Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mandarin fish fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1964 KiB  
Article
Integrated Metagenomic and LC–MS/MS Analysis Reveals the Biogenic Amine-Producing Strains of Two Typical Chinese Traditional Fish Products: Fermented Mandarin Fish (Siniperca chuatsi) and Semi-Dried Yellow Croaker (Larimichthys crocea)
by Xuan Zhang, Hai Chi, Di Peng, Mei Jiang, Cuihua Wang, Haiyan Zhang, Wei Kang and Lei Li
Foods 2025, 14(6), 1016; https://doi.org/10.3390/foods14061016 - 17 Mar 2025
Viewed by 588
Abstract
Two typical fish products—fermented mandarin fish and semi-dried yellow croaker—are associated with biogenic amines (BAs), which are harmful to human health. The objective of this study was to investigate the bacterial ecology of the two fish products and to determine their capacity for [...] Read more.
Two typical fish products—fermented mandarin fish and semi-dried yellow croaker—are associated with biogenic amines (BAs), which are harmful to human health. The objective of this study was to investigate the bacterial ecology of the two fish products and to determine their capacity for producing BAs. Putrescine and cadaverine were major BAs detected in the fish products. Concentrations of BAs were significantly corrected with microbial count (p < 0.05). BA-producing isolates (33) in the two fish products were all multiple BA producers. Several of them, including Lactobacillus sakei, Bacillus cereus and Hafnia alvei isolated from fermented mandarin fish, as well as Shewanella baltica, Aeromonas veronii, and Photobacterium phosphoreum isolated from semi-dried yellow croaker, showed remarkable BA-producing capacity. Hafnia alvei produced the greatest abundance of putrescine, cadaverine, tyramine and 2-phenylethylamine. Lactobacillus sakei mainly produced tryptamine and putrescine. Photobacterium phosphoreum showed the strongest histamine-producing capacity. Full article
(This article belongs to the Special Issue Quality Changes of Blue Food During Preservation and Processing)
Show Figures

Figure 1

15 pages, 5331 KiB  
Article
Comprehensive Multi-Spectroscopy and Molecular Docking Understanding of Interactions between Fermentation-Stinky Compounds and Mandarin Fish Myofibrillar Proteins
by Jia-Nan Chen, Hui-Lin Zhao, Yu-Ying Zhang, Da-Yong Zhou, Lei Qin and Xu-Hui Huang
Foods 2023, 12(10), 2054; https://doi.org/10.3390/foods12102054 - 19 May 2023
Cited by 7 | Viewed by 2205
Abstract
The release of flavor compounds is a critical factor that influences the quality of fermented foods. A recent study investigated the interactions between four fermentation-stinky compounds (indole, isovaleric acid, dimethyl disulfide, and dibutyl phthalate) and myofibrillar proteins (MPs). The results indicated that all [...] Read more.
The release of flavor compounds is a critical factor that influences the quality of fermented foods. A recent study investigated the interactions between four fermentation-stinky compounds (indole, isovaleric acid, dimethyl disulfide, and dibutyl phthalate) and myofibrillar proteins (MPs). The results indicated that all four fermentation-stinky compounds had different degrees of binding to MPs, with dibutyl phthalate and dimethyl disulfide exhibiting stronger interactions. Reduced hydrophobicity enhanced these interactions. Multi-spectroscopy showed that static fluorescence quenching was dominant in the MPs-fermentation-stinky compound complexes. The interaction altered the secondary structure of MPs, predominantly transitioning from β-sheets to α-helix or random coil structures via hydrogen bond interactions. Molecular docking confirmed that these complexes maintained steady states due to stronger hydrogen bonds, van der Waals forces, ionic bonds, conjugate systems, and lower hydrophobicity interactions. Hence, it is a novel sight that the addition of hydrophobic bond-disrupting agents could improve the flavor of fermented foods. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

18 pages, 2486 KiB  
Article
Apex Predators Enhance Environmental Adaptation but Reduce Community Stability of Bacterioplankton in Crustacean Aquaculture Ponds
by Yiran Hou, Rui Jia, Bing Li and Jian Zhu
Int. J. Mol. Sci. 2022, 23(18), 10785; https://doi.org/10.3390/ijms231810785 - 15 Sep 2022
Cited by 12 | Viewed by 3556
Abstract
Aquaculture environments harbor complex bacterial communities that are critical for the growth and health of culture species. Apex predators are frequently added to aquaculture ponds to improve ecosystem stability. However, limited research has explored the effects of apex predators on the composition and [...] Read more.
Aquaculture environments harbor complex bacterial communities that are critical for the growth and health of culture species. Apex predators are frequently added to aquaculture ponds to improve ecosystem stability. However, limited research has explored the effects of apex predators on the composition and function of bacterioplankton communities, as well as the underlying mechanisms of community assembly. Using 16S ribosomal RNA (rRNA) high-throughput sequencing, we investigated bacterioplankton communities of crustacean aquaculture ponds with and without apex predators (mandarin fish, Siniperca chuatsi) throughout the culture process. In addition to investigating differences in bacterioplankton communities, we also explored variations in environmental adaptation, functional redundancy, and community stability. Significant differences were observed in bacterioplankton composition among different cultural stages; there was an increase in Bacteriobota and fermentation-related bacteria, but a decrease in Firmicutes and pathogens in the middle stages of aquaculture. Apex predators increased the abundance of organic matter degradation bacteria and decreased pathogens. Bacterioplankton communities under apex predator disturbances had a wider environmental breadth, indicating broader environmental adaptation. Moreover, functional prediction and network analyses revealed that communities under apex predator disturbances were less functionally redundant and unstable. Based on the null model, stochastic processes drove community assembly during aquaculture, whereas apex predators elevated the contribution of deterministic processes. Greater changes in nitrate in culture ponds caused by apex predator disturbances were decisive in controlling the balance between stochasticity and determinism in community assembly. Our study provided insight into the mechanisms underlying bacterioplankton community assembly in aquaculture systems in response to apex predator disturbances. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 6027 KiB  
Article
Application of Untargeted Metabolomics to Reveal the Taste-Related Metabolite Profiles during Mandarin Fish (Siniperca chuatsi) Fermentation
by Yueqi Wang, Shi Nie, Chunsheng Li, Huan Xiang, Yongqiang Zhao, Shengjun Chen, Laihao Li and Yanyan Wu
Foods 2022, 11(7), 944; https://doi.org/10.3390/foods11070944 - 25 Mar 2022
Cited by 32 | Viewed by 4062
Abstract
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during [...] Read more.
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during the fermentation of mandarin fish. The results demonstrated that the taste profiles of mandarin fish at different stages of fermentation could be distinguished using an electronic tongue technique. Sixty-two metabolites, including amino acids, small peptides, fatty acids, alkaloids, and organic acids, were identified in fermented mandarin fish samples. Additional quantitative analysis of amino acids revealed glutamic acid and aspartic acid as significant contributors to the fresh flavor. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that amino acid metabolism was the dominant pathway throughout the fermentation process. This study provides a scientific and theoretical reference for the targeted regulation of the quality of fermented mandarin fish. Full article
(This article belongs to the Special Issue Seafood: Quality, Shelf Life and Sensory Attributes)
Show Figures

Figure 1

Back to TopTop