Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = mango seed extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2938 KB  
Article
Investigating the Antioxidant Potential of Mango Seed Kernel Polyphenols: Extraction and Optimization Strategies
by Poonam Choudhary, Sandeep P. Dawange, Thingujam Bidyalakshmi, Ramesh Chand Kasana, Kairam Narsaiah and Bhupendra M. Ghodki
Foods 2026, 15(1), 173; https://doi.org/10.3390/foods15010173 - 4 Jan 2026
Viewed by 496
Abstract
Mango seed kernels, an underutilized by-product of the mango pulping industries, are a rich supplier of metabolites, specifically phenolic and flavonoid compounds. These compounds have potential health benefits. The present study aims to optimize the solvent-assisted conditions for polyphenol extraction from mango seed [...] Read more.
Mango seed kernels, an underutilized by-product of the mango pulping industries, are a rich supplier of metabolites, specifically phenolic and flavonoid compounds. These compounds have potential health benefits. The present study aims to optimize the solvent-assisted conditions for polyphenol extraction from mango seed kernels by using the Box–Behnken design (BBD) and response surface methodology (RSM). Moreover, the effect of the solvent-to-solid ratio (5:1 to 25:1, mL/g), extraction temperature (30–70 °C), and extraction time (60–120 min) on the polyphenol yield was investigated. The optimal conditions of a solvent-to-solid ratio of 12 (mL/g), extraction temperature of 53 °C, and extraction time of 97 min showed the maximum yield of dried extract. In optimal conditions, the extract contained a total phenolic content of 110.02 ± 0.50 mg gallic acid equivalent (GAE)/g, total flavonoids of 24.58 ± 0.09 mg quercetin equivalent (QE)/g, 64.21 ± 0.12% inhibition of DPPH, and 53.25 ± 0.23% ABTS radical scavenging. Moreover, the extract at 500 mg/mL concentration showed the highest anti-bacterial activity against pathogenic bacteria of Escherichia coli and Staphylococcus aureus. Gallic acid, mangiferin, rutin, ferulic acid, cinnamic acid, and quercetin were noted in mango seed kernel extract obtained at optimal extraction conditions. Overall, a rapid and optimal methodology is reported for extracting, identifying, and quantifying polyphenols from mango seed kernels. Full article
Show Figures

Figure 1

20 pages, 1471 KB  
Article
Developing Biodegradable Films from Mango (Mangifera indica) Starch and Extract: A Rheological and Physical Study
by Santander E. Lastra-Ripoll, Luis Mieles-Gómez, David Ramirez-Brewer, Ronald Marsiglia-Fuentes, Somaris E. Quintana and Luis A. García-Zapateiro
Gels 2025, 11(10), 825; https://doi.org/10.3390/gels11100825 - 14 Oct 2025
Cited by 1 | Viewed by 1772
Abstract
The development of biodegradable films with antioxidant properties offers a promising approach to food preservation. This study focused on creating and characterising mango starch-based films enriched with mango peel extract (MPE) at concentrations of 0, 1, and 2%, using peels from mangoes ( [...] Read more.
The development of biodegradable films with antioxidant properties offers a promising approach to food preservation. This study focused on creating and characterising mango starch-based films enriched with mango peel extract (MPE) at concentrations of 0, 1, and 2%, using peels from mangoes (Mangifera indica var. Corazon) at organoleptic maturity, obtained as residual byproducts (peel and seed) for active food packaging applications. An MPE extraction yield of 35.57 ± 2.74% was achieved using ultrasound-assisted extraction (UAE), confirming its rich phenolic content and antioxidant activity as a natural alternative to synthetic preservatives. Rheological analysis revealed that the films exhibited pseudoplastic behavior, with complex viscosity reducing as angular frequency increased. Incorporating MPE at concentrations up to 1% enhanced the films’ viscoelastic properties, while a 2% addition significantly altered their frequency and temperature dependence. The rheological modeling showed that the fractional Maxwell model with two springpots described the films more accurately than the generalized Maxwell model. This approach offered a clearer understanding of their viscoelastic response, especially under changes in frequency and temperature. Mechanical characterization indicated that adding MPE improved film strength while reducing solubility. Although film thickness remained unchanged, increasing MPE concentration led to greater opacity and darker coloration. These changes offer advantages in food packaging by enhancing UV protection and reducing oxidative degradation. Crucially, the incorporation of MPE significantly increased the phenolic content and antioxidant capacity of the films, as confirmed by ABTS assays. These findings strongly support the potential of MPE-based films for active packaging, providing a sustainable and functional alternative for preserving light-sensitive food products. Among the tested formulations, films with 1% MPE demonstrated the most effective balance of rheological stability, mechanical strength, and antioxidant capacity. Full article
(This article belongs to the Special Issue Nature Polymer Gels for Food Packaging)
Show Figures

