Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = marine bio-invasion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5225 KiB  
Article
Community Characteristics and Potential Risk of Nekton in Waters Adjacent to Ningde Nuclear Power Plant in Fujian, China
by Wen Huang, Biqi Zheng, Dong Wen, Feipeng Wang, Lijing Fan, Zefeng Yu, Wei Liu and Shuang Zhao
Biology 2025, 14(5), 481; https://doi.org/10.3390/biology14050481 - 27 Apr 2025
Cited by 1 | Viewed by 608
Abstract
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August [...] Read more.
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August 2023 in the waters near Ningde NPP in Fujian, China, focusing on nekton species composition, dominant species, abundance, biomass, and diversity indices. We conducted statistical analyses to examine potential correlations between the community structure of these organisms and environmental factors. We recorded 120 species of nekton that belonged to 20 orders, 57 families, and 92 genera, including 72 species of fish, 23 species of shrimp, 19 species of crabs, and 6 species of cephalopods. Pearson and redundancy analyses showed that pH, DIP, and inorganic nitrogen were the main environmental factors driving the observed temporal changes in the nekton community structure in the seawater intake area. We also found that May to October is the peak period for nekton abundance and biomass, and during this time, there is a high risk of nekton blocking the cooling water system of the NPP. These results are of practical significance for NPP managers to prevent and control the clogging of the cooling water system by marine organisms, and the diversity and abundance data provide a theoretical basis for bioecological restoration and management of the area around the Ningde NPP. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

28 pages, 3510 KiB  
Review
Harnessing Ascidians as Model Organisms for Environmental Risk Assessment
by Amalia Rosner and Baruch Rinkevich
Environments 2024, 11(11), 232; https://doi.org/10.3390/environments11110232 - 23 Oct 2024
Cited by 2 | Viewed by 2331
Abstract
Environmental Risk Assessment (ERA) often relies on a restricted set of species as bio-indicators, introducing uncertainty when modeling complex environmental variables. This may lead to oversimplified or erroneous risk assessments. Ascidians, marine filter-feeding sessile chordates, are valuable models for scientific research in various [...] Read more.
Environmental Risk Assessment (ERA) often relies on a restricted set of species as bio-indicators, introducing uncertainty when modeling complex environmental variables. This may lead to oversimplified or erroneous risk assessments. Ascidians, marine filter-feeding sessile chordates, are valuable models for scientific research in various biological fields such as stem cell biology, embryogenesis, regeneration, innate immunity, and developmental biology. Their global distribution, sensitivity to pollutants, high abundance, mass sexual reproduction, and habitation in coastal areas impacted by anthropogenic pollution make them excellent indicators for monitoring marine pollution and global environmental changes, including biological invasions and species diversity diminution cases. Despite their potential as environmental bioindicators, ascidians remain underutilized in ERAs (≤0.13% of ERA studies), particularly in the field of chemical pollution impact assessment, primarily due to a lack of standardization. This underrepresentation poses a challenge for accurate modeling, especially in models relying on a broad range of species (e.g., Species Sensitivity Distributions). Given these constraints, expanding the use of ascidians in ERAs could improve the comprehension and precision of environmental changes and their assessments. This underscores the necessity for future research to establish standardized testing protocols and choose the most suitable ascidian species for inclusion in ERAs. Full article
(This article belongs to the Special Issue Environmental Risk Assessment of Aquatic Ecosystem)
Show Figures

