Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = magnetically responsive photonic crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3914 KiB  
Article
Optical–Electronic Skin Based on Tea Polyphenol for Dual Signal Wearable Sensing
by Jia-Li Xu, Guangyao Zhao, Jiachen Wang, An Tang, Jun-Tao Liu, Zhijie Zhu, Qiang Zhang and Yu Tian
Biosensors 2025, 15(5), 281; https://doi.org/10.3390/bios15050281 - 29 Apr 2025
Viewed by 647
Abstract
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) [...] Read more.
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) based on photonic crystal hydrogel that is capable of delivering both optical and electrical signal responses synchronously. The OE-skin is fabricated by incorporating a structural colored layer, composed of periodically aligned magnetic nanoparticles, into a polyacrylamide hydrogel matrix that contains tea polyphenols and borax. The dynamic boronate ester bonds formed between borax and the catechol groups of tea polyphenols are able to enhance the mechanical properties of the OE-skin, while also conferring excellent electrical conductivity, high sensitivity, and a rapid electrical response. Additionally, the tea polyphenols, which are natural active compounds derived from tea, possess diverse bioactive properties, thereby endowing the OE-skin with excellent antibacterial and biocompatibility characteristics. In addition, the developed electronic skin successfully demonstrates its capability in synergistic electronic and optical sensing during human motion monitoring, indicating broad application prospects in the field of smart wearable sensors. Full article
Show Figures

Figure 1

11 pages, 1736 KiB  
Article
Controllable Goos-Hänchen Shift in Photonic Crystal Heterostructure Containing Anisotropic Graphene
by Haishan Tian, Huabing Wang, Jingke Zhang and Gang Sun
Coatings 2024, 14(9), 1092; https://doi.org/10.3390/coatings14091092 - 26 Aug 2024
Cited by 1 | Viewed by 1206
Abstract
In this study, we investigate the electrically and magnetically tunable Goos–Hänchen (GH) shift of a reflected light beam at terahertz frequencies. Our study focuses on a photonic crystal heterostructure incorporating a monolayer anisotropic graphene. We observe a tunable and enhanced GH shift facilitated [...] Read more.
In this study, we investigate the electrically and magnetically tunable Goos–Hänchen (GH) shift of a reflected light beam at terahertz frequencies. Our study focuses on a photonic crystal heterostructure incorporating a monolayer anisotropic graphene. We observe a tunable and enhanced GH shift facilitated by a drastic change in the reflected phase at the resonance angle owing to the excitation of the topological edge state. Considering the quantum response of graphene, we demonstrate the ability to switch positive and negative GH shifts through the manipulation of graphene’s conductivity properties. Moreover, we show that the GH shift can be actively tuned by the external electric field and magnetic field, as well as by controlling the structural parameters of the system. We believe that this tunable and enhanced GH shift scheme offers excellent potential for preparing terahertz shift devices. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

47 pages, 43064 KiB  
Review
Beyond Color Boundaries: Pioneering Developments in Cholesteric Liquid Crystal Photonic Actuators
by Jinying Zhang, Yexiaotong Zhang, Jiaxing Yang and Xinye Wang
Micromachines 2024, 15(6), 808; https://doi.org/10.3390/mi15060808 - 20 Jun 2024
Cited by 14 | Viewed by 4361
Abstract
Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural [...] Read more.
Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications. Full article
Show Figures

Figure 1

12 pages, 2628 KiB  
Article
Agarose-Based Hydrogel Film with Embedded Oriented Photonic Nanochains for Sensing pH
by Dunyi Xiao, Huiru Ma, Wei Luo and Jianguo Guan
Polymers 2024, 16(11), 1530; https://doi.org/10.3390/polym16111530 - 29 May 2024
Viewed by 1520
Abstract
Responsive photonic crystal hydrogel sensors are renowned for their colorimetric sensing ability and can be utilized in many fields such as medical diagnosis, environmental detection, food safety, and industrial production. Previously, our group invented responsive photonic nanochains (RPNCs), which improve the response speed [...] Read more.
Responsive photonic crystal hydrogel sensors are renowned for their colorimetric sensing ability and can be utilized in many fields such as medical diagnosis, environmental detection, food safety, and industrial production. Previously, our group invented responsive photonic nanochains (RPNCs), which improve the response speed of photonic crystal hydrogel sensors by at least 2 to 3 orders of magnitude. However, RPNCs are dispersed in a liquid medium, which needs a magnetic field to orient them for the generation of structural colors. In addition, during repeated use, the process of cleaning and redispersing can cause entanglement, breakage, and a loss of RPNCs, resulting in poor stability. Moreover, when mixing with the samples in liquid, the RPNCs may lead to the contamination of the samples being tested. In this paper, we incorporate one-dimensional oriented RPNCs with agarose gel film to prepare heterogeneous hydrogel films. Thanks to the non-responsive and porous nature of the agarose gel, the protons diffuse freely in the gel, which facilitates the fast response of the RPNCs. Furthermore, the “frozen” RPNCs in agarose gel not only enable the display of structural colors without the need for a magnet but also improve the cycling stability and long-term durability of the sensor, and will not contaminate the samples. This work paves the way for the application of photonic crystal sensors. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

