Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = marine-based drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 176
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

33 pages, 9434 KiB  
Article
Structure-Based Discovery of Orthosteric Non-Peptide GLP-1R Agonists via Integrated Virtual Screening and Molecular Dynamics
by Mansour S. Alturki, Reem A. Alkhodier, Mohamed S. Gomaa, Dania A. Hussein, Nada Tawfeeq, Abdulaziz H. Al Khzem, Faheem H. Pottoo, Shmoukh A. Albugami, Mohammed F. Aldawsari and Thankhoe A. Rants’o
Int. J. Mol. Sci. 2025, 26(13), 6131; https://doi.org/10.3390/ijms26136131 - 26 Jun 2025
Viewed by 780
Abstract
The development of orally bioavailable non-peptidomimetic glucagon-like peptide-1 receptor agonists (GLP-1RAs) offers a promising therapeutic avenue for the treatment of type 2 diabetes mellitus (T2DM) and obesity. An extensive in silico approach combining structure-based drug design and ligand-based strategies together with pharmacokinetic properties [...] Read more.
The development of orally bioavailable non-peptidomimetic glucagon-like peptide-1 receptor agonists (GLP-1RAs) offers a promising therapeutic avenue for the treatment of type 2 diabetes mellitus (T2DM) and obesity. An extensive in silico approach combining structure-based drug design and ligand-based strategies together with pharmacokinetic properties and drug-likeness predictions is implemented to identify novel non-peptidic GLP-1RAs from the COCONUT and Marine Natural Products (CMNPD) libraries. More than 700,000 compounds were screened by shape-based similarity filtering in combination with precision docking against the orthosteric site of the GLP-1 receptor (PDB ID: 6X1A). The docked candidates were further assessed with the molecular mechanics MM-GBSA tool to check the binding affinities; the final list of candidates was validated by running a 500 ns long MD simulation. Twenty final hits were identified, ten from each database. The hits contained compounds with reported antidiabetic effects but with no evidence of GLP-1 agonist activity, including hits 1, 6, 7, and 10. These findings proposed a novel mechanism for these hits through GLP-1 activity and positioned the other hits as potential promising scaffolds. Among the studied compounds—especially hits 1, 5, and 9—possessed strong and stable interactions with critical amino acid residues such as TRP-203, PHE-381, and GLN-221 at the active site of the 6X1A-substrate along with favorable pharmacokinetic profiles. Moreover, the RMSF and RMSD plots further suggested the possibility of stable interactions. Specifically, hit 9 possessed the best docking score with a ΔG_bind value of −102.78 kcal/mol, surpassing even the control compound in binding affinity. The ADMET profiling also showed desirable drug-likeness and pharmacokinetic characteristics for hit 9. The pipeline of computational integration underscores the potential of non-peptidic alternatives in natural product libraries to pursue GLP-1-mediated metabolic therapy into advanced preclinical validation. Full article
(This article belongs to the Special Issue Small Molecule Drug Design and Research: 3rd Edition)
Show Figures

Figure 1

35 pages, 1749 KiB  
Review
Marine-Derived Compounds Combined with Nanoparticles: A Focus on the Biomedical and Pharmaceutical Sector
by Laura M. Teixeira, Catarina P. Reis and Rita Pacheco
Mar. Drugs 2025, 23(5), 207; https://doi.org/10.3390/md23050207 - 13 May 2025
Cited by 1 | Viewed by 989
Abstract
The ocean is an extraordinary natural source of a wide range of bioactive compounds. These compounds, including proteins, phenolics, polysaccharides, pigments, vitamins, and fatty acids, possess unique biological properties that are increasingly being explored in the field of nanotechnology across diverse sectors. Among [...] Read more.
The ocean is an extraordinary natural source of a wide range of bioactive compounds. These compounds, including proteins, phenolics, polysaccharides, pigments, vitamins, and fatty acids, possess unique biological properties that are increasingly being explored in the field of nanotechnology across diverse sectors. Among marine-derived nanoparticles, promising applications have emerged in the biomedical and pharmaceutical fields, particularly metallic nanoparticles and polysaccharide-based drug delivery systems. This review provides a unique perspective on the integration of two research areas: the exploration of marine bioresources as bioactive compounds sources with nanotechnological methodologies to develop sustainable, safe, stable and functional marine-derived NPs. It highlights recent advancements in the green synthesis of MNPs and the formulation of drug delivery systems using marine polysaccharides. This review also describes the recent trends over the past ten years and discusses the major challenges and limitations associated with these approaches, including variability in biological sources, batch-to-batch inconsistency, mechanistic uncertainties, and difficulties in reproducibility and scalability. Furthermore, it emphasizes the need for standardized protocols and the integration of life cycle assessments (LCA) to evaluate environmental and economic viability for effective translating marine-derives nanoparticles from research to clinical applications. Full article
(This article belongs to the Special Issue Marine Polysaccharides-Based Biomaterials)
Show Figures

