Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = major vault protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3218 KiB  
Review
Vault Particles in Cancer Progression, Multidrug Resistance, and Drug Delivery: Current Insights and Future Applications
by Alexandros Maniatis, Dimitra Rizopoulou, Athanasios-Nasir Shaukat, Katerina Grafanaki, Vassiliki Stamatopoulou and Constantinos Stathopoulos
Int. J. Mol. Sci. 2025, 26(4), 1562; https://doi.org/10.3390/ijms26041562 - 12 Feb 2025
Cited by 1 | Viewed by 1924
Abstract
Vault particles (VPs) are highly conserved large ribonucleoprotein complexes found exclusively in eukaryotes. They play critical roles in various cellular processes, but their involvement in cancer progression and multidrug resistance (MDR) is the most extensively studied. VPs are composed of the major vault [...] Read more.
Vault particles (VPs) are highly conserved large ribonucleoprotein complexes found exclusively in eukaryotes. They play critical roles in various cellular processes, but their involvement in cancer progression and multidrug resistance (MDR) is the most extensively studied. VPs are composed of the major vault protein (MVP), vault RNAs (vtRNAs), vault poly (ADP-ribose) polymerase, and telomerase-associated protein-1. These components are involved in the regulation of signaling pathways that affect tumor survival, proliferation, and metastasis. MVP has been associated with aggressive tumor phenotypes, while vtRNAs modulate cell proliferation, apoptosis, and autophagy. VPs also contribute to MDR by sequestering chemotherapeutic agents, altering their accumulation in the nucleus, and regulating lysosomal dynamics. Furthermore, small vault RNA-derived fragments participate in gene silencing and intercellular communication, reinforcing the role of precursors of vtRNAs in cancer development. Beyond their biological roles, VPs present a promising platform for drug delivery, due to their unique ability to encapsulate a wide range of biomolecules and therapeutic agents, followed by controlled release. This review compiles data from PubMed and Scopus, with a literature search conducted up until December 2024, highlighting current knowledge regarding VPs and their crucial involvement in cancer-related mechanisms and their applications in overcoming cancer drug resistance. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

