Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = magnetic Janus particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5209 KiB  
Article
Development of Multilayer Magnetic Janus Sub-Micrometric Particles for Lipase Catalysis in Pickering Emulsion
by Wei Wang, Xiangyao Chen, Wen-Can Huang, Simiao Di and Jie Luo
Molecules 2025, 30(11), 2429; https://doi.org/10.3390/molecules30112429 - 31 May 2025
Viewed by 496
Abstract
This study presents a multilayer magnetic Janus sub-micrometric particle (MMJSP) as a nanoreactor for lipase catalysis. The core of the nanoparticle is constructed from a core-shell Fe3O4@SiO2 framework, which serves as a precursor for the sequential amino and [...] Read more.
This study presents a multilayer magnetic Janus sub-micrometric particle (MMJSP) as a nanoreactor for lipase catalysis. The core of the nanoparticle is constructed from a core-shell Fe3O4@SiO2 framework, which serves as a precursor for the sequential amino and aldehyde modifications using 3-aminopropyltriethoxysilane and benzaldehyde. Following localized etching and subsequent modification with N,N-dimethyldodecylamine, a Janus nanoparticle with distinct hydrophilic and hydrophobic domains is synthesized. The resulting MMJSP demonstrates a stable attachment to the reaction interface and significantly enhances lipase performance, exhibiting 1.4-fold and 1.6-fold enhancements in activity after immobilization during 1 h hydrolysis and 24 h esterification reactions, respectively. Additionally, the storage stability of the immobilized lipase is improved by 100% over a period of 30 days. Reusability assessments reveal that the immobilized enzyme retains 80.7% activity after 10 cycles of esterification and 80.6% after 50 cycles of hydrolysis, with the magnetic properties allowing for rapid separation and recovery of the immobilized enzyme. Full article
Show Figures

Graphical abstract

14 pages, 3760 KiB  
Article
Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy
by Yuguang Lu, Yuling Wu, Zhe Tang, Yike Hou, Mingyue Cui, Shuqi Huang, Binghua Long, Zhangsen Yu, Muhammad Zubair Iqbal and Xiangdong Kong
Sensors 2023, 23(21), 8930; https://doi.org/10.3390/s23218930 - 2 Nov 2023
Cited by 4 | Viewed by 2122
Abstract
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise [...] Read more.
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5–10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications. Full article
(This article belongs to the Special Issue Advances in Functional Nanocomposite Materials for Bioapplications)
Show Figures

Figure 1

26 pages, 4088 KiB  
Review
Magnetic Nanocomposites and Imprinted Polymers for Biomedical Applications of Nucleic Acids
by Victoriya Popova, Elena Dmitrienko and Alexey Chubarov
Magnetochemistry 2023, 9(1), 12; https://doi.org/10.3390/magnetochemistry9010012 - 30 Dec 2022
Cited by 24 | Viewed by 5271
Abstract
Magnetic nanocomposites (MNCs) combine the features of magnetic nanoparticles and a second material, which provide distinct physical, chemical, and biological properties. The magnetic core for nanocomposite synthesis is extensively used due to its high saturation magnetization, chemical stability, large surface area, and easy [...] Read more.
Magnetic nanocomposites (MNCs) combine the features of magnetic nanoparticles and a second material, which provide distinct physical, chemical, and biological properties. The magnetic core for nanocomposite synthesis is extensively used due to its high saturation magnetization, chemical stability, large surface area, and easy functionalization. Moreover, magnetic nanoparticles (MNPs) have great potential for magnetic resonance imaging (MRI), magnetic particle imaging (MPI), hyperthermia, and targeted drug and gene delivery by an external magnetic field. Numerous composing units exist, which leads to the outstanding application of composites. This review focuses on nucleic acid-based bioapplications of MNCs with polymeric, organic, inorganic, biomolecules, and bioinspared surface coating. In addition, different forms, such as core–shell, doping, multilayer, yolk–shell, and Janus-shaped hybrids, are discussed, and their unique properties are highlighted. The unique types of nanocomposites as magnetic molecularly imprinted polymer (MMIP) properties are presented. This review presents only the synthesis of MNCs using ready-made magnetic cores. These restrictions are associated with many materials, the quantitative and qualitative magnetic core composition, and synthesis procedures. This review aims to discuss the features of nucleic acid-based MNC information available to researchers in this field and guide them through some problems in the area, structure variation, and surface functionalization possibilities. The most recent advancements of MNCs and imprinted polymers in nucleic acid-based therapy, diagnostics, theranostics, magnetic separation, biocatalytic, and biosensing are introduced. Full article
Show Figures