Figure 1

17 pages, 2664 KiB  
Article
Exploring the Chemical and Pharmaceutical Potential of Kapakahines A–G Using Conceptual Density Functional Theory-Based Computational Peptidology
by Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik
Computation 2025, 13(5), 111; https://doi.org/10.3390/computation13050111 - 7 May 2025
Viewed by 544
Abstract
Kapakahines A–G are natural products isolated from the marine sponge Carteriospongia sp., characterized by complex molecular architectures composed of fused rings and diverse functional groups. Preliminary studies have indicated that some of these peptides may exhibit cytotoxic and antitumor activities, which has prompted [...] Read more.
Kapakahines A–G are natural products isolated from the marine sponge Carteriospongia sp., characterized by complex molecular architectures composed of fused rings and diverse functional groups. Preliminary studies have indicated that some of these peptides may exhibit cytotoxic and antitumor activities, which has prompted interest in further exploring their chemical and pharmacokinetic properties. Computational chemistry—particularly Conceptual Density Functional Theory (CDFT)-based Computational Peptidology (CP)—offers a valuable framework for investigating such compounds. In this study, the CDFT-CP approach is applied to analyze the structural and electronic properties of Kapakahines A–G. Alongside the calculation of global and local reactivity descriptors, predicted ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles and pharmacokinetic parameters, including pKa and LogP, are evaluated. The integrated computational analysis provides insights into the stability, reactivity, and potential drug-like behavior of these marine-derived cyclopeptides and contributes to the theoretical groundwork for future studies aimed at optimizing their bioactivity and safety profiles. Full article
(This article belongs to the Section Computational Chemistry)
Show Figures

Graphical abstract

26 pages, 21610 KiB  
Article
Effects of Amphidinium carterae Phytocompounds on Proliferation and the Epithelial–Mesenchymal Transition Process in T98G Glioblastoma Cells
by Julia Oyón Díaz de Cerio, Giulia Venneri, Ida Orefice, Martina Forestiero, Carlos Roman Baena, Gianluca Bruno Tassone, Isabella Percopo, Angela Sardo, Maria Luisa Panno, Francesca Giordano and Valeria Di Dato
Mar. Drugs 2025, 23(4), 173; https://doi.org/10.3390/md23040173 - 16 Apr 2025
Viewed by 910
Abstract
Glioblastoma (GBM) is an aggressive type of brain cancer, frequently invasive, with a low survival rate and complicated treatment. Recent studies have shown the modulation of epithelial–mesenchymal transition (EMT) biomarkers in glioblastoma cells associated with tumor progression, chemoresistance, and relapse after treatment. GBM [...] Read more.
Glioblastoma (GBM) is an aggressive type of brain cancer, frequently invasive, with a low survival rate and complicated treatment. Recent studies have shown the modulation of epithelial–mesenchymal transition (EMT) biomarkers in glioblastoma cells associated with tumor progression, chemoresistance, and relapse after treatment. GBM handlings are based on aggressive chemical therapies and surgical resection with poor percentage of survival, boosting the search for more specific remedies. Marine eukaryotic microalgae are rapidly advancing as a source of anticancer drugs due to their ability to produce potent secondary metabolites with biological activity. Among such microalgae, dinoflagellates, belonging to the species Amphidinium carterae, are known producers of neurotoxins and cytotoxic compounds. We tested the capability of chemical extracts from two different strains of A. carterae to modulate the EMT markers in T98G, human GBM cells. In vitro proliferation and migration studies and EMT biomarkers’ abundance and modulation assays showed that the different A. carterae strains differently modulated both EMT markers and the proliferation/migration capability of GBM cells. This study sets the bases to find a marine microalgae-derived natural compound that could potentially target the epithelial–mesenchymal transition in brain-derived tumor types. Full article
(This article belongs to the Special Issue Metabolites in Marine Planktonic Organisms)
Show Figures