14 pages, 2353 KiB  
Article
Major Vault Protein/Lung Resistance-Related Protein: A Novel Biomarker for Inflammation and Acute Infections
by John G. Routsias, Dionysia Marinou, Maria Mavrouli, Athanasios Tsakris and Vassiliki C. Pitiriga
Microorganisms 2024, 12(9), 1762; https://doi.org/10.3390/microorganisms12091762 - 25 Aug 2024
Cited by 2 | Viewed by 1272
Abstract
Introduction: Vault particles are large cytoplasmic ribonucleoprotein particles that participate in inflammation. The aim of this study was to assess the diagnostic and prognostic value of major vault protein (MVP) in patients with inflammation, in order to determine whether MVP could be used [...] Read more.
Introduction: Vault particles are large cytoplasmic ribonucleoprotein particles that participate in inflammation. The aim of this study was to assess the diagnostic and prognostic value of major vault protein (MVP) in patients with inflammation, in order to determine whether MVP could be used as a biomarker for infection or inflammation. We also aimed to compare the diagnostic impact of MVP compared to other conventional measurements, such as CRP or white blood cell (WBC) counts. Methods: CRP and MVP levels were measured in 111 sera samples from 85 patients with inflammation admitted to a tertiary-care hospital and 26 healthy individuals during an 18-month period (2019–2020), using nephelometry and a custom MVP sandwich ELISA assay, respectively. In addition, WBC counts were measured using a commercial assay. Results: MVP levels were found to be elevated in patients with inflammation compared to healthy individuals (p < 0.0001). Moreover, MVP levels were higher in patients with inflammation due to an infectious etiology compared to those with non-infectious etiology (p = 0.0006). MVP levels significantly decreased during the first four days of infection in response to antibiotic treatment, while CRP levels showed a less-sensitive decline. An ROC curve analysis demonstrated that MVP and CRP have similarly high diagnostic accuracy, with AUCs of 0.955 and 0.995, respectively, followed by WBCs with an AUC of 0.805. Conclusions: The ROC curves demonstrated that MVP has the potential to serve as a diagnostic biomarker for inflammation and infection. Additionally, MVP levels may reflect the efficacy of antibiotic treatment. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 2371 KiB  
Article
An Efficient Method for Vault Nanoparticle Conjugation with Finely Adjustable Amounts of Antibodies and Small Molecules
by Giulia Tomaino, Camilla Pantaleoni, Annalisa D’Urzo, Carlo Santambrogio, Filippo Testa, Matilde Ciprandi, Davide Cotugno, Gianni Frascotti, Marco Vanoni and Paolo Tortora
Int. J. Mol. Sci. 2024, 25(12), 6629; https://doi.org/10.3390/ijms25126629 - 16 Jun 2024
Cited by 1 | Viewed by 2484
Abstract
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which [...] Read more.
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which are produced by the assembly of the sole MVP. Here, we have expressed in Komagataella phaffi and purified an MVP variant carrying a C-terminal Z peptide (vault-Z), which can tightly bind an antibody’s Fc portion, in view of targeted delivery. Via surface plasmon resonance analysis, we could determine a 2.5 nM affinity to the monoclonal antibody Trastuzumab (Tz)/vault-Z 1:1 interaction. Then, we characterized the in-solution interaction via co-incubation, ultracentrifugation, and analysis of the pelleted proteins. This showed virtually irreversible binding up to an at least 10:1 Tz/vault-Z ratio. As a proof of concept, we labeled the Fc portion of Tz with a fluorophore and conjugated it with the nanoparticle, along with either Tz or Cetuximab, another monoclonal antibody. Thus, we could demonstrate antibody-dependent, selective uptake by the SKBR3 and MDA-MB 231 breast cancer cell lines. These investigations provide a novel, flexible technological platform that significantly extends vault-Z’s applications, in that it can be stably conjugated with finely adjusted amounts of antibodies as well as of other molecules, such as fluorophores, cell-targeting peptides, or drugs, using the Fc portion as a scaffold. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine)
Show Figures

Graphical abstract

22 pages, 3535 KiB  
Article
Senescent Macrophages Release Inflammatory Cytokines and RNA-Loaded Extracellular Vesicles to Circumvent Fibroblast Senescence
by Camille Laliberté, Bianca Bossé, Véronique Bourdeau, Luis I. Prieto, Genève Perron-Deshaies, Nhung Vuong-Robillard, Sebastian Igelmann, Lisbeth Carolina Aguilar, Marlene Oeffinger, Darren J. Baker, Luc DesGroseillers and Gerardo Ferbeyre
Biomedicines 2024, 12(5), 1089; https://doi.org/10.3390/biomedicines12051089 - 14 May 2024
Cited by 8 | Viewed by 3568
Abstract
Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) [...] Read more.
Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects. Full article
(This article belongs to the Special Issue Cellular Senescence: Recent Advances and Discoveries)
Show Figures

Figure 1

23 pages, 4653 KiB  
Review
Human Vault RNAs: Exploring Their Potential Role in Cellular Metabolism
by Magdalena Taube, Natalia Lisiak, Ewa Totoń and Błażej Rubiś
Int. J. Mol. Sci. 2024, 25(7), 4072; https://doi.org/10.3390/ijms25074072 - 6 Apr 2024
Cited by 6 | Viewed by 3289
Abstract
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and [...] Read more.
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy. Full article
(This article belongs to the Special Issue Exosomes and Non-Coding RNA Research in Health and Disease)
Show Figures