Figure 1

14 pages, 3508 KiB  
Article
Histopathology and Phylogeny of the Dinoflagellate Hematodinium perezi and the Epibiotic Peritrich Ciliate Epistylis sp. Infecting the Blue Crab Callinectes sapidus in the Eastern Mediterranean
by Athanasios Lattos, Dimitrios K. Papadopoulos, Ioannis A. Giantsis, Alexios Stamelos and Dimitrios Karagiannis
Microorganisms 2024, 12(3), 456; https://doi.org/10.3390/microorganisms12030456 - 23 Feb 2024
Cited by 6 | Viewed by 2215
Abstract
Bioinvasions constitute both a direct and an indirect threat to ecosystems. Direct threats include pressures on local trophic chains, while indirect threats might take the form of an invasion of a microorganism alongside its host. The marine dinoflagellate Hematodinium perezi, parasitizing blue [...] Read more.
Bioinvasions constitute both a direct and an indirect threat to ecosystems. Direct threats include pressures on local trophic chains, while indirect threats might take the form of an invasion of a microorganism alongside its host. The marine dinoflagellate Hematodinium perezi, parasitizing blue crabs (Callinectes sapidus), has a worldwide distribution alongside its host. In Greece, fluctuations in the blue crab population are attributed to overexploitation and the effects of climate change. The hypothesis of the present study was that blue crab population reductions cannot only be due to these factors, and that particular pathogens may also be responsible for the fluctuations. To investigate this hypothesis, both lethargic and healthy blue crab specimens were collected from three different fishing sites in order to assess the health status of this important species. Together with the lethargic responses, the hemolymph of the infested crabs presented a milky hue, indicating the first signs of parasitic infestation with H. perezi. The histopathological results and molecular identification demonstrated the effect of the presence of H. perezi in the internal organs and their important role in the mortality of blue crabs. Specifically, H. perezi, in three different tissues examined (heart, gills, hepatopancreas), affected the hemocytes of the species, resulting in alterations in tissue structure. Apart from this dinoflagellate parasite, the epibiotic peritrich ciliate Epistylis sp. was also identified, infecting the gills. This study represents the first detection of H. perezi in the eastern Mediterranean, demonstrating that this is the main causative agent of blue crab mortality on Greek coastlines. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

14 pages, 6216 KiB  
Article
Invasive and Rare Aquatic Invertebrates of Taiwan with a Focus on Their Dormancy
by Victor Alekseev, Hans-Uwe Dahms, Jiang-Shiou Hwang and Natalia Sukhikh
Water 2023, 15(17), 3155; https://doi.org/10.3390/w15173155 - 4 Sep 2023
Cited by 2 | Viewed by 2404
Abstract
Invertebrates in tropical ecosystems are generally considered to have little or no need for a dormant phase due to the stability of the habitat. However, resting stages of aquatic organisms are occasionally found here as well. This fact increases the possibility of transport [...] Read more.
Invertebrates in tropical ecosystems are generally considered to have little or no need for a dormant phase due to the stability of the habitat. However, resting stages of aquatic organisms are occasionally found here as well. This fact increases the possibility of transport of tropical organisms by ships’ ballast water, which is the main vector for the spread of alien aquatic organisms between continents. During a study of resting stages in the bottom sediments of the island of Taiwan in 2006–2007, nine species of invertebrates were found, invasive or new to the fauna of the island, with some of them forming large banks of resting stages in sediments. Full article
(This article belongs to the Special Issue Biological Invasion in Aquatic Ecosystems)
Show Figures

Figure 1

18 pages, 1648 KiB  
Article
Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood
by Mathilde Monachon, Charlène Pelé-Meziani, Sathiyanarayanan Ganesan, Sabine de Weck, Friederike Moll-Dau, Janet Schramm, Katharina Schmidt-Ott and Edith Joseph
Forests 2023, 14(8), 1656; https://doi.org/10.3390/f14081656 - 16 Aug 2023
Cited by 2 | Viewed by 1424
Abstract
An innovative bio method was investigated to extract harmful iron and sulfur species from waterlogged wood samples. The method was compared with a chemical treatment. Both approaches were applied on lacustrine and marine samples, from different wood genera, to evaluate the versatility of [...] Read more.
An innovative bio method was investigated to extract harmful iron and sulfur species from waterlogged wood samples. The method was compared with a chemical treatment. Both approaches were applied on lacustrine and marine samples, from different wood genera, to evaluate the versatility of the proposed bio method. Non-invasive and non-destructive methods were carried out to investigate both bio-based and chemical treatments. The result was that some wood genera were more affected by the bio approach, with a clear distinction between lacustrine beech and pine against oak and lime wood species. The chemical approach showed potential harm for the wooden structure, with acidic pH values and an increase of maximum water content, both implying degradation of the wood structure. In terms of extraction, no iron or sulfur products were detected by Raman spectroscopy on biologically treated samples, in agreement with extraction rates calculated. It was also suggested that iron bonded to wood was extracted with the chemical approach, and calcium content affected by both approaches. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material)
Show Figures