Figure 1

19 pages, 1009 KiB  
Review
Recent Advances in Research on Inhibitory Effects of Seaweed Extracts Against Parasites
by Wenbing Cheng, Xiangyang Yang, Dengfeng Yang, Ting Zhang, Liguang Tian, Jiahao Dao, Zheng Feng and Wei Hu
Mar. Drugs 2025, 23(4), 171; https://doi.org/10.3390/md23040171 - 16 Apr 2025
Viewed by 761
Abstract
Parasitic diseases pose a serious threat to the health of humans and the steady development of livestock husbandry. Although there are certain drug-based treatment methods, with the widespread application of drugs, various parasites are gradually developing drug resistance. Natural products are highly favored [...] Read more.
Parasitic diseases pose a serious threat to the health of humans and the steady development of livestock husbandry. Although there are certain drug-based treatment methods, with the widespread application of drugs, various parasites are gradually developing drug resistance. Natural products are highly favored by researchers due to their characteristics such as low toxicity, multi-target effects, and low risk of drug resistance. The ocean, as the largest treasure trove of biological resources on Earth, has a special ecosystem (high pressure, high salt, and low oxygen). This enables marine organisms to develop a large number of unique structures during their survival competition. So far, a variety of compounds, such as terpenoids, have been isolated from the algae. As potential drugs, these compounds have certain curative effects on various diseases, including tumors, parasitic diseases, Alzheimer’s disease, and tuberculosis. This paper systematically reviews and analyzes the current advances in research on the antiparasite effects of seaweed extracts. The primary objective of this research is to formulate a conceptual foundation for marine pharmaceutical exploration, focusing on the creation of innovative marine-based medicinal compounds to overcome the emerging problem of parasite resistance to conventional treatments. Full article
Show Figures

Figure 1

21 pages, 2433 KiB  
Review
Harnessing Microalgae as Sustainable Cell Factories for Polyamine-Based Nanosilica for Biomedical Applications
by Sik Yoon, Boon Huat Bay and Ken Matsumoto
Molecules 2025, 30(8), 1666; https://doi.org/10.3390/molecules30081666 - 8 Apr 2025
Cited by 2 | Viewed by 931
Abstract
Microalgae are microscopic unicellular organisms that inhabit marine, freshwater, and moist terrestrial ecosystems. The vast number and diversity of microalgal species provide a significant reservoir of biologically active compounds, highly promising for biomedical applications. Diatoms are unicellular eukaryotic algae belonging to the class [...] Read more.
Microalgae are microscopic unicellular organisms that inhabit marine, freshwater, and moist terrestrial ecosystems. The vast number and diversity of microalgal species provide a significant reservoir of biologically active compounds, highly promising for biomedical applications. Diatoms are unicellular eukaryotic algae belonging to the class Bacillariophyceae. They possess intricately structured silica-based cell walls, which contain long-chain polyamines that play important roles in the formation of silica. Long-chain polyamines are uncommon polyamines found only in organisms that produce biosilica. Diatomite, which is a marine sediment of the remains of the silica skeleton of diatoms, could be an abundant source of biogenic silica that can easily be converted to silica particles. This concise review focuses on the biofabrication of polyamine-based nanosilica from diatoms and highlights the possibility of utilizing diatom biosilica as a nanocarrier for drug and siRNA delivery, bioimaging, and bone tissue engineering. The challenges that may affect diatom production, including environmental stresses and climate change, are discussed together with the prospect of increasing diatom-based biosilica production with the desired nanostructures via genetic manipulation. Full article
Show Figures