Figure 1

14 pages, 1801 KiB  
Article
Addressing Critical Issues Related to Storage and Stability of the Vault Nanoparticle Expressed and Purified from Komagataella phaffi
by Giulia Tomaino, Camilla Pantaleoni, Diletta Ami, Filomena Pellecchia, Annie Dutriaux, Linda Barbieri, Stefania Garbujo, Antonino Natalello, Paolo Tortora and Gianni Frascotti
Int. J. Mol. Sci. 2023, 24(4), 4214; https://doi.org/10.3390/ijms24044214 - 20 Feb 2023
Cited by 2 | Viewed by 2724
Abstract
The vault nanoparticle is a eukaryotic assembly consisting of 78 copies of the 99-kDa major vault protein. They generate two cup-shaped symmetrical halves, which in vivo enclose protein and RNA molecules. Overall, this assembly is mainly involved in pro-survival and cytoprotective functions. It [...] Read more.
The vault nanoparticle is a eukaryotic assembly consisting of 78 copies of the 99-kDa major vault protein. They generate two cup-shaped symmetrical halves, which in vivo enclose protein and RNA molecules. Overall, this assembly is mainly involved in pro-survival and cytoprotective functions. It also holds a remarkable biotechnological potential for drug/gene delivery, thanks to its huge internal cavity and the absence of toxicity/immunogenicity. The available purification protocols are complex, partly because they use higher eukaryotes as expression systems. Here, we report a simplified procedure that combines human vault expression in the yeast Komagataella phaffii, as described in a recent report, and a purification process we have developed. This consists of RNase pretreatment followed by size-exclusion chromatography, which is far simpler than any other reported to date. Protein identity and purity was confirmed by SDS-PAGE, Western blot and transmission electron microscopy. We also found that the protein displayed a significant propensity to aggregate. We thus investigated this phenomenon and the related structural changes by Fourier-transform spectroscopy and dynamic light scattering, which led us to determine the most suitable storage conditions. In particular, the addition of either trehalose or Tween-20 ensured the best preservation of the protein in native, soluble form. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

16 pages, 3221 KiB  
Article
Escherichia coli as a New Platform for the Fast Production of Vault-like Nanoparticles: An Optimized Protocol
by Roger Fernández, Aida Carreño, Rosa Mendoza, Antoni Benito, Neus Ferrer-Miralles, María Virtudes Céspedes and José Luis Corchero
Int. J. Mol. Sci. 2022, 23(24), 15543; https://doi.org/10.3390/ijms232415543 - 8 Dec 2022
Cited by 2 | Viewed by 3277
Abstract
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture [...] Read more.
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture is directed by self-assembly of the “major vault protein” (MVP), the main component of this nanoparticle. Recombinant expression (in different eukaryotic systems) of the MVP resulted in the formation of nanoparticles that were indistinguishable from native vaults. Nowadays, recombinant vaults for different applications are routinely produced in insect cells and purified by successive ultracentrifugations, which are both tedious and time-consuming strategies. To offer cost-efficient and faster protocols for nanoparticle production, we propose the production of vault-like nanoparticles in Escherichia coli cells, which are still one of the most widely used prokaryotic cell factories for recombinant protein production. The strategy proposed allowed for the spontaneous encapsulation of the engineered cargo protein within the self-assembled vault-like nanoparticles by simply mixing the clarified lysates of the producing cells. Combined with well-established affinity chromatography purification methods, our approach contains faster, cost-efficient procedures for biofabrication in a well-known microbial cell factory and the purification of “ready-to-use” loaded protein nanoparticles, thereby opening the way to faster and easier engineering and production of vault-based DDSs. Full article
Show Figures