Figure 1

19 pages, 1017 KB  
Article
Composite Edible Coating from Arabic Gum and Mango Peel Hydrocolloids Enriched with Mango Seed Extracts for the Preservation of Grapes (Vitis vinifera) During Storage
by Luisa López-Ortiz, Somaris E. Quintana and Luis A. García-Zapateiro
Coatings 2025, 15(4), 435; https://doi.org/10.3390/coatings15040435 - 7 Apr 2025
Cited by 2 | Viewed by 2037
Abstract
Composite edible coatings based on arabic gum with mango peel hydrocolloids and mango seed extracts were prepared and used to evaluate grape conservation. Hydroethanolic solutions were used for the obtention of mango seed extracts, by microwave-assisted extraction, with total phenolic compounds (5.48 and [...] Read more.
Composite edible coatings based on arabic gum with mango peel hydrocolloids and mango seed extracts were prepared and used to evaluate grape conservation. Hydroethanolic solutions were used for the obtention of mango seed extracts, by microwave-assisted extraction, with total phenolic compounds (5.48 and 9.85 GAE/g of extract) and antioxidant activity (<13.03 µmol Trolox/g of extract). The extracts were selected for the development of edible coatings. The rheological properties of edible coating solutions present a non-Newtonian behavior-type shear thinning fluid; the addition of extracts improves their viscoelastic properties, favoring their application into grapes. The coated grapes maintained physicochemical parameters, such as weight, pH, acidity, soluble solids, and color during the 15 days of storage. The results of this research offer the possibility of using by-products from fruit industries, especially mango, to obtain functional ingredients and their application in food systems, taking advantage of their biological activity. Full article
(This article belongs to the Special Issue Trends in Sustainable Food Packaging and Coatings)
Show Figures

Figure 1

19 pages, 1774 KB  
Article
In Vitro Digestion of Vacuum-Impregnated Yam Bean Snacks: Pediococcus acidilactici Viability and Mango Seed Polyphenol Bioaccessibility
by Alba Cecilia Durán-Castañeda, Adela Yolanda Bueno-Durán, Manuel Iván Girón-Pérez, Juan Arturo Ragazzo-Sánchez, Jorge Alberto Sánchez-Burgos, Sonia Guadalupe Sáyago-Ayerdi and Victor Manuel Zamora-Gasga
Microorganisms 2024, 12(10), 1993; https://doi.org/10.3390/microorganisms12101993 - 30 Sep 2024
Cited by 2 | Viewed by 1994
Abstract
This study investigates the in vitro digestion of vacuum-impregnated yam bean snacks enriched with Pediococcus acidilactici and mango seed polyphenols, focusing on bacterial survival and polyphenol bioaccessibility. The snacks were prepared by vacuum impregnation (VI) with solutions containing either mango seed extract, P. [...] Read more.
This study investigates the in vitro digestion of vacuum-impregnated yam bean snacks enriched with Pediococcus acidilactici and mango seed polyphenols, focusing on bacterial survival and polyphenol bioaccessibility. The snacks were prepared by vacuum impregnation (VI) with solutions containing either mango seed extract, P. acidilactici, or a combination of both, followed by dehydration. The antimicrobial activity of the treatments was assessed against pathogens, revealing limited effectiveness, likely due to insufficient concentrations of mango seed extract and the intrinsic resistance of the bacteria. VI of mango seed extract improved the total soluble phenols (TSP) content up to 400% and maintained the initial probiotic concentration (106 cell/mL). In vitro digestion was performed to simulate gastrointestinal conditions, measuring the stability of TSP and the survival of P. acidilactici. The results indicated that the viability of P. acidilactici fluctuated throughout the digestion process (106 to 104 log UFC/g), the polyphenols showed varying degrees of bioaccessibility (11 to 30%), and the TSP content in the intestinal fraction ranged from 1.95 to 6.54 mg GAE/g. The study highlights the potential of VI for incorporating functional components into plant-based snacks, though further optimization is necessary to enhance the stability of P. acidilactici and the effectiveness of the bioactive ingredients. Full article
(This article belongs to the Special Issue Probiotic Bacteria in Fermented Foods)
Show Figures