Graphical abstract

14 pages, 6471 KiB  
Article
Marine-Derived Yaequinolone Derivative CHNQD-02792 Suppresses Colorectal Cancer Cell Proliferation and Induces Apoptosis via MAPK Pathway Modulation
by Jia-Qi Kang, Tian-Yi Zhou, Wen-Hui Wang, Mei-Yan Wei and Chang-Lun Shao
Mar. Drugs 2025, 23(4), 136; https://doi.org/10.3390/md23040136 - 21 Mar 2025
Cited by 1 | Viewed by 729
Abstract
Colorectal cancer is currently the third most common malignancy, and the toxic side effects of clinical therapeutic drugs often influence treatment outcomes. Marine-derived quinolone alkaloids exhibit various biological activities and are particularly notable for their antitumor properties. Compounds 113 were semi-synthesized [...] Read more.
Colorectal cancer is currently the third most common malignancy, and the toxic side effects of clinical therapeutic drugs often influence treatment outcomes. Marine-derived quinolone alkaloids exhibit various biological activities and are particularly notable for their antitumor properties. Compounds 113 were semi-synthesized based on 4′-desmethoxyyaequinolone J1, which is a 4-phenyl derivative of the natural quinolone alkaloid yaequinolone J1 and was isolated from Penicillium sp. FKI-2140. This study is the first to investigate the antitumor activity of 113 in colorectal cancer cells through proliferation, clonality, apoptosis, cell cycle, and MAPK signaling pathway. Cytotoxicity screening against seven colorectal cancer cell lines revealed that CHNQD-02792 (13) had the most sensitivity to HT-29 cells (IC50 = 4.5 μM), far exceeding positive control 5-fluorouracil (IC50 = 15.58 μM). The plate cloning assay revealed that CHNQD-02792 completely inhibited the growth of HT-29 cells at the concentration of 9 μM. CHNQD-02792 (4.5 μM) inhibited CDK1 expression and triggered G2/M phase arrest in HT-29 cells. Mechanistic analysis revealed that CHNQD-02792 induced apoptosis by suppressing the anti-apoptotic protein Bcl-2 and upregulating the pro-apoptotic proteins Caspase-3 and Bax. Furthermore, CHNQD-02792 inhibited ERK and JNK phosphorylation and thus highlighted its regulatory role in MAPK signaling. These findings suggest that CHNQD-02792 exerts cytotoxic effects on HT-29 cells via dual mechanisms: inducing G2/M arrest and apoptosis while regulating MAPK signaling through ERK/JNK dephosphorylation. This study demonstrates the dual targeting of CHNQD-02792 against tumor cell proliferation and survival pathways, providing a foundation for further development of anti-colorectal cancer drugs. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Graphical abstract

45 pages, 9208 KiB  
Review
Therapeutic Potential of Plant- and Marine-Derived Bioactive Compounds in Prostate Cancer: Mechanistic Insights and Translational Applications
by Arif Jamal Siddiqui, Mohd Adnan, Juhi Saxena, Mohammad Jahoor Alam, Abdelmushin Abdelgadir, Riadh Badraoui and Ritu Singh
Pharmaceuticals 2025, 18(3), 286; https://doi.org/10.3390/ph18030286 - 20 Feb 2025
Cited by 2 | Viewed by 1950
Abstract
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery [...] Read more.
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery of new pharmaceutical compounds. Medicinal plants, in particular, provide bioactive substances like alkaloids, phenolic compounds, terpenes, and steroids. In addition, marine natural products play a crucial role in the search for novel cancer treatments. A substantial number of anticancer drugs have been derived from natural sources, including plants, marine organisms, and microorganisms. In fact, over the past 60 years, 80% of new chemical entities have originated from natural sources, which are generally considered safer than synthetic compounds. This review seeks to emphasize the role of phytochemical compounds derived from both plant and marine sources in prostate cancer, highlighting their potential therapeutic impact. It is also intended to support global researchers working on the identification of natural-based treatments for prostate cancer. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

17 pages, 4152 KiB  
Article
ConoGPT: Fine-Tuning a Protein Language Model by Incorporating Disulfide Bond Information for Conotoxin Sequence Generation
by Guohui Zhao, Cheng Ge, Wenzheng Han, Rilei Yu and Hao Liu
Toxins 2025, 17(2), 93; https://doi.org/10.3390/toxins17020093 - 17 Feb 2025
Viewed by 952
Abstract
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo [...] Read more.
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo extraction or chemical synthesis, face challenges of high costs, long cycles, and limited exploration of sequence diversity. To address these issues, we propose the ConoGPT model, a conotoxin sequence generation model that fine-tunes the ProtGPT2 model by incorporating disulfide bond information. Experimental results demonstrate that sequences generated by ConoGPT exhibit high consistency with authentic conotoxins in physicochemical properties and show considerable potential for generating novel conotoxins. Furthermore, compared to models without disulfide bond information, ConoGPT outperforms in terms of generating sequences with ordered structures. The majority of the filtered sequences were shown to possess significant binding affinities to nicotinic acetylcholine receptor (nAChR) targets based on molecular docking. Molecular dynamics simulations of the selected sequences further confirmed the dynamic stability of the generated sequences in complex with their respective targets. This study not only provides a new technological approach for conotoxin design but also offers a novel strategy for generating functional peptides. Full article
(This article belongs to the Special Issue Conotoxins: Evolution, Classifications and Targets)
Show Figures