17 pages, 26158 KiB  
Article
Synthesis of Controllable Superparamagnetic Nano Fe3O4 Based on Reduction Method for Colloidal Clusters of Magnetically Responsive Photonic Crystals
by Jun Chen, Mengdong Tu, Mengying Xu, Depeng Gong, Xi Li and Chaocan Zhang
Nanomaterials 2024, 14(10), 852; https://doi.org/10.3390/nano14100852 - 14 May 2024
Cited by 1 | Viewed by 1812
Abstract
In this paper, we designed and investigated a reduction-based method to synthesize controllably monodisperse superparamagnetic nano Fe3O4 colloidal clusters for magnetically responsive photonic crystals. It was shown that the addition of ascorbic acid (VC) to the system could synthesize monodisperse [...] Read more.
In this paper, we designed and investigated a reduction-based method to synthesize controllably monodisperse superparamagnetic nano Fe3O4 colloidal clusters for magnetically responsive photonic crystals. It was shown that the addition of ascorbic acid (VC) to the system could synthesize monodisperse superparamagnetic nano Fe3O4 and avoided the generation of γ-Fe2O3 impurities, while the particle size and saturation magnetization intensity of nano Fe3O4 gradually decreased with the increase of VC dosage. Nano Fe3O4 could be rapidly assembled into photonic crystal dot matrix structures under a magnetic field, demonstrating tunability to various diffraction wavelengths. The nano Fe3O4 modified by polyvinylpyrrolidone (PVP) and silicon coated could be stably dispersed in a variety of organic solvents and thus diffracted different wavelengths under a magnetic field. This is expected to be applied in various scenarios in the field of optical color development. Full article
Show Figures

Figure 1

12 pages, 8034 KiB  
Article
Versatile Double Bandgap Photonic Crystals of High Color Saturation
by Hao Jiang, Gang Li, Luying Si, Minghui Guo, Huiru Ma, Wei Luo and Jianguo Guan
Nanomaterials 2023, 13(19), 2632; https://doi.org/10.3390/nano13192632 - 24 Sep 2023
Cited by 4 | Viewed by 1911
Abstract
Double bandgap photonic crystals (PCs) exhibit significant potential for applications in various color display-related fields. However, they show low color saturation and inadequate color modulation capabilities. This study presents a viable approach to the fabrication of double bandgap photonic inks diffracting typical secondary [...] Read more.
Double bandgap photonic crystals (PCs) exhibit significant potential for applications in various color display-related fields. However, they show low color saturation and inadequate color modulation capabilities. This study presents a viable approach to the fabrication of double bandgap photonic inks diffracting typical secondary colors and other composite colors by simply mixing two photonic nanochains (PNCs) of different primary colors as pigments in an appropriate percentage following the conventional RGB color matching method. In this approach, the PNCs are magnetically responsive and display three primary colors that can be synthesized by combining hydrogen bond-guided and magnetic field (H)-assisted template polymerization. The as-prepared double bandgap photonic inks present high color saturation due to the fixed and narrow full-width at half-maxima of the parent PNCs with a suitable chain length. Furthermore, they can be used to easily produce a flexible double bandgap PC film by embedding the PNCs into a gel, such as polyacrylamide, facilitating fast steady display performance without the requirement of an external magnetic field. This research not only presents the unique advantages of PNCs in constructing multi-bandgap PCs but also establishes the feasibility of utilizing PNCs in practical applications within the fields of anti-counterfeiting and flexible wearable devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