Graphical abstract

15 pages, 2051 KiB  
Article
Magnetically Driven Muco-Inert Janus Nanovehicles for Enhanced Mucus Penetration and Cellular Uptake
by Yue Hao, Shu Bai, Linling Yu and Yan Sun
Molecules 2022, 27(21), 7291; https://doi.org/10.3390/molecules27217291 - 27 Oct 2022
Cited by 3 | Viewed by 3593
Abstract
One of the main challenges of transmucosal drug delivery is that of enabling particles and molecules to move across the mucosal barrier of the mucosal epithelial surface. Inspired by nanovehicles and mucus-penetrating nanoparticles, a magnetically driven, mucus-inert Janus-type nanovehicle (Janus-MMSN-pCB) was fabricated by [...] Read more.
One of the main challenges of transmucosal drug delivery is that of enabling particles and molecules to move across the mucosal barrier of the mucosal epithelial surface. Inspired by nanovehicles and mucus-penetrating nanoparticles, a magnetically driven, mucus-inert Janus-type nanovehicle (Janus-MMSN-pCB) was fabricated by coating the zwitterionic polymer poly(carboxybetaine methacrylate) (pCB) on the mesoporous silica nanorod, which was grown on one side of superparamagnetic Fe3O4 nanoparticle using the sol–gel method. X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and Fourier infrared spectroscopy were used to characterize the structure and morphology of the nanovehicles, proving the success of each synthesis step. The in vitro cell viability assessment of these composites using Calu-3 cell lines indicates that the nanovehicles are biocompatible in nature. Furthermore, the multiparticle tracking, Transwell® system, and cell imaging experimental results demonstrate that both the modification of pCB and the application of a magnetic field effectively accelerated the diffusion of the nanovehicles in the mucus and improved the endocytosis through Calu-3. The favorable cell uptake performance of Janus-MMSN-pCB in mucus systems with/without magnetic driving proves its potential role in the diagnosis, treatment, and imaging of mucosal-related diseases. Full article
(This article belongs to the Special Issue Catalysis, Electronics, Energy and Health at Nanoscale Domain)
Show Figures

Figure 1

11 pages, 5402 KiB  
Article
Magnetic Concentric Hot-Circle Generation at Optical Frequencies in All-Dielectric Mesoscale Janus Particles
by Oleg V. Minin, Song Zhou, Cheng-Yang Liu, Jelene Antonicole Ngan Kong and Igor V. Minin
Nanomaterials 2022, 12(19), 3428; https://doi.org/10.3390/nano12193428 - 30 Sep 2022
Cited by 3 | Viewed by 2246
Abstract
The development of all-dielectric structures with high magnetic response at optical frequencies has become a matter of intense study in past years. However, magnetic effects are weak at optical frequencies due to the small value of the magnetic permeability of natural materials. To [...] Read more.
The development of all-dielectric structures with high magnetic response at optical frequencies has become a matter of intense study in past years. However, magnetic effects are weak at optical frequencies due to the small value of the magnetic permeability of natural materials. To this end, natural dielectric materials are unemployable for practical “magnetic” applications in optics. We have shown for the first time that it is possible to induce intense magnetic concentric subwavelength “hot circles” in a dielectric mesoscale Janus particle. The basis of the Janus particle is a combination of the effects of a photonic jet, whispering-gallery waves, and the concept of solid immersion. Simulations show an (H/H0)2/(E/E0)2 contrast of more than 10, and maximal magnetic field intensity enhancement is more than 1000 for a wavelength-scaled particle with a refractive index n < 2 and a size parameter in the order of 30. This work may provide a new way to realize precise magnetic devices for integrated photonic circuits and light–matter interaction. Full article
(This article belongs to the Special Issue Research of Photonics at the Nanometer Scale)
Show Figures

