Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = magnesian calcite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 14774 KiB  
Article
Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)
by Veronika I. Rozhdestvina and Galina A. Palyanova
Minerals 2025, 15(6), 571; https://doi.org/10.3390/min15060571 - 27 May 2025
Viewed by 476
Abstract
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing [...] Read more.
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing native gold were analyzed by scanning electron microscopy in combination with X-ray microanalysis using different modes of visualization and X-ray diffraction methods. Gold particles, clearly visible after etching the surface of some polished sections with acids and partial or complete dissolution of some host minerals, were also examined. Native gold from the studied deposit is of high fineness (above 970‰) and contains (in wt.%) <1.59 Ag and less commonly <0.37 Cu and <0.15 Zn. Native gold is found intergrown with tremolite, diopside, and other magnesian silicates, as well as calcite, fluorite, magnetite, and sphalerite. Rare microinclusions of pyrrhotite, galena, and clinohumite are present in gold grains. It was found that native gold inherits the morphology of tremolite crystals and aggregates, which is determined by the size and shape of the voids bounded by its crystals. Gold localized in the intercrystalline spaces and in the zones of conjugation with remobilized calcite has irregular, lumpy shapes and partially or completely faceted grains with a dense structure. The nature of the localization and distribution of native gold in ores is due to the crystallization of the tremolite component of skarns. Apparently, the processes of gold accumulation are caused by the thermal activation of solid-phase differentiation of the substance of carbonate rocks, in which the processes of destruction of the original minerals and collective recrystallization play a significant role. It is likely that at some gold skarn deposits, carbonate rocks could be the source of gold. Data on the morphology and sizes of native gold segregations, as well as on the intergrown minerals, can be used to improve gold extraction technologies. A specific group of minerals intergrown with native gold in gold skarn deposits can be used as a diagnostic feature in the primary search for placer gold. The obtained results will help to better understand the formation of native gold in apocarbonate tremolite–diopside skarns. Full article
Show Figures

Graphical abstract

18 pages, 6347 KiB  
Article
Mineral Composition of Skeletal Elements in Dorid Nudibranchia Onchidoris muricata (Gastropoda, Mollusca)
by Dmitry A. Ozerov, Ekaterina D. Nikitenko, Alexey A. Piryazev, Andrey I. Lavrov and Elena V. Vortsepneva
Biomimetics 2025, 10(4), 211; https://doi.org/10.3390/biomimetics10040211 - 29 Mar 2025
Cited by 1 | Viewed by 489
Abstract
Energy-dispersive X-ray spectrometry (EDX), a standard technique in mineralogy and criminalistics, has not yet been fully incorporated into the study of various biomineral structures of invertebrates, despite the growing popularity of this topic in the last few decades. This is partly due to [...] Read more.
Energy-dispersive X-ray spectrometry (EDX), a standard technique in mineralogy and criminalistics, has not yet been fully incorporated into the study of various biomineral structures of invertebrates, despite the growing popularity of this topic in the last few decades. This is partly due to EDX’s limitations and data interpretation complexities. This study used EDX to analyze the spicules’ elemental composition of nudibranch gastropod mollusk Onchidoris muricata prepared via two methods (sectioning and fracturing). Hierarchical clustering and compositional data analysis of the resulting elemental data revealed three distinct spicule populations with varying element ratios, suggesting spicule transformation pathways. Two of the three clusters had a uniform layered microstructure, yet they showed reliable differences in element ratios. Raman spectroscopy confirmed the spicules’ calcite or magnesian–calcite composition. EDX analysis of spicule sections, coupled with other analytical techniques, revealed mineral structure transformations and provided insights into the biomineral nature. The sample preparation method with epoxy-embedding, preserving surrounding tissues in their active state, allowed for the analysis of tissue elemental composition and the elucidation of their role in mineralization. Full article
Show Figures

Figure 1

14 pages, 9306 KiB  
Article
Radiocarbon Dating of Magnesian Mortars: The Case of San Salvatore Church in Massino Visconti, Piedmont, Italy
by Giulia Ricci, Michele Secco, Fabio Marzaioli, Isabella Passariello, Filippo Terrasi and Gilberto Artioli
Appl. Sci. 2024, 14(21), 9899; https://doi.org/10.3390/app14219899 - 29 Oct 2024
Viewed by 913
Abstract
This study presents a comprehensive analysis and radiocarbon dating of historical mortar and plaster samples from the San Salvatore—Massino Visconti complex in Piedmont, Northern Italy. Mortar samples and one charcoal sample were collected from various areas within the complex’s lower chapels. Samples were [...] Read more.
This study presents a comprehensive analysis and radiocarbon dating of historical mortar and plaster samples from the San Salvatore—Massino Visconti complex in Piedmont, Northern Italy. Mortar samples and one charcoal sample were collected from various areas within the complex’s lower chapels. Samples were selected and characterized by means of a multi-analytical approach in order to draw inferences about their compositional, mineralogical, and microstructural features. The identification of hydromagnesite and magnesite in the mortar samples suggests the usage of magnesian binder mortar, potentially affecting radiocarbon dating due to its slower carbonation kinetics when compared to calcitic mortars. To mitigate this effect, a purification method was developed involving thermal treatment at 550 °C to isolate datable binding fractions. The results yielded reliable radiocarbon ages consistent with historical context, shedding light on construction materials dating from the 12th to 16th centuries. The study also challenges previous notions by demonstrating the feasibility of radiocarbon dating for magnesian mortars, opening new perspectives for dating such materials. These findings offer valuable insights into the construction history and material composition of the complex, corroborating historical information. Full article
(This article belongs to the Special Issue Brighten the Ages: Advances and Applications of Dating Methods)
Show Figures