17 pages, 6494 KiB  
Article
Research on Simultaneous Measurement of Magnetic Field and Temperature Based on Petaloid Photonic Crystal Fiber Sensor
by Lili Yan, Qichao Wang, Bin Yin, Shiying Xiao, Haisu Li, Muguang Wang, Xingyu Liu and Songhua Wu
Sensors 2023, 23(18), 7940; https://doi.org/10.3390/s23187940 - 16 Sep 2023
Cited by 10 | Viewed by 2012
Abstract
In this paper, we propose and design a magnetic field and temperature sensor using a novel petaloid photonic crystal fiber filled with magnetic fluid. The PCF achieves a high birefringence of more than 1.43 × 10−2 at the wavelength of 1550 nm [...] Read more.
In this paper, we propose and design a magnetic field and temperature sensor using a novel petaloid photonic crystal fiber filled with magnetic fluid. The PCF achieves a high birefringence of more than 1.43 × 10−2 at the wavelength of 1550 nm via the design of material parameters, air hole shape and the distribution of the photonic crystal fiber. Further, in order to significantly improve the sensitivity of the sensor, the magnetic-fluid-sensitive material is injected into the pores of the designed photonic crystal fiber. Finally, the sensor adopts a Mach–Zehnder interferometer structure combined with the ultra-high birefringence of the proposed petaloid photonic crystal fiber. Magnetic field and temperature can be simultaneously measured via observing the spectral response of the x-polarization state and y-polarization state. As indicated via simulation analysis, the sensor can realize sensitivities to magnetic fields and temperatures at −1.943 nm/mT and 0.0686 nm/°C in the x-polarization state and −1.421 nm/mT and 0.0914 nm/°C in the y-polarization state. The sensor can realize the measurement of multiple parameters including temperature and magnetic intensity and has the advantage of high sensitivity. Full article
(This article belongs to the Special Issue Interferometric Fiber Sensors)
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Design of Plasmonic Photonic Crystal Fiber for Highly Sensitive Magnetic Field and Temperature Simultaneous Measurement
by Wenjun Zhou, Xi Qin, Ming Lv, Lifeng Qiu, Zhongjiang Chen and Fan Zhang
Micromachines 2023, 14(9), 1684; https://doi.org/10.3390/mi14091684 - 29 Aug 2023
Cited by 4 | Viewed by 1711
Abstract
A high-sensitivity plasmonic photonic crystal fiber (PCF) sensor is designed and a metal thin film is embedded for achieving surface plasmon resonance (SPR), which can detect the magnetic field and temperature simultaneously. Within the plasmonic PCF sensor, the SPR sensing is accomplished by [...] Read more.
A high-sensitivity plasmonic photonic crystal fiber (PCF) sensor is designed and a metal thin film is embedded for achieving surface plasmon resonance (SPR), which can detect the magnetic field and temperature simultaneously. Within the plasmonic PCF sensor, the SPR sensing is accomplished by coating both the upper sensing channel (Ch1) and the lower sensing channel (Ch2) with gold film. In addition, the temperature-sensitive medium polydimethylsiloxane (PDMS) is chosen to fill in Ch1, allowing the sensor to respond to the temperature. The magnetic field-sensitive medium magnetic fluid (MF) is chosen to fill in Ch2, allowing this sensor to respond to the magnetic field. During these processes, this proposed SPR-PCF sensor can achieve dual-parameter sensing. The paper also investigates the electrical field characteristics, structural parameters and sensing performance using COMSOL. Finally, under the magnetic field range of 50–130 Oe, this sensor has magnetic field sensing sensitivities of 0 pm/Oe (Ch1) and 235 pm/Oe (Ch2). In addition, this paper also investigates the response of temperature. Under the temperature range of 20–40 °C, Ch1 and Ch2 have temperature sensitivities of −2000 pm/°C and 0 pm/°C, respectively. It is noteworthy that the two sensing channels respond to only a single physical parameter; this sensing performance is not common in dual-parameter sensing. Due to this sensing performance, it can be found that the magnetic field and temperature can be detected by this designed SPR-PCF sensor simultaneously without founding and calculating a sensing matrix. This sensing performance can solve the cross-sensitivity problem of magnetic field and temperature, thus reducing the measurement error. Since it can sense without a matrix, it further can solve the ill-conditioned matrix and nonlinear change in sensitivity problems in dual-parameter sensing. These excellent sensing capabilities are very important for carrying out multiparameter sensing in complicated environments. Full article
Show Figures