Graphical abstract

21 pages, 2467 KiB  
Article
Cellular, Molecular and Proteomic Characteristics of Early Hepatocellular Carcinoma
by Athanasios Armakolas, Vasiliki Dimopoulou, Adrianos Nezos, George Stamatakis, Martina Samiotaki, George Panayotou, Maria Tampaki, Martha Stathaki, Spyridon Dourakis and John Koskinas
Curr. Issues Mol. Biol. 2022, 44(10), 4714-4734; https://doi.org/10.3390/cimb44100322 - 10 Oct 2022
Cited by 7 | Viewed by 2947
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Early detection/diagnosis is vital for the prognosis of HCC, whereas diagnosis at late stages is associated with very low survival rate. Early diagnosis is based on 6-month surveillance of the patient and [...] Read more.
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Early detection/diagnosis is vital for the prognosis of HCC, whereas diagnosis at late stages is associated with very low survival rate. Early diagnosis is based on 6-month surveillance of the patient and the use of at least two imaging modalities. The aim of this study was to investigate diagnostic markers for the detection of early HCC based on proteome analysis, microRNAs (miRNAs) and circulating tumor cells (CTCs) in the blood of patients with cirrhosis or early or advanced HCC. We studied 89 patients with HCC, of whom 33 had early HCC and 28 were cirrhotic. CTCs were detected by real-time quantitative reverse transcription PCR and immunofluorescence using the markers epithelial cell adhesion molecule (EPCAM), vimentin, alpha fetoprotein (aFP) and surface major vault protein (sMVP). Expression of the five most common HCC-involved miRNAs (miR-122, miR-200a, miR-200b, miR-221, miR-222) was examined in serum using quantitative real time PCR (qRT-PCR). Finally, patient serum was analyzed via whole proteome analysis (LC/MS). Of 53 patients with advanced HCC, 27 (51%) had detectable CTCs. Among these, 10/27 (37%) presented evidence of mesenchymal or intermediate stage cells (vimentin and/or sMVP positive). Moreover, 5/17 (29%) patients with early HCC and 2/28 (7%) cirrhotic patients had detectable CTCs. Patients with early or advanced HCC exhibited a significant increase in miR-200b when compared to cirrhotic patients. Our proteome analysis indicated that early HCC patients present a significant upregulation of APOA2, APOC3 proteins when compared to cirrhotic patients. When taken in combination, this covers the 100% of the patients with early HCC. miR-200b, APOA2 and APOC3 proteins are sensitive markers and can be potentially useful in combination for the early diagnosis of HCC. Full article
(This article belongs to the Special Issue Molecules at Play in Cancer)
Show Figures

Figure 1

19 pages, 5665 KiB  
Review
Small but Powerful: The Human Vault RNAs as Multifaceted Modulators of Pro-Survival Characteristics and Tumorigenesis
by Stefano Gallo, EunBin Kong, Iolanda Ferro and Norbert Polacek
Cancers 2022, 14(11), 2787; https://doi.org/10.3390/cancers14112787 - 3 Jun 2022
Cited by 22 | Viewed by 5189
Abstract
The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets [...] Read more.
The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets for oncotherapy. Recent studies revealed a class of highly conserved small ncRNAs, namely vault RNAs, as regulators of several cellular homeostasis mechanisms. The human genome encodes four vault RNA paralogs that share significant sequence and structural similarities, yet they seem to possess distinct roles in mammalian cells. The alteration of vault RNA expression levels has frequently been observed in cancer tissues, thus hinting at a putative role in orchestrating pro-survival characteristics. Over the last decade, significant advances have been achieved in clarifying the relationship between vault RNA and cellular mechanisms involved in cancer development. It became increasingly clear that vault RNAs are involved in controlling apoptosis, lysosome biogenesis and function, as well as autophagy in several malignant cell lines, most likely by modulating signaling pathways (e.g., the pro-survival MAPK cascade). In this review, we discuss the identified and known functions of the human vault RNAs in the context of cell proliferation, tumorigenesis and chemotherapy resistance. Full article
(This article belongs to the Collection The Role of Non-coding RNA in Cancer)
Show Figures

Figure 1

13 pages, 2772 KiB  
Article
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843CD163 Cell Lines and Primary Porcine Alveolar Macrophages
by Xiaoping Wu, Junyang Fang, Qiuping Huang, Xu Chen, Zhongyi Guo, Lingyujia Tian, Enmin Zhou, Jianxin Chen, Yang Mu and Taofeng Du
Viruses 2021, 13(11), 2267; https://doi.org/10.3390/v13112267 - 12 Nov 2021
Cited by 1 | Viewed by 2705
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In [...] Read more.
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type Ⅰ IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection. Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2021)
Show Figures

