFD) model MISKAM (Mikroskaliges Klima- und Ausbreitungsmodell, microscale climate and dispersion model). The comparison to mast measurements reveals that the model underestimates the wind speeds within the first few meters above the roof, but successfully reproduces wind conditions at 10 m above the roof top (corresponding to about 0.5 times the building height). Scenario simulations with different building configurations at the adjacent property result in an increase or decrease of wind speed above roof top depending on the flow direction at the upper boundary of the urban canopy layer (UCL). The maximum increase or decrease in wind speed caused by the alternations in building structure nearby is found to be in the order of 10%. For the energy yield of a roof-mounted small wind turbine at this site, wind speed changes of this magnitude are negligible due to the generally low prevailing wind speeds of about 3.5 m s−1. Nevertheless, wind speed changes of this order could be significant for wind energy yield in urban areas with higher mean wind speeds. This effect in any case needs to be considered in siting and conducting an urban meteorological monitoring network in order to ensure the homogeneity of observed time-series and may alter the emission and dispersion of pollutants or odor at roof level. Full article
(This article belongs to the Special Issue Atmospheric Dispersion of Pollutants in Urban Environments)
Show Figures

Figure 1

18 pages, 11090 KiB  
Article
Retrieval of Salt Marsh Above-Ground Biomass from High-Spatial Resolution Hyperspectral Imagery Using PROSAIL
by Rehman S. Eon, Sarah Goldsmith, Charles M. Bachmann, Anna Christina Tyler, Christopher S. Lapszynski, Gregory P. Badura, David T. Osgood and Ryan Brett
Remote Sens. 2019, 11(11), 1385; https://doi.org/10.3390/rs11111385 - 11 Jun 2019
Cited by 23 | Viewed by 5940
Abstract
Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, [...] Read more.
Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R 2 = 0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing. Full article
(This article belongs to the Special Issue Satellite-Based Wetland Observation)
Show Figures

Graphical abstract

Back to TopTop