Figure 1

11 pages, 800 KB  
Article
Effect of Addition of Mango Seed Extract on Storage Stability of Chevon Meatballs at Refrigeration Temperature
by Pramila Umaraw, Veer Pal Singh and Akhilesh K. Verma
Foods 2024, 13(5), 676; https://doi.org/10.3390/foods13050676 - 23 Feb 2024
Cited by 5 | Viewed by 2232
Abstract
In this study, the addition of mango seed extract (MSE) in goat meatballs was assessed. The efficacy of three different levels of MSE extract, namely T1 = (2.5 mL/100 g of meat emulsion v/w), T2 = (5.0 mL/100 g of [...] Read more.
In this study, the addition of mango seed extract (MSE) in goat meatballs was assessed. The efficacy of three different levels of MSE extract, namely T1 = (2.5 mL/100 g of meat emulsion v/w), T2 = (5.0 mL/100 g of meat emulsion v/w), T3 = (7.5 mL/100 g of meat emulsion v/w), and T0 (control without mango seed extract), was conducted for evaluation of changes in water activity (aW), pH, total phenolic compounds, DPPH, peroxide value, TBARS, microbial quality, and sensory attributes of the goat meatballs stored at refrigerated temperature (4 ± 1 °C). Incorporation of the mango seed extract T3 (7.5 mL/100 g) showed that it can potentially better maintain change in pH and water activity. Total phenolic and DPPH activity decreased significantly (P0.05) among all samples throughout storage; however, the highest value was noted for T3 among all samples. The MSE-added goat meatballs (T3) group had lower significant (p < 0.05) peroxide values than the other samples. The T3 sample added with MSE exhibited significant (p < 0.05) lower TBRAS values as compared to other treatments. Comparatively lower microbial proliferation and better sensory attributes were maintained among the treated groups during the entire storage time. The results show that the inclusion of MSE extract T3 (7.5 mL/100 g) is a promising natural antioxidant that can maintain a better quality of goat meatballs at refrigerated temperature (4 ± 1 °C) under aerobic packaging conditions. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

21 pages, 2013 KB  
Article
Sustainable Ice Cream Base: Harnessing Mango Seed Kernel (Mangifera indica L. var. Tommy Atkins) Waste and Cheese Whey
by Pedro Gerardo Trejo-Flores, Lester Alejandro Santiago-Rodríguez, María Emperatriz Domínguez-Espinosa, Abumalé Cruz-Salomón, Paulina Elizabeth Velázquez-Jiménez, Jesús Mauricio Ernesto Hernández-Méndez, Mario Alberto Morales-Ovando, Kelly del Carmen Cruz-Salomón, Maritza del Carmen Hernández-Cruz, Paola Tayde Vázquez-Villegas, Rosa Isela Cruz-Rodríguez, Rocío del Pilar Serrano-Ramírez, Yazmin Sánchez-Roque and Heber Vilchis-Bravo
Sustainability 2023, 15(19), 14583; https://doi.org/10.3390/su151914583 - 8 Oct 2023
Cited by 5 | Viewed by 4638
Abstract
The agro-food industry plays a crucial role in enhancing living standards; however, inadequate losses and waste management persists as significant challenges within its processes. Particularly, mango and cheese processing generate substantial waste, leading to ecological disruptions, economic losses, and concerns related to food [...] Read more.
The agro-food industry plays a crucial role in enhancing living standards; however, inadequate losses and waste management persists as significant challenges within its processes. Particularly, mango and cheese processing generate substantial waste, leading to ecological disruptions, economic losses, and concerns related to food security and public health. To address these issues, this study was aimed at utilizing this waste to produce a high-quality ice cream base, thereby valorizing the discarded materials. This approach not only adds nutritional value but also contributes to food security and sovereignty. The raw materials (cheese whey, oil, and starch) were subjected to physicochemical characterization, leading to the development of three different ice cream base formulations. Subsequently, the ice cream bases were evaluated for their physicochemical, functional, and sensory properties. The findings of this study revealed that mango seed kernel and cheese whey waste contain valuable components that enable the creation of an ice cream base with excellent physicochemical, functional, and sensory properties. Moreover, this research showcases a promising solution for effectively valorizing food waste and generating value-added products such as ice cream, thus promoting sustainability and resource optimization within the agro-food industry. Full article
(This article belongs to the Special Issue Biosustainability and Waste Valorization)
Show Figures