Figure 1

10 pages, 2512 KiB  
Article
Magnetic Field Sensing Based on Whispering Gallery Mode with Nanostructured Magnetic Fluid-Infiltrated Photonic Crystal Fiber
by Chencheng Zhang, Shengli Pu, Zijian Hao, Boyu Wang, Min Yuan and Yuxiu Zhang
Nanomaterials 2022, 12(5), 862; https://doi.org/10.3390/nano12050862 - 3 Mar 2022
Cited by 62 | Viewed by 4314
Abstract
A kind of novel and compact magnetic field sensor has been proposed and investigated experimentally. The proposed sensor consists of a tapered single mode fiber coupled with a nanostructured magnetic fluid-infiltrated photonic crystal fiber, which is easy to be fabricated. The response of [...] Read more.
A kind of novel and compact magnetic field sensor has been proposed and investigated experimentally. The proposed sensor consists of a tapered single mode fiber coupled with a nanostructured magnetic fluid-infiltrated photonic crystal fiber, which is easy to be fabricated. The response of magnetic fluid to magnetic field is used to measure the intensity of magnetic field via whispering gallery mode. The magnetic field-dependent shift in resonance wavelength is observed. The maximum magnetic field intensity sensitivity is 53 pm/mT. The sensor sensitivity is inversely proportional to the thickness of the photonic crystal fiber cladding. Full article
Show Figures

Figure 1

10 pages, 2290 KiB  
Communication
Sensing of Surface and Bulk Refractive Index Using Magnetophotonic Crystal with Hybrid Magneto-Optical Response
by Daria Ignatyeva, Pavel Kapralov, Polina Golovko, Polina Shilina, Anastasiya Khramova, Sergey Sekatskii, Mohammad Nur-E-Alam, Kamal Alameh, Mikhail Vasiliev, Andrey Kalish and Vladimir Belotelov
Sensors 2021, 21(6), 1984; https://doi.org/10.3390/s21061984 - 11 Mar 2021
Cited by 10 | Viewed by 3417
Abstract
We propose an all-dielectric magneto-photonic crystal with a hybrid magneto-optical response that allows for the simultaneous measurements of the surface and bulk refractive index of the analyzed substance. The approach is based on two different spectral features of the magneto-optical response corresponding to [...] Read more.
We propose an all-dielectric magneto-photonic crystal with a hybrid magneto-optical response that allows for the simultaneous measurements of the surface and bulk refractive index of the analyzed substance. The approach is based on two different spectral features of the magneto-optical response corresponding to the resonances in p- and s-polarizations of the incident light. Angular spectra of p-polarized light have a step-like behavior near the total internal reflection angle which position is sensitive to the bulk refractive index. S-polarized light excites the TE-polarized optical Tamm surface mode localized in a submicron region near the photonic crystal surface and is sensitive to the refractive index of the near-surface analyte. We propose to measure a hybrid magneto-optical intensity modulation of p-polarized light obtained by switching the magnetic field between the transverse and polar configurations. The transversal component of the external magnetic field is responsible for the magneto-optical resonance near total internal reflection conditions, and the polar component reveals the resonance of the Tamm surface mode. Therefore, both surface- and bulk-associated features are present in the magneto-optical spectra of the p-polarized light. Full article
(This article belongs to the Special Issue Thin-Film Materials and Nanostructure Devices Applicable for Sensing)
Show Figures

Figure 1

28 pages, 8185 KiB  
Review
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties
by Marcin Janczarek, Maya Endo-Kimura, Zhishun Wei, Zuzanna Bielan, Tharishinny R. Mogan, Tamer M. Khedr, Kunlei Wang, Agata Markowska-Szczupak and Ewa Kowalska
Appl. Sci. 2021, 11(5), 1982; https://doi.org/10.3390/app11051982 - 24 Feb 2021
Cited by 23 | Viewed by 4524
Abstract
Graphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might [...] Read more.
Graphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment and pure water. This review presents recent developments of graphene-based semiconductor photocatalysts, including novel composites with faceted particles, photonic crystals, and nanotubes/nanowires, where the enhancement of activity mechanism is associated with a synergistic effect resulting from the presence of graphene structure. Moreover, antimicrobial potential (highly needed these days), and facile recovery/reuse of photocatalysts by magnetic field have been addresses as very important issue for future commercialization. It is believed that graphene materials should be available soon in the market, especially because of constantly decreasing prices of graphene, vis response, excellent charge transfer ability, and thus high and broad photocatalytic activity against both organic pollutants and microorganisms. Full article
(This article belongs to the Special Issue Graphene Growth and Its Nanostructuring)
Show Figures