Figure 1

13 pages, 2456 KiB  
Article
Flux of the Wetted Surface Area on Ships’ Hulls in Major Ports of Korea
by Jin-Yong Lee, Chang-Rae Lee, Bong-Gil Hyun and Keun-Hyung Choi
J. Mar. Sci. Eng. 2023, 11(6), 1129; https://doi.org/10.3390/jmse11061129 - 27 May 2023
Cited by 1 | Viewed by 2641
Abstract
Biofouling is a significant means for introducing non-indigenous marine species internationally, which can alter habitats and disturb marine ecosystems. This study estimated the flux of ships’ wetted surface area (WSA) to Korea in 2020 to assess the risks of biological invasion via biofouling [...] Read more.
Biofouling is a significant means for introducing non-indigenous marine species internationally, which can alter habitats and disturb marine ecosystems. This study estimated the flux of ships’ wetted surface area (WSA) to Korea in 2020 to assess the risks of biological invasion via biofouling on ships’ hulls. The annual total WSA flux entering Korea was estimated to be 418.26 km2, with short-stay vessels (<3 weeks) contributing to 99.7% of the total WSA flux. Busan and Ulsan ports were identified as the main sources of high-risk flux, with container ships being a major vector in Busan and tankers in Ulsan. Gwangyang port had the third-highest total WSA flux, with nearly half of the flux driven from coastwise voyages, making it particularly vulnerable to the spread of hull fouling organisms. These findings could help enhance the management and inspection of hull fouling organisms in Korea. Full article
Show Figures

Figure 1

14 pages, 770 KiB  
Article
Exploring Ballast Water Management in Taiwan Using the PSR Conceptual Model Based on Stakeholders’ Perspectives
by Muhan Cheng, Jia-An Ye and Ta-Kang Liu
Water 2022, 14(15), 2409; https://doi.org/10.3390/w14152409 - 3 Aug 2022
Cited by 1 | Viewed by 3712
Abstract
Accidental introduction of nonindigenous aquatic species (NIAS) is usually mediated by shipping through ballast water. Ballast water management plans are being developed and implemented around the world to prevent the spread of NIAS. However, for marine environmental management, incorporating stakeholders’ perceptions into designing [...] Read more.
Accidental introduction of nonindigenous aquatic species (NIAS) is usually mediated by shipping through ballast water. Ballast water management plans are being developed and implemented around the world to prevent the spread of NIAS. However, for marine environmental management, incorporating stakeholders’ perceptions into designing and formulating management plans is key to achieving successful implementation. This study used qualitative interviews and grounded theory to induce the influencing factors and conceptual model of stakeholders’ perceptions on ballast water management (BWM) issues. The interplay of the pressure–state–response conceptual model based on grounded theory was established to elaborate on stakeholders’ perceptions. The study results indicated that local ballast water management required comprehensive port state control (PSC) and technical competency development. Second, an international commercial port can be used as a demonstration area to demonstrate the effectiveness and the potential benefits of BWM implementation due to its potential to link with international networks. Moreover, legislation, surveying/monitoring, institutional capacity and outreach/education are the four fundamentals to marine bio-invasion management. Initiating ballast water management measures as part of port environmental management aims to enhance marine pollution management capacity, especially in the field of marine bio-invasion management. Full article
(This article belongs to the Special Issue The Relationship between Ships and Marine Environment)
Show Figures

Figure 1

10 pages, 2684 KiB  
Article
Uncertainty in Marine Species Distribution Modelling: Trying to Locate Invasion Hotspots for Pterois miles in the Eastern Mediterranean Sea
by Dimitris Poursanidis, Kostas Kougioumoutzis, Vasileios Minasidis, Niki Chartosia, Demetris Kletou and Stefanos Kalogirou
J. Mar. Sci. Eng. 2022, 10(6), 729; https://doi.org/10.3390/jmse10060729 - 26 May 2022
Cited by 5 | Viewed by 4025
Abstract
Biological invasions are considered among the largest threats to native biodiversity. The Mediterranean Sea, connecting the Indo-Pacific and Atlantic oceans, is characterized as a global marine invasion hotspot, due to a multitude of human pathways and vectors such as shipping, aquaculture, tourism, and [...] Read more.
Biological invasions are considered among the largest threats to native biodiversity. The Mediterranean Sea, connecting the Indo-Pacific and Atlantic oceans, is characterized as a global marine invasion hotspot, due to a multitude of human pathways and vectors such as shipping, aquaculture, tourism, and the opening of the Suez Canal, which have led to the introduction of nearly 700 alien species into the Mediterranean Sea. Among the species introduced, the lionfish Pterois miles could be considered the fastest spreading invasive fish species of the last decade (2012–2022) and has been recorded in all countries of the eastern Mediterranean Sea, reaching as far north as Croatia. Here, we present a Bayesian additive regression tree modelling framework for an updated species distribution modelling invasion map under current and future climate conditions. All climate uncertainty sources have been used, as these are available from the Bio-Oracle, the unique marine predictors database. Important outputs of the current approach are the model’s inadequacy to accurately predict the most recent expansion of species in the Adriatic Sea, and the uncertainty estimation, that are high in areas with confirmed occurrence of individuals, in simulations that can help the decision makers and policy officers understand model limitations and take more informed actions. Full article
(This article belongs to the Special Issue Marine Bio-Invasions)
Show Figures