Figure 1

12 pages, 3270 KB  
Article
Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry
by Leidy J. Cerón-Martínez, Andrés M. Hurtado-Benavides, Alfredo Ayala-Aponte, Liliana Serna-Cock and Diego F. Tirado
Fluids 2023, 8(9), 256; https://doi.org/10.3390/fluids8090256 - 21 Sep 2023
Cited by 5 | Viewed by 2580
Abstract
Valorizing agri-food industrial waste is essential for a circular economy, yielding high-value products, waste reduction, technological solutions, employment opportunities, and enhanced food security. This work shows the valorization of seeds generated as residues from the agri-food industries of guava pera (Psidium guajava [...] Read more.
Valorizing agri-food industrial waste is essential for a circular economy, yielding high-value products, waste reduction, technological solutions, employment opportunities, and enhanced food security. This work shows the valorization of seeds generated as residues from the agri-food industries of guava pera (Psidium guajava) and Tommy Atkins mango (Mangifera indica L.), through extraction with supercritical carbon dioxide (scCO2). After the optimization of the initial solid condition of the raw material (i.e., particle size and moisture content), scCO2 pressure and temperature were established through the response surface methodology (RSM) to obtain an oily extract with the highest content in bioactive compounds of commercial relevance, as well as with a high antioxidant capacity. The total amount of oily extract in guava and mango seeds was 14% and 9%, respectively, while the maximum recovery of supercritical extract was 95% from guava seeds at 38 MPa and 50 °C, and 88% from mango seeds at 37 MPa and 63 °C. Bioactive fractions rich in squalene, γ-tocopherol, α-tocopherol, campesterol, β-sitosterol, and stigmasterol were obtained. The best supercritical extraction conditions, in terms of the bioactive fractions richest in minor compounds, were at 17 MPa and 50 °C for guava seeds and at 23 MPa and 63 °C for mango seeds. At these conditions, the highest antioxidant capacities were also found for the extracts. Thus, these bioactive fractions could be used in a variety of products in the cosmetic, food, pharmaceutical, and medical activities due to the beneficial properties of the identified compounds in health as antioxidants, anti-inflammatories, and cholesterol reducers. Full article
(This article belongs to the Special Issue Focus on Supercritical Fluids: Control and Extraction)
Show Figures