Figure 1

17 pages, 9218 KiB  
Article
Blockade of the STAT3/BCL-xL Axis Leads to the Cytotoxic and Cisplatin-Sensitizing Effects of Fucoxanthin, a Marine-Derived Carotenoid, on Human Bladder Urothelial Carcinoma Cells
by Wen-Chyi Dai, Tzu-Hsuan Chen, Tzu-Ching Peng, Yung-Ching He, Chao-Yu Hsu and Chia-Che Chang
Mar. Drugs 2025, 23(2), 54; https://doi.org/10.3390/md23020054 - 22 Jan 2025
Viewed by 1589
Abstract
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 [...] Read more.
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogenic transcription factor often overactivated in various cancers, making it an appealing drug target. Fucoxanthin, a marine carotenoid, has significant anticancer properties. This study explored Fucoxanthin’s cytotoxic effects and its potential to potentiate the efficacy of Cisplatin, along with the mechanisms underlying these effects, on human bladder TCC cells. We demonstrated that Fucoxanthin is cytotoxic to bladder TCC cells by inducing apoptosis, evidenced by z-VAD-fmk-mediated annulment of Fucoxanthin’s cytotoxicity. Furthermore, Fucoxanthin reduced the levels of inherent or interleukin-6-induced tyrosine 705-phosphorylated STAT3 accompanied by downregulating BCL-xL, a well-established STAT3 target. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, or BCL-xL thwarted Fucoxanthin’s proapoptotic and cytotoxic actions. Moreover, Fucoxanthin at subtoxic dosages enhanced the susceptibility to Cisplatin-induced apoptosis of bladder TCC cells initially resistant to Cisplatin. Remarkably, this Cisplatin-sensitizing effect of Fucoxanthin was abrogated when cells ectopically expressed STAT3-C or BCL-xL. Overall, for the first time, we proved that the proapoptotic, cytotoxic, and Cisplatin-sensitizing effects of Fucoxanthin on human bladder TCC cells are attributed to the blockade of the STAT3/BCL-xL axis. Our findings highlight that targeting the STAT3/BCL-xL axis is a promising strategy to eliminate bladder TCC cells and facilitate Cisplatin sensitization, and further support the potential of incorporating Fucoxanthin into Cisplatin-based chemotherapy for treating bladder cancer. Full article
(This article belongs to the Special Issue Marine Natural Products as Regulators in Cell Signaling Pathway)
Show Figures

Figure 1

19 pages, 1560 KiB  
Review
Anti-Inflammatory Effects of Algae-Derived Biomolecules in Gut Health: A Review
by Alessia Brizzi, Rosaria Margherita Rispoli, Giuseppina Autore and Stefania Marzocco
Int. J. Mol. Sci. 2025, 26(3), 885; https://doi.org/10.3390/ijms26030885 - 21 Jan 2025
Cited by 2 | Viewed by 2338
Abstract
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing [...] Read more.
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing a burden on the quality of life of affected people and on healthcare systems worldwide. Available drug therapies are often ineffective due to the chronic nature of these diseases, and prolonged administration of drugs can result in severe side effects for the patient or a lack of efficacy. In addition, there is the growing problem of bacterial resistance to synthetic antibiotics. Together, these factors have led to a strong research focus on the discovery of natural products capable of treating IBD. Recently, there has been a growing interest in compounds derived from marine sources, mainly algae, due to their bioactive secondary metabolites with anti-inflammatory properties well known in the literature. Based on this evidence, this review aimed to evaluate the anti-inflammatory potential of algae-derived biomolecules in IBD. In particular, interesting species from green algae (e.g., Chlorella vulgaris and Ulva pertusa), brown algae (e.g., Macrocystis pyrifera and Ecklonia cava) and red algae (e.g., Porphyra tenera and Grateloupia turuturu) are included in this review due to their proven anti-inflammatory properties. For this purpose, an extensive literature search was conducted using several databases. The results suggest that both macroalgae and microalgae have remarkable potential for IBD therapy due to the anti-inflammatory and antioxidant activities of their bioactive compounds. However, while the preclinical evidence is encouraging, further and long-term clinical studies are needed to better understand their mechanisms of action in order to determine the true efficacy of marine algae in the treatment of IBD. Full article
Show Figures