Figure 1

16 pages, 20182 KiB  
Article
MVP Expression Facilitates Tumor Cell Proliferation and Migration Supporting the Metastasis of Colorectal Cancer Cells
by Paulina Pietras, Marta Leśniczak-Staszak, Aldona Kasprzak, Małgorzata Andrzejewska, Karol Jopek, Mateusz Sowiński, Marcin Rucinski, Shawn M. Lyons, Pavel Ivanov and Witold Szaflarski
Int. J. Mol. Sci. 2021, 22(22), 12121; https://doi.org/10.3390/ijms222212121 - 9 Nov 2021
Cited by 9 | Viewed by 2730
Abstract
Cancer cells show significant dysregulation of genes expression, which may favor their survival in the tumor environment. In this study, the cellular vault’s components MVP (major vault protein), TEP1 (telomerase-associated protein 1) and vPARP (vault poly(ADP-ribose) polymerase) were transiently or completely inhibited in [...] Read more.
Cancer cells show significant dysregulation of genes expression, which may favor their survival in the tumor environment. In this study, the cellular vault’s components MVP (major vault protein), TEP1 (telomerase-associated protein 1) and vPARP (vault poly(ADP-ribose) polymerase) were transiently or completely inhibited in U2OS cells (human bone osteosarcoma epithelial cells) to evaluate their impact on the cell proliferative and migratory capacity as well as on the development of their resistance to the drug vinorelbine. Comparative analysis of MVP protein expression level in normal colon tissue, primary colorectal tumor, and metastasis showed that the expression of this protein does not increase significantly in the primary tumor, but its expression increases in metastatic cells. Further comparative molecular analysis using the whole transcriptome microarrays for MVP-positive and MVP-negative cells showed that MVP is involved in regulating proliferation and migration of cancer cells. MVP may facilitate metastasis of colon cancer due to its impact on cell migration. Moreover, two vault proteins, MVP and TEP1, contribute the resistance to vinorelbine, while vPARP does not. Full article
Show Figures

Figure 1

36 pages, 4349 KiB  
Review
The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy
by Gianni Frascotti, Elisabetta Galbiati, Matteo Mazzucchelli, Maria Pozzi, Lucia Salvioni, Jacopo Vertemara and Paolo Tortora
Cancers 2021, 13(4), 707; https://doi.org/10.3390/cancers13040707 - 9 Feb 2021
Cited by 31 | Viewed by 7481
Abstract
The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault [...] Read more.
The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery. Full article
(This article belongs to the Collection Cancer Nanomedicine)
Show Figures

Figure 1

16 pages, 2143 KiB  
Review
Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems
by Amanda Muñoz-Juan, Aida Carreño, Rosa Mendoza and José L. Corchero
Pharmaceutics 2019, 11(7), 300; https://doi.org/10.3390/pharmaceutics11070300 - 28 Jun 2019
Cited by 22 | Viewed by 5996
Abstract
The use of smart drug delivery systems (DDSs) is one of the most promising approaches to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and lack of specific targeting. Some of the most attractive candidates as DDSs are naturally [...] Read more.
The use of smart drug delivery systems (DDSs) is one of the most promising approaches to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and lack of specific targeting. Some of the most attractive candidates as DDSs are naturally occurring, self-assembling protein nanoparticles, such as viruses, virus-like particles, ferritin cages, bacterial microcompartments, or eukaryotic vaults. Vaults are large ribonucleoprotein nanoparticles present in almost all eukaryotic cells. Expression in different cell factories of recombinant versions of the “major vault protein” (MVP) results in the production of recombinant vaults indistinguishable from native counterparts. Such recombinant vaults can encapsulate virtually any cargo protein, and they can be specifically targeted by engineering the C-terminus of MVP monomer. These properties, together with nanometric size, a lumen large enough to accommodate cargo molecules, biodegradability, biocompatibility and no immunogenicity, has raised the interest in vaults as smart DDSs. In this work we provide an overview of eukaryotic vaults as a new, self-assembling protein-based DDS, focusing in the latest advances in the production and purification of this platform, its application in nanomedicine, and the current preclinical and clinical assays going on based on this nanovehicle. Full article
(This article belongs to the Special Issue Self-Organizing Nanovectors for Drug Delivery)
Show Figures