Figure 1

15 pages, 1990 KB  
Article
Investigating the Water Relations in Aqueous Extract Powders of Mango (Mangifera indica) Peel and Seed Waste for Their Use in Food Matrices as a Value-Added By-Product
by Ronald Marsiglia-Fuentes, Amparo Chiralt and Luis A. García-Zapateiro
Foods 2023, 12(18), 3497; https://doi.org/10.3390/foods12183497 - 20 Sep 2023
Cited by 9 | Viewed by 3196
Abstract
This study investigated the potential uses of discarded mango peel and seed parts by analyzing their water sorption behavior, hydration kinetics, and stability when converted into extract powders at pH 3 and 10. The results revealed that peel extracts had a higher water [...] Read more.
This study investigated the potential uses of discarded mango peel and seed parts by analyzing their water sorption behavior, hydration kinetics, and stability when converted into extract powders at pH 3 and 10. The results revealed that peel extracts had a higher water adsorption capacity compared with seed extracts due to differences in their composition. Peel extracts were primarily composed of carbohydrates (approximately 75%) with a low protein content, while seed extracts contained fewer carbohydrates (less than 30%) but higher levels of proteins (more than 30%) and lipids. The critical water content for maintaining the glassy state of peel extract powders during storage was found to be 0.025 and 0.032 g of water/g for extracts obtained at pH 3 and 10, respectively. In contrast, the Tg values of seed extracts remained relatively unchanged across different water content levels, suggesting that proteins and lipids inhibited the water’s plasticizing effect in the solid matrix. These findings indicate that both mango waste fractions exhibit distinct hygroscopic behaviors, necessitating different approaches to processing and utilization. These extracts hold potential applications for various food products such as beverages, gels, sauces, or emulsions, contributing to the reduction in waste and the creation of value-added products from mango residues. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1799 KB  
Article
Optimization of Gallic Acid-Rich Extract from Mango (Mangifera indica) Seed Kernels through Ultrasound-Assisted Extraction
by Zafar Hayat, Tuba Riaz, Kinza Saleem, Kashif Akram, Hafeez Ur Rehman and Muhammad Azam
Separations 2023, 10(7), 376; https://doi.org/10.3390/separations10070376 - 26 Jun 2023
Cited by 11 | Viewed by 4711
Abstract
Different types of agro-waste provide potential substrates for the extraction of bioactive compounds. Mango waste (e.g., peels and seeds) is one such example and may serve as a source of gallic acid, a well-known bioactive compound classified as a secondary polyphenolic metabolite. Here, [...] Read more.
Different types of agro-waste provide potential substrates for the extraction of bioactive compounds. Mango waste (e.g., peels and seeds) is one such example and may serve as a source of gallic acid, a well-known bioactive compound classified as a secondary polyphenolic metabolite. Here, we explored the efficacy of ultrasound-assisted extraction (UAE) in extracting gallic acid from mango seed kernels using different solvent concentrations (0–60%), solvent-to-sample ratios (10–50 mL/g), temperatures (30–60 °C), and times (10–30 min). The maximum yield of gallic acid (6.1 ± 0.09 mg/g) was obtained when using a 19.4% solvent concentration, a 29.32 mL/g solvent-to-sample ratio, and the extraction was conducted at 38.47 °C for 21.4 min, similar to the values predicted by the model equation. As compared to the conventional extraction procedure, the extract obtained by the optimized method was found to be significantly different in total phenolic content, total flavonoid content, and radical scavenging activity. Non-significant differences were observed in antimicrobial activity. The results indicate that mango seed kernels may be a good source of phenolics, and those phenolics can be effectively obtained through an optimized UAE method. Hence, mango seed kernels may be utilized as a suitable source of extracting phenolics in nutraceutical and food applications. Full article
(This article belongs to the Special Issue Extraction and Analysis of Active Ingredients from Natural Products)
Show Figures

Graphical abstract

22 pages, 3941 KB  
Article
Surface Functionalization of Bioactive Hybrid Adsorbents for Enhanced Adsorption of Organic Dyes
by Yasser M. Riyad, Taha M. Elmorsi, Mohd Gulfam Alam and Bernd Abel
Int. J. Environ. Res. Public Health 2023, 20(9), 5750; https://doi.org/10.3390/ijerph20095750 - 8 May 2023
Cited by 6 | Viewed by 2823
Abstract
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds [...] Read more.
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds and Cu2+ ions on the surface of ZnO. Functionalized Cu-doped ZnO/MS-Ext exhibits high efficacy in acidic, neutral, and alkaline medium, as indicated by 98.3% and 93.7% removal of methylene blue (MB) and crystal violet (CV) dyes, respectively. Cu-doped ZnO/MS-Ext has a zeta potential significantly lower than pristine zinc oxide (p-ZnO), which results in enhanced adsorption of cationic MB and CV dyes. In binary systems, both MB and CV were significantly removed in acidic and alkaline media, with 92% and 87% being removed for CV in acidic and alkaline media, respectively. In contrast, the removal efficiency of methyl orange dye (MO) was 16.4%, 6.6% and 11.2% for p-ZnO, ZnO/Ext and Cu-doped ZnO/Ext, respectively. In general, the adsorption kinetics of MB on Cu-doped ZnO/MS-Ext follow this order: linear pseudo-second-order (PSO) > nonlinear pseudo-second-order (PSO) > nonlinear Elovich model > linear Elovich model. The Langmuir isotherm represents the adsorption process and indicates that MB, CV, and MO are chemisorbed onto the surface of the adsorbent at localized active centers of the MS-extract functional groups. In a binary system consisting of MB and CV, the maximum adsorption capacity (qm) was 72.49 mg/g and 46.61 mg/g, respectively. The adsorption mechanism is governed by electrostatic attraction and repulsion, coordination bonds, and π–π interactions between cationic and anionic dyes upon Cu-doped ZnO/Ext surfaces. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Graphical abstract