Figure 1

23 pages, 1412 KiB  
Review
Alien Species Threat across Marine Protected Areas of Turkey—An Updated Inventory
by Murat Bilecenoğlu and Melih Ertan Çınar
J. Mar. Sci. Eng. 2021, 9(10), 1077; https://doi.org/10.3390/jmse9101077 - 1 Oct 2021
Cited by 8 | Viewed by 3591
Abstract
This study presents the first comprehensive assessment of alien species occurrences within the selected 11 Marine Protected Areas (MPAs) located on the Aegean and Levantine coasts of Turkey. The inventory includes a total of 289 species belonging to 15 phyla, in which lowest [...] Read more.
This study presents the first comprehensive assessment of alien species occurrences within the selected 11 Marine Protected Areas (MPAs) located on the Aegean and Levantine coasts of Turkey. The inventory includes a total of 289 species belonging to 15 phyla, in which lowest and highest diversities were observed in Saros Bay MPA (27 species, northern Aegean Sea) and Fethiye-Göcek Bay MPA (150 species, northwest Levantine Sea), respectively. Alien species distributions that were revealed in protected areas located in the southern Aegean and Levantine Seas were 56.9% similar (based on presence vs. absence data), while northern Aegean sites formed another distinct group. According to the breakdown of major phyla through the entire study areas, Mollusca had the highest alien diversity (22.1% of alien species), followed by Actinopterygii (19.0%), Arthropoda (15.2%) and Annelida (13.5%). Casual aliens were represented by very low proportions in each MPA, proving that most species were already established in the region, with a significant proportion of invasive species. Regardless of the localities, the majority of the species originated from the Red Sea, whose primary pathway of introduction is the corridor, the Suez Canal. In the absence of effective management actions against bioinvasions, MPAs located along the Turkish coastline do not currently seem to provide any protection, revealing a large conservation gap to be filled. Full article
(This article belongs to the Special Issue Marine Benthic Biodiversity of Eastern Mediterranean Ecosystems)
Show Figures

Figure 1

14 pages, 2778 KiB  
Article
Northward Spread of the Parrotfish Sparisoma cretense (Teleostei: Scaridae) in the Mediterranean Sea: An Update on Current Distribution with Two New Records from Sardinia
by Giuseppe Esposito, Marino Prearo, Vasco Menconi, Davide Mugetti, Domenico Meloni, Mattia Tomasoni, Elisabetta Pizzul, Pierluigi Piras, Monia Renzi, Dario Gaspa and Paolo Pastorino
J. Mar. Sci. Eng. 2021, 9(5), 536; https://doi.org/10.3390/jmse9050536 - 17 May 2021
Cited by 8 | Viewed by 5383
Abstract
The parrotfish Sparisoma cretense, a marine species native to the eastern and southern coastal areas of the Mediterranean, has extended its distribution northward. Here, we provide an update on its distribution based on currently published data and two new records from the [...] Read more.
The parrotfish Sparisoma cretense, a marine species native to the eastern and southern coastal areas of the Mediterranean, has extended its distribution northward. Here, we provide an update on its distribution based on currently published data and two new records from the coastline of Sardinia, Italy (central-western Mediterranean). The survey methods were scuba diving and spearfishing: one specimen of S. cretense was caught along the Argentiera coastline (northwest Mediterranean) and the others were photographed in the Gulf of Orosei, Osalla Bay (central-eastern Mediterranean). A literature update, together with new records, documents the distribution of this species in the northernmost areas of the Mediterranean. Probably a result of global warming, the ongoing northward expansion of S. cretense highlights the need for sampling campaigns to obtain timely updates on population and distribution of this thermophilic species. Full article
(This article belongs to the Special Issue Marine Bio-Invasions)
Show Figures