Graphical abstract

19 pages, 4479 KiB  
Article
Inhibition of Hepatitis E Virus Spread by the Natural Compound Silvestrol
by Mirco Glitscher, Kiyoshi Himmelsbach, Kathrin Woytinek, Reimar Johne, Andreas Reuter, Jelena Spiric, Luisa Schwaben, Arnold Grünweller and Eberhard Hildt
Viruses 2018, 10(6), 301; https://doi.org/10.3390/v10060301 - 2 Jun 2018
Cited by 51 | Viewed by 6592
Abstract
Every year, there are about 20 Mio hepatitis E virus (HEV) infections and 60,000 deaths that are associated with HEV worldwide. At the present, there exists no specific therapy for HEV. The natural compound silvestrol has a potent antiviral effect against the (−)-strand [...] Read more.
Every year, there are about 20 Mio hepatitis E virus (HEV) infections and 60,000 deaths that are associated with HEV worldwide. At the present, there exists no specific therapy for HEV. The natural compound silvestrol has a potent antiviral effect against the (−)-strand RNA-virus Ebola virus, and also against the (+)-strand RNA viruses Corona-, Picorna-, and Zika virus. The inhibitory effect on virus spread is due to an inhibition of the DEAD-box RNA helicase eIF4A, which is required to unwind structured 5′-untranslated regions (UTRs). This leads to an impaired translation of viral RNA. The HEV (+)-strand RNA genome contains a 5′-capped, short 5′-UTR. This study aims to analyze the impact of silvestrol on the HEV life cycle. Persistently infected A549 cells were instrumental. This study identifies silvestrol as a potent inhibitor of the release of HEV infectious viral particles. This goes along with a strongly reduced HEV capsid protein translation, retention of viral RNA inside the cytoplasm, and without major cytotoxic effects. Interestingly, in parallel silvestrol affects the activity of the antiviral major vault protein (MVP) by translocation from the cytoplasm to the perinuclear membrane. These data further characterize the complex antiviral activity of silvestrol and show silvestrol’s broad spectrum of function, since HEV is a virus without complex secondary structures in its genome, but it is still affected. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 3355 KiB  
Article
A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant
by Janina Jiang, Guangchao Liu, Valerie A. Kickhoefer, Leonard H. Rome, Lin-Xi Li, Stephen J. McSorley and Kathleen A. Kelly
Vaccines 2017, 5(1), 3; https://doi.org/10.3390/vaccines5010003 - 19 Jan 2017
Cited by 28 | Viewed by 7401
Abstract
Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a [...] Read more.
Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective adjuvant which induces cluster of differentiation 4 (CD4) cells with attributes capable of halting genital infection and inflammation. Previously, we described a natural nanocapsule called the vault which was engineered to contain major outer membrane protein (MOMP) and was an effective vaccine which significantly reduced early infection and favored development of a cellular immune response in a mouse model. In the current study, we used another chlamydial antigen, a polymorphic membrane protein G-1 (PmpG) peptide, to track antigen-specific cells and evaluate, in depth, the vault vaccine for its protective capacity in the absence of an added adjuvant. We found PmpG-vault immunized mice significantly reduced the genital bacterial burden and histopathologic parameters of inflammation following a C. muridarum challenge. Immunization boosted antigen-specific CD4 cells with a multiple cytokine secretion pattern and reduced the number of inflammatory cells in the genital tract making the vault vaccine platform safe and effective for chlamydial genital infection. We conclude that vaccination with a Chlamydia-vault vaccine boosts antigen-specific immunities that are effective at eradicating infection and preventing reproductive tract inflammation. Full article
(This article belongs to the Special Issue Nanoparticles to Co-Deliver Immunopotentiators and Antigens)
Show Figures

Figure 1

Back to TopTop