Figure 1

17 pages, 4272 KiB  
Article
Preparation of Barium-Hexaferrite/Gold Janus Nanoplatelets Using the Pickering Emulsion Method
by Jelena Papan, Patricija Hribar Boštjančič, Alenka Mertelj and Darja Lisjak
Nanomaterials 2021, 11(11), 2797; https://doi.org/10.3390/nano11112797 - 22 Oct 2021
Cited by 5 | Viewed by 3252
Abstract
Janus particles, which have two surfaces exhibiting different properties, are promising candidates for various applications. For example, magneto-optic Janus particles could be used for in-vivo cancer imaging, drug delivery, and photothermal therapy. The preparation of such materials on a relatively large scale is [...] Read more.
Janus particles, which have two surfaces exhibiting different properties, are promising candidates for various applications. For example, magneto-optic Janus particles could be used for in-vivo cancer imaging, drug delivery, and photothermal therapy. The preparation of such materials on a relatively large scale is challenging, especially if the Janus structure consists of a hard magnetic material like barium hexaferrite nanoplatelets. The focus of this study was to adopt the known Pickering emulsion, i.e., Granick’s method, for the preparation of barium-hexaferrite/gold Janus nanoplatelets. The wax-in-water Pickering emulsions were stabilized with a combination of cetyltrimethyl ammonium bromide and barium hexaferrite nanoplatelets at 80 °C. Colloidosomes of solidified wax covered with the barium hexaferrite nanoplatelets formed after cooling the Pickering emulsions to room temperature. The formation and microstructure of the colloidosomes were thoroughly studied by optical and scanning electron microscopy. The process was optimized by various processing parameters, such as the composition of the emulsion system and the speed and time of emulsification. The colloidosomes with the highest surface coverage were used to prepare the Janus nanoplatelets by decorating the exposed surfaces of the barium hexaferrite nanoplatelets with gold nanospheres using mercaptan chemistry. Transmission electron microscopy was used to inspect the barium-hexaferrite/gold Janus nanoplatelets that were prepared for the first time. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

20 pages, 8693 KiB  
Article
Dynamics of a Pair of Paramagnetic Janus Particles under a Uniform Magnetic Field and Simple Shear Flow
by Christopher Sobecki, Jie Zhang and Cheng Wang
Magnetochemistry 2021, 7(1), 16; https://doi.org/10.3390/magnetochemistry7010016 - 19 Jan 2021
Cited by 8 | Viewed by 3800
Abstract
We numerically investigate the dynamics of a pair of circular Janus microparticles immersed in a Newtonian fluid under a simple shear flow and a uniform magnetic field by direct numerical simulation. Using the COMSOL software, we applied the finite element method, based on [...] Read more.
We numerically investigate the dynamics of a pair of circular Janus microparticles immersed in a Newtonian fluid under a simple shear flow and a uniform magnetic field by direct numerical simulation. Using the COMSOL software, we applied the finite element method, based on an arbitrary Lagrangian-Eulerian approach, and analyzed the dynamics of two anisotropic particles (i.e., one-half is paramagnetic, and the other is non-magnetic) due to the center-to-center distance, magnetic field strength, initial particle orientation, and configuration. This article considers two configurations: the LR-configuration (magnetic material is on the left side of the first particle and on the right side of the second particle) and the RL-configuration (magnetic material is on the right side of the first particle and on the left side of the second particle). For both configurations, a critical orientation determines if the particles either attract (below the critical) or repel (above the critical) under a uniform magnetic field. How well the particles form a chain depends on the comparison between the viscous and magnetic forces. For long particle distances, the viscous force separates the particles, and the magnetic force causes them to repel as the particle orientation increases above the configuration’s critical value. As the initial distance decreases, a chain formation is possible at a steady orientation, but is more feasible for the RL-configuration than the LR-configuration under the same circumstances. Full article
(This article belongs to the Special Issue Structure, Thermodynamics and Applications of Ferrofluids)
Show Figures