17 pages, 2534 KB  
Article
Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation
by Rambabu Krishnamoorthy, Abdul Hai and Fawzi Banat
Processes 2023, 11(5), 1379; https://doi.org/10.3390/pr11051379 - 3 May 2023
Cited by 11 | Viewed by 3605
Abstract
Mango seed kernel (MSK) extract contains phytochemicals, bioactives, and fatty acids that are of interest to food and nutritional scientists. The subcritical water extraction process (SCWE) can be effective in extracting valuable bioactives from MSK. In this study, SCWE was investigated and optimized [...] Read more.
Mango seed kernel (MSK) extract contains phytochemicals, bioactives, and fatty acids that are of interest to food and nutritional scientists. The subcritical water extraction process (SCWE) can be effective in extracting valuable bioactives from MSK. In this study, SCWE was investigated and optimized for the extraction of bioactives from MSK using Box–Behnken experimental design. The extract yield was examined as a function of various process variables, namely, solvent-to-feed (L/S) ratio, extraction temperature (T), and extraction time (t). Analysis of variance (ANOVA) for experimental results showed that extraction temperature was the most significant variable that impacted the extract yield. A maximum yield of 52.3% was obtained at optimized extraction conditions of L/S ratio = 20.7, T = 116.5 °C, and t = 45 min. Antioxidant assessment of the SCWE extract obtained at the optimized conditions showed higher total phenolic content (19.2 mg GAE/g), and DPPH and ABTS radical scavenging activity (>91%), than the extracts obtained by conventional hot water extraction and ultra-sound assisted extraction. Furthermore, an assessment of the MSK extract as a natural preservative showed that its inclusion (20% v/v) improved the oxidative stability of cow ghee with a par performance to synthetic butylated hydroxyanisole antioxidant (0.02% w/v). Thus, the study demonstrated SCWE as an effective green method for the production of MSK extract that could be applied for the preservation of oxidative food products. Full article
(This article belongs to the Special Issue Advances in Sub-/Supercritical Water Processes)
Show Figures

Figure 1

15 pages, 3558 KB  
Article
Green Synthesis, Characterization and Bioactivity of Mangifera indica Seed-Wrapped Zinc Oxide Nanoparticles
by Shanmugam Rajeshkumar, Royapuram Parthasarathy Parameswari, Dayalan Sandhiya, Khalid A. Al-Ghanim, Marcello Nicoletti and Marimuthu Govindarajan
Molecules 2023, 28(6), 2818; https://doi.org/10.3390/molecules28062818 - 21 Mar 2023
Cited by 37 | Viewed by 5812
Abstract
In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several advantages, including optical and biological properties, which provide them a significant competitive advantage in clinical and biological applications. In [...] Read more.
In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several advantages, including optical and biological properties, which provide them a significant competitive advantage in clinical and biological applications. In the current investigation, we used an aqueous Mangifera indica seed extract to synthesize nanoparticles of zinc oxide (ZnO NPs). UV-Vis spectroscopy, Fourier transform infrared spectroscopy analysis, atomic force spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the synthesized ZnO NPs. The nanoparticles were assessed for their potential to inhibit bacterial growth and protect cells from free radical damage. According to the current study’s findings, zinc oxide nanoparticles that had been modified with the aid of mango seeds were very efficient in preventing the development of the tested bacteria and were also powerful antioxidants. Full article
(This article belongs to the Special Issue Green Synthesis and Bioactivity Research on Metal Nanoparticles)
Show Figures

Figure 1

19 pages, 5564 KB  
Article
Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes
by Giovanni Pratelli, Diana Di Liberto, Daniela Carlisi, Sonia Emanuele, Michela Giuliano, Antonietta Notaro, Anna De Blasio, Giuseppe Calvaruso, Antonella D’Anneo and Marianna Lauricella
Int. J. Mol. Sci. 2023, 24(6), 5419; https://doi.org/10.3390/ijms24065419 - 12 Mar 2023
Cited by 18 | Viewed by 4659
Abstract
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. [...] Read more.
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity. Full article
Show Figures