Figure 1

19 pages, 1386 KiB  
Review
Galectins and Liver Diseases
by Shima Mimura, Asahiro Morishita, Kyoko Oura, Kei Takuma, Mai Nakahara, Tomoko Tadokoro, Koji Fujita, Joji Tani and Hideki Kobara
Int. J. Mol. Sci. 2025, 26(2), 790; https://doi.org/10.3390/ijms26020790 - 18 Jan 2025
Cited by 2 | Viewed by 1245
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). [...] Read more.
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases. Full article
(This article belongs to the Special Issue Galectins (Gals))
Show Figures

Figure 1

21 pages, 4921 KiB  
Article
Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma
by Angélica Luna-Nophal, Fernando Díaz-Castillo, Vanessa Izquierdo-Sánchez, Jesús B. Velázquez-Fernández, Mario Orozco-Morales, Luis Lara-Mejía, Johana Bernáldez-Sarabia, Noemí Sánchez-Campos, Oscar Arrieta, José Díaz-Chávez, Jorge-Ismael Castañeda-Sánchez, Alexei-Fedorovish Licea-Navarro and Saé Muñiz-Hernández
Mar. Drugs 2025, 23(1), 32; https://doi.org/10.3390/md23010032 - 10 Jan 2025
Cited by 1 | Viewed by 1501
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some [...] Read more.
Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some species of marine snails have been demonstrated to be potential sources of novel anticancer molecules. This study analyzed the anticancer effects in vitro and in vivo of two peptides found in C. californicus. The effects of s-cal14.1b and s-cal14.2b on cell proliferation, apoptosis, and cytotoxicity were evaluated in 2D and 3D cultures of MPM-derived cells. Proteomics analysis of 3D cultures treated with conotoxins was performed to examine changes in expression or abundance. And the therapeutic effects of both conotoxins were evaluated in MPM mouse xenografts. s-cal14.1b and s-cal14.2b induced apoptosis and cytotoxicity in 2D and 3D cultures. However, only s-cal14.1b modified spheroid growth. Approximately 600 proteins exhibited important differential expression, which was more heterogeneous in H2452 vs MSTO-211H spheroids. The in silico protein functional analysis showed modifications in the biological pathways associated with carcinogenesis. CAPN1, LIMA1, ANXA6, HUWE1, PARP1 or PARP4 proteins could be potential cell targets for conotoxins and serve as biomarkers in MPM. Finally, we found that both conotoxins reduced the tumor mass in MPM xenografts; s-cal14.1b reached statistical significance. Based on these results, s-cal14.1b and s-cal14.2b conotoxins could be potential therapeutic drugs for MPM neoplasms with no apparent side effects on normal cells. Full article
Show Figures

Graphical abstract

16 pages, 3211 KiB  
Article
Structure and Biosynthetic Gene Cluster of Sulfated Capsular Polysaccharide from the Marine Bacterium Vibrio sp. KMM 8419
by Maxim S. Kokoulin, Yulia V. Savicheva, Nadezhda Y. Otstavnykh, Valeria V. Kurilenko, Dmitry A. Meleshko and Marina P. Isaeva
Int. J. Mol. Sci. 2024, 25(23), 12927; https://doi.org/10.3390/ijms252312927 - 1 Dec 2024
Cited by 1 | Viewed by 1864
Abstract
Vibrio sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete Chaetopterus cautus collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM [...] Read more.
Vibrio sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete Chaetopterus cautus collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM 8419. The CPS was isolated and studied by one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of the CPS was about 254 kDa. The CPS consisted of disaccharide repeating units of D-glucose and sulfated and acetylated L-rhamnose established as →2)-α-L-Rhap3S4Ac-(1→6)-α-D-Glcp-(1→. To identify the genes responsible for CPS biosynthesis, whole-genome sequencing of KMM 8419 was carried out. Based on the genome annotations together with the Interproscan, UniProt and AntiSMASH results, a CPS-related gene cluster of 80 genes was found on chromosome 1. This cluster contained sets of genes encoding for the nucleotide sugar biosynthesis (UDP-Glc and dTDP-Rha), assembly (glycosyltransferases (GT)), transport (ABC transporter) and sulfation (PAPS biosynthesis and sulfotransferases) of the sulfated CPS. A hypothetical model for the assembly and transportation of the sulfated CPS was also proposed. In addition, this locus included genes for O-antigen biosynthesis. Further studies of biological activity, the structure–activity relationship in the new sulfated polysaccharide and its biosynthesis are necessary for the development of potent anticancer agents or drug delivery systems. Full article
Show Figures

Figure 1

Back to TopTop