Figure 1

14 pages, 2920 KiB  
Article
Frequency Response of Induced-Charge Electrophoretic Metallic Janus Particles
by Chong Shen, Zhiyu Jiang, Lanfang Li, James F. Gilchrist and H. Daniel Ou-Yang
Micromachines 2020, 11(3), 334; https://doi.org/10.3390/mi11030334 - 24 Mar 2020
Cited by 17 | Viewed by 5884
Abstract
The ability to manipulate and control active microparticles is essential for designing microrobots for applications. This paper describes the use of electric and magnetic fields to control the direction and speed of induced-charge electrophoresis (ICEP) driven metallic Janus microrobots. A direct current (DC) [...] Read more.
The ability to manipulate and control active microparticles is essential for designing microrobots for applications. This paper describes the use of electric and magnetic fields to control the direction and speed of induced-charge electrophoresis (ICEP) driven metallic Janus microrobots. A direct current (DC) magnetic field applied in the direction perpendicular to the electric field maintains the linear movement of particles in a 2D plane. Phoretic force spectroscopy (PFS), a phase-sensitive detection method to detect the motions of phoretic particles, is used to characterize the frequency-dependent phoretic mobility and drag coefficient of the phoretic force. When the electric field is scanned over a frequency range of 1 kHz–1 MHz, the Janus particles exhibit an ICEP direction reversal at a crossover frequency at ~30 kH., Below this crossover frequency, the particle moves in a direction towards the dielectric side of the particle, and above this frequency, the particle moves towards the metallic side. The ICEP phoretic drag coefficient measured by PFS is found to be similar to that of the Stokes drag. Further investigation is required to study microscopic interpretations of the frequency at which ICEP mobility switched signs and the reason why the magnitudes of the forward and reversed modes of ICEP are so different. Full article
(This article belongs to the Special Issue Micromachines for Dielectrophoresis)
Show Figures

Figure 1

25 pages, 4922 KiB  
Review
Magnetic Janus Particles for Static and Dynamic (Bio)Sensing
by Susana Campuzano, Maria Gamella, Verónica Serafín, María Pedrero, Paloma Yáñez-Sedeño and José Manuel Pingarrón
Magnetochemistry 2019, 5(3), 47; https://doi.org/10.3390/magnetochemistry5030047 - 22 Aug 2019
Cited by 38 | Viewed by 8284
Abstract
Magnetic Janus particles bring together the ability of Janus particles to perform two different functions at the same time in a single particle with magnetic properties enabling their remote manipulation, which allows headed movement and orientation. This article reviews the preparation procedures and [...] Read more.
Magnetic Janus particles bring together the ability of Janus particles to perform two different functions at the same time in a single particle with magnetic properties enabling their remote manipulation, which allows headed movement and orientation. This article reviews the preparation procedures and applications in the (bio)sensing field of static and self-propelled magnetic Janus particles. The main progress in the fabrication procedures and the applicability of these particles are critically discussed, also giving some clues on challenges to be dealt with and future prospects. The promising characteristics of magnetic Janus particles in the (bio)sensing field, providing increased kinetics and sensitivity and decreased times of analysis derived from the use of external magnetic fields in their manipulation, allows foreseeing their great and exciting potential in the medical and environmental remediation fields. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles)
Show Figures

Figure 1

17 pages, 9444 KiB  
Article
Synthesis and Morphological Control of Biocompatible Fluorescent/Magnetic Janus Nanoparticles Based on the Self-Assembly of Fluorescent Polyurethane and Fe3O4 Nanoparticles
by Botian Li, Wei Shao, Yanzan Wang, Da Xiao, Yi Xiong, Haimu Ye, Qiong Zhou and Qingjun Jin
Polymers 2019, 11(2), 272; https://doi.org/10.3390/polym11020272 - 5 Feb 2019
Cited by 12 | Viewed by 4869
Abstract
Functionalized Janus nanoparticles have received increasing interest due to their anisotropic shape and the particular utility in biomedicine areas. In this work, a simple and efficient method was developed to prepare fluorescent/magnetic composite Janus nanoparticles constituted of fluorescent polyurethane and hydrophobic nano Fe [...] Read more.
Functionalized Janus nanoparticles have received increasing interest due to their anisotropic shape and the particular utility in biomedicine areas. In this work, a simple and efficient method was developed to prepare fluorescent/magnetic composite Janus nanoparticles constituted of fluorescent polyurethane and hydrophobic nano Fe3O4. Two kinds of fluorescent polyurethane prepolymers were synthesized by the copolymerization of fluorescent dye monomers, and the fluorescent/magnetic nanoparticles were fabricated in one-pot via the process of mini-emulsification and self-assembly. The nanostructures of the resulting composite nanoparticles, including core/shell and Janus structure, could be controlled by the phase separation in assembly process according to the result of transmission electron microscopy, whereas the amount of the nonpolar segments of polyurethane played an important role in the particle morphology. The prominent magnetic and fluorescent properties of the Janus nanoparticles were also confirmed by vibrating magnetometer and confocal laser scanning microscope. Furthermore, the Janus nanoparticles featured excellent dispersity, storage stability, and cytocompatibility, which might benefit their potential application in biomedical areas. Full article
(This article belongs to the Special Issue Functional Polyurethanes – In Memory of Prof. József Karger-Kocsis)
Show Figures