Figure 1

12 pages, 2058 KB  
Article
Biogenic Preparation and Characterization of Silver Nanoparticles from Seed Kernel of Mangifera indica and Their Antibacterial Potential against Shigella spp.
by Sudha Angamuthu, Selvankumar Thangaswamy, Amutha Raju, Fohad Mabood Husain, Bilal Ahmed, Nasser A. Al-Shabib, Mohammed Jamal Hakeem, Syed Ali Shahzad, Saud A. Abudujayn and Suliman Y. Alomar
Molecules 2023, 28(6), 2468; https://doi.org/10.3390/molecules28062468 - 8 Mar 2023
Cited by 13 | Viewed by 3847
Abstract
Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused [...] Read more.
Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused by Shigella are reported, which accounts for almost 1 million deaths, in which the majority are recorded in Third World nations. In this study, silver nanoparticles were synthesized using Mangifera indica kernel (MK-AgNPs) seed extracts. The biosynthesized M. indica silver nanoparticles (MK-AgNPs) were characterized using an array of spectroscopic and microscopic tools, such as UV–Vis, scanning electron microscopy, particle size analyzer, Fourier transform infrared spectroscopy, and X-ray diffractometer. The nanoparticles were spherical in shape and the average size was found to be 42.7 nm. The MK-AgNPs exhibited remarkable antibacterial activity against antibiotic-resistant clinical Shigella sp. The minimum inhibitory concentration (MIC) value of the MK-AgNPs was found to be 20 μg/mL against the multi-drug-resistant strain Shigella flexneri. The results clearly demonstrate that MK-AgNPs prepared using M. indica kernel seed extract exhibited significant bactericidal action against pathogenic Shigella species. The biosynthesized nanoparticles from mango kernel could possibly prove therapeutically useful and effective in combating the threat of shigellosis after careful investigation of its toxicity and in vivo efficacy. Full article
Show Figures

Figure 1

14 pages, 634 KB  
Article
Antidiabetic and Anticancer Potentials of Mangifera indica L. from Different Geographical Origins
by Rizwan Ahmad, Aljawharah Alqathama, Mohammed Aldholmi, Muhammad Riaz, Ashraf N. Abdalla, Fatema Aljishi, Ebtihal Althomali, Mohd Amir, Omeima Abdullah, Muntathir Ali Alamer, Deema Alaswad, Wala Alsulais and Ahad Alsulays
Pharmaceuticals 2023, 16(3), 350; https://doi.org/10.3390/ph16030350 - 24 Feb 2023
Cited by 14 | Viewed by 4774
Abstract
Mango fruit is well known for its nutritional and health benefits due to the presence of a plethora of phytochemical classes. The quality of mango fruit and its biological activities may change depending upon the variation in geographical factors. For the first time, [...] Read more.
Mango fruit is well known for its nutritional and health benefits due to the presence of a plethora of phytochemical classes. The quality of mango fruit and its biological activities may change depending upon the variation in geographical factors. For the first time, this study comprehensively screened the biological activities of all four parts of the mango fruit from twelve different origins. Various cell lines (MCF7, HCT116, HepG2, MRC5) were used to screen the extracts for their cytotoxicity, glucose uptake, glutathione peroxidase activity, and α-amylase inhibition. MTT assays were carried out to calculate the IC50 values for the most effective extracts. The seed part from Kenya and Sri Lanka origins exhibited an IC50 value of 14.44 ± 3.61 (HCT116) and 17.19 ± 1.60 (MCF7). The seed part for Yemen Badami (119 ± 0.08) and epicarp part of Thailand (119 ± 0.11) mango fruit showed a significant increase in glucose utilization (50 μg/mL) as compared to the standard drug metformin (123 ± 0.07). The seed extracts of Yemen Taimoor seed (0.46 ± 0.05) and Yemen Badami (0.62 ± 0.13) produced a significant reduction in GPx activity (50 μg/mL) compared to the control cells (100 μg/mL). For α-amylase inhibition, the lowest IC50 value was observed for the endocarp part of Yemen Kalabathoor (108.8 ± 0.70 μg/mL). PCA, ANOVA, and Pearson’s statistical models revealed a significant correlation for the fruit part vs. biological activities, and seed part vs. cytotoxicity and α-amylase activity (p = 0.05). The seed of mango fruit exhibited significant biological activities; hence, further in-depth metabolomic and in vivo studies are essential to effectively utilize the seed part for the treatment of various diseases. Full article
(This article belongs to the Special Issue Natural Products in Diabetes Mellitus)
Show Figures

Figure 1

Back to TopTop