Figure 1

19 pages, 3645 KiB  
Review
Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease
by Muhammad Bilal, Leonardo Vieira Nunes, Marco Thúlio Saviatto Duarte, Luiz Fernando Romanholo Ferreira, Renato Nery Soriano and Hafiz M. N. Iqbal
Mar. Drugs 2021, 19(4), 196; https://doi.org/10.3390/md19040196 - 30 Mar 2021
Cited by 12 | Viewed by 3847
Abstract
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease [...] Read more.
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called “treasure of untouched or underexploited sources”. Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 2021)
Show Figures

Figure 1

14 pages, 2237 KiB  
Article
Sabella spallanzanii and Seafloor Biodiversity Enhancement in a Marine Soft-Sediment System
by Emily J. Douglas, Michael Townsend, Leigh W. Tait, Barry L. Greenfield, Graeme J. Inglis and Andrew M. Lohrer
Diversity 2020, 12(6), 228; https://doi.org/10.3390/d12060228 - 8 Jun 2020
Cited by 8 | Viewed by 5934
Abstract
Predicting and managing the potential economic, social, and ecological impacts of bioinvasions is a key goal of non-indigenous species (NIS) research worldwide. The marine fan worm, Sabella spallanzanii, is an ecosystem engineering NIS that forms dense filter-feeding canopies on hard substrata and [...] Read more.
Predicting and managing the potential economic, social, and ecological impacts of bioinvasions is a key goal of non-indigenous species (NIS) research worldwide. The marine fan worm, Sabella spallanzanii, is an ecosystem engineering NIS that forms dense filter-feeding canopies on hard substrata and large clumps of individuals in soft sediment habitats. In this study, we investigated the epifaunal assemblages associated with Sabella clumps of increasing size and complexity from soft-sediment benthic ecosystems in Auckland Harbour, New Zealand. The diversity and abundance of epifaunal taxa increased with clump size. Species accumulation curves suggest that with further increases in Sabella clump size, diversity will continue to increase. There were no differential effects on taxa related to feeding mode or motility despite the potential for Sabella to reduce food to suspension feeders (through competition) and increase food supply to deposit feeders (through biodeposition). Our results provide an example of local biodiversity enhancement by an NIS, though some of the species benefitting from Sabella were themselves non-indigenous or of uncertain origin (cryptogenic/indeterminate). Longer term studies of the impacts of Sabella on native biodiversity and ecosystem functioning, including on food webs, are important next steps. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

10 pages, 1580 KiB  
Article
The Indo-Pacific Sergeant Abudefduf vaigiensis (Quoy & Gaimard, 1825) (Perciformes: Pomacentridae) in Libya, South-Central Mediterranean Sea
by David Osca, Valentina Tanduo, Francesco Tiralongo, Ioannis Giovos, Sara A. A. Almabruk, Fabio Crocetta and Jamila Rizgalla
J. Mar. Sci. Eng. 2020, 8(1), 14; https://doi.org/10.3390/jmse8010014 - 24 Dec 2019
Cited by 19 | Viewed by 6110
Abstract
The Indo-Pacific Sergeant Abudefduf vaigiensis (Quoy & Gaimard, 1825) (Chordata: Pisces: Actinopterygii: Perciformes: Pomacentridae) is first recorded in the south-central Mediterranean Sea (Libya), based on the external morphology and the barcoding of a fragment of the cytochrome c oxidase subunit I gene. Present [...] Read more.
The Indo-Pacific Sergeant Abudefduf vaigiensis (Quoy & Gaimard, 1825) (Chordata: Pisces: Actinopterygii: Perciformes: Pomacentridae) is first recorded in the south-central Mediterranean Sea (Libya), based on the external morphology and the barcoding of a fragment of the cytochrome c oxidase subunit I gene. Present sightings from field surveys and social media include juveniles, sub-adults, and a single adult specimen, suggesting that the species is now established in Libyan waters. No certainties occur regarding timing and possible pathway of arrival of this species in the area, and it may have simply gone undetected for years. The joint effort of field studies and citizen science projects in collaboration with international organizations continues shedding light on bioinvasions in Libya, with valuable outcomes for the Mediterranean marine biology as a whole. Full article
(This article belongs to the Special Issue Marine Biodiversity in the Anthropocene)
Show Figures

Figure 1

Back to TopTop