Graphical abstract

21 pages, 2942 KiB  
Article
The Cyanobacterial Ribosomal-Associated Protein LrtA from Synechocystis sp. PCC 6803 Is an Oligomeric Protein in Solution with Chameleonic Sequence Properties
by Lellys M. Contreras, Paz Sevilla, Ana Cámara-Artigas, José G. Hernández-Cifre, Bruno Rizzuti, Francisco J. Florencio, María Isabel Muro-Pastor, José García de la Torre and José L. Neira
Int. J. Mol. Sci. 2018, 19(7), 1857; https://doi.org/10.3390/ijms19071857 - 24 Jun 2018
Cited by 7 | Viewed by 3941
Abstract
The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and [...] Read more.
The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and stability of isolated LrtA in solution. At physiological conditions, as shown by hydrodynamic techniques, LrtA was involved in a self-association equilibrium. As indicated by Nuclear Magnetic Resonance (NMR), circular dichroism (CD) and fluorescence, the protein acquired a folded, native-like conformation between pH 6.0 and 9.0. However, that conformation was not very stable, as suggested by thermal and chemical denaturations followed by CD and fluorescence. Theoretical studies of its highly-charged sequence suggest that LrtA had a Janus sequence, with a context-dependent fold. Our modelling and molecular dynamics (MD) simulations indicate that the protein adopted the same fold observed in other members of the HPF family (β-α-β-β-β-α) at its N-terminal region (residues 1–100), whereas the C terminus (residues 100–197) appeared disordered and collapsed, supporting the overall percentage of overall secondary structure obtained by CD deconvolution. Then, LrtA has a chameleonic sequence and it is the first member of the HPF family involved in a self-association equilibrium, when isolated in solution. Full article
Show Figures

Graphical abstract

14 pages, 3459 KiB  
Article
External Field Response and Applications of Metal Coated Hemispherical Janus Particles
by So Aizawa, Keisuke Seto and Eiji Tokunaga
Appl. Sci. 2018, 8(4), 653; https://doi.org/10.3390/app8040653 - 23 Apr 2018
Cited by 3 | Viewed by 5126
Abstract
Hemispherical Janus particles that were coated with silver or nickel on the equatorial plane of hemispherical polymer microparticles were prepared and dispersed in water and the responses to AC electric and stationary magnetic fields applied were investigated. Both of the particles are so [...] Read more.
Hemispherical Janus particles that were coated with silver or nickel on the equatorial plane of hemispherical polymer microparticles were prepared and dispersed in water and the responses to AC electric and stationary magnetic fields applied were investigated. Both of the particles are so oriented that the equatorial plane is parallel to the AC electric field, owing to electric-field induced dipole orientation, which is the response proportional to the quadratic electric field. The nickel coated particles are self-assembled to make a chain-like structure aligned in the direction of the stationary magnetic field. In addition, when both AC electric and stationary magnetic fields are applied, the orientation of a nickel-coated hemispherical particle is uniquely determined in such a way that the equatorial plane is parallel to both electric and magnetic fields. Because the particle is magnetized on the plane, its direction is reversed when the magnetic field is reversed, which is the response that is proportional to the magnetic field. Utilizing these features, mirrors are fabricated that can switch the transmittance and reflectance with electric and magnetic fields. Such features of the Janus particles as to be controlled by an electric and magnetic fields will find wide applications in the fields of microoptics and microfluidics. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Graphical abstract

Back to TopTop