Graphical abstract

13 pages, 3934 KiB  
Article
Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
by J. Flores Méndez, A. C. Piñón Reyes, M. Moreno Moreno, A. Morales-Sánchez, Gustavo M. Minquiz, R. C. Ambrosio Lázaro, H. Vázquez Leal and F. Candia García
Materials 2020, 13(6), 1475; https://doi.org/10.3390/ma13061475 - 24 Mar 2020
Cited by 2 | Viewed by 3501
Abstract
A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector [...] Read more.
A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in the volume of the cell associated with the values of the electric and magnetic fields in the edges of the cell, so they satisfy Maxwell’s equations. Applying Fourier formalism, explicit expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion is shown and analyzed. Our results show good correspondence with the approach solution of Rytov’s effective medium. The derived formulas can be very useful for the design of anisotropic systems with specific optical properties that exhibit metamaterial behavior. Full article
Show Figures

Figure 1

9 pages, 2734 KiB  
Article
Improving the Performance of 2-To-4 Optical Decoders Based on Photonic Crystal Structures
by Mohammad Javad Maleki, Mohammad Soroosh and Ali Mir
Crystals 2019, 9(12), 635; https://doi.org/10.3390/cryst9120635 - 29 Nov 2019
Cited by 45 | Viewed by 2788
Abstract
In this study, a novel, two-dimensional photonic crystal-based structure for the 2-to-4 optical decoder is presented. The structure consists of 23 rows and 14 columns of chalcogenide rods that are arranged in a square lattice with a spatial periodicity of 530 nm. The [...] Read more.
In this study, a novel, two-dimensional photonic crystal-based structure for the 2-to-4 optical decoder is presented. The structure consists of 23 rows and 14 columns of chalcogenide rods that are arranged in a square lattice with a spatial periodicity of 530 nm. The bias and the optical signals are guided toward the main waveguide through the three waveguides. Two unequal powers are applied to the input ports to approach the different intensities proportional to four working states into the main waveguide. Four cavities including the nonlinear rods are in response to drop the optical waves toward the output ports. To calculate the band diagram and the spatial distribution of the electric and magnetic fields, the plane wave expansion and the finite difference time domain methods have been used. The delay time of the designed structure is obtained around 220 fs, which is less than one for the previous structures. Furthermore, the gap between the margins for logic 0 and 1 is equal to 83%, which is higher than one for other works. Besides, the area of the structure is reduced to 90 µm2 in comparison to all reported structures. Based on the mentioned results, it seems that an improvement of the performance for 2-to-4 optical decoders has been obtained in this research. Full article
Show Figures

Figure 1

16 pages, 5079 KiB  
Review
Preparation and Application of Iron Oxide Nanoclusters
by Angelo J. Antone, Zaicheng Sun and Yuping Bao
Magnetochemistry 2019, 5(3), 45; https://doi.org/10.3390/magnetochemistry5030045 - 1 Aug 2019
Cited by 30 | Viewed by 7787
Abstract
Magnetic iron oxide nanoclusters, which refers to a group of individual nanoparticles, have recently attracted much attention because of their distinctive behaviors compared to individual nanoparticles. In this review, we discuss preparation methods for creating iron oxide nanoclusters, focusing on synthetic procedures, formation [...] Read more.
Magnetic iron oxide nanoclusters, which refers to a group of individual nanoparticles, have recently attracted much attention because of their distinctive behaviors compared to individual nanoparticles. In this review, we discuss preparation methods for creating iron oxide nanoclusters, focusing on synthetic procedures, formation mechanisms, and the quality of the products. Then, we discuss the emerging applications for iron oxide nanoclusters in various fields, covering traditional and novel applications in magnetic separation, bioimaging, drug delivery, and magnetically responsive photonic crystals. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles)
Show Figures

Figure 1

9 pages, 2049 KiB  
Article
Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors
by Yali Lin, Yujie Yang, Yuwei Shan, Lingli Gong, Jingzhi Chen, Sensen Li and Lujian Chen
Nanomaterials 2017, 7(11), 376; https://doi.org/10.3390/nano7110376 - 8 Nov 2017
Cited by 26 | Viewed by 6117
Abstract
Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these [...] Read more.
Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe3O4 nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters “L” and “C” was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs. Full article
(This article belongs to the Special Issue Nanomaterials in Liquid Crystals)
Show Figures

Graphical abstract

Back to TopTop