Figure 1

35 pages, 37975 KiB  
Article
Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin
by Argos Belmonte Silveira Schrank, Thisiane Dos Santos, Sabrina Danni Altenhofen, William Freitas, Elias Cembrani, Thiago Haubert, Felipe Dalla Vecchia, Rosalia Barili, Amanda Goulart Rodrigues, Anderson Maraschin and Luiz Fernando De Ros
Minerals 2024, 14(2), 191; https://doi.org/10.3390/min14020191 - 11 Feb 2024
Cited by 7 | Viewed by 3325
Abstract
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay [...] Read more.
The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated in a magnesian clay matrix (stevensite, kerolite, and saponite/hectorite). Although vital for understanding the origin and main reservoir quality control, the genesis and interactions of clays and carbonates are still poorly constrained. The detailed petrographic description was focused on 812 thin sections from five wells drilled in the Santos Basin Aptian Barra Velha Formation, combined with cathodoluminescence, UV epifluorescence, and X-ray diffraction analyses. The main syngenetic processes were the deposition of finely laminated peloidal and ooidal Mg-clays, the formation of fascicular calcite crusts on the sediment–water interface, and the redeposition of these materials as intraclasts. Abundant clay peloids engulfed in syngenetic shrubs indicate that calcite and clay precipitation was concomitant, though with highly variable rates. Eodiagenetic phases include matrix-replacive and -displacive spherulites and fascicular shrubs; matrix-replacive blocky calcite and dolomite; lamellar carbonates filling matrix shrinkage pores; and microcrystalline calcite, dolomite, and silica replacing the Mg-clay matrix. The preferential dolomitization and calcitization of peloidal layers were most likely due to their higher permeability and larger specific surface. Matrix-replacive saddle dolomite, macrocrystalline calcite, and dawsonite are interpreted as mesodiagenetic or hydrothermal phases after significant matrix dissolution. Unraveling the processes of the formation and alteration of the carbonates and clays and their interactions in the Pre-salt deposits is essential for constraining the depositional and diagenetic conditions in their unique environments and their diagenetic overprinting and for decreasing the exploration risks and increasing the production of those extraordinary reservoirs. Full article
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Comparative Analysis of Composition and Porosity of the Biogenic Powder Obtained from Wasted Crustacean Exoskeletonsafter Carotenoids Extraction for the Blue Bioeconomy
by Fran Nekvapil, Maria Mihet, Geza Lazar, Simona Cîntă Pinzaru, Ana Gavrilović, Alexandra Ciorîță, Erika Levei, Tudor Tamaș and Maria-Loredana Soran
Water 2023, 15(14), 2591; https://doi.org/10.3390/w15142591 - 16 Jul 2023
Cited by 6 | Viewed by 2514
Abstract
The recovery and recycling of wasted resources are at the forefront of contemporary global issues. Methods of addressing several different issues may go hand-in-hand with each other, such as linking food waste recycling into bio-based adsorbent materials and wastewater treatment. Crustacean exoskeletons are [...] Read more.
The recovery and recycling of wasted resources are at the forefront of contemporary global issues. Methods of addressing several different issues may go hand-in-hand with each other, such as linking food waste recycling into bio-based adsorbent materials and wastewater treatment. Crustacean exoskeletons are promising candidates for bio-friendly adsorbents; however, maximizing their efficiency requires the optimization of processing technology. Crustacean meat offers an (often luxury) culinary delicacy, while their waste exoskeletons offer opportunities for smart recycling of the magnesian calcite nanoporous biocomposite. Here, we conduct a structural characterization of the exoskeletons of three crustacean species to assess how the extraction of valuable carotenoids affects prospects for the further valorization of their porous powder. The exoskeleton powder’s composition and morphology were investigated by SEM, Raman spectroscopy, FTIR and XRD. The biomineral component magnesian calcite was recorded both in native and in post-extraction exoskeleton powder. Acetone extraction, however, partially removed organic matter from the exoskeletons, resulting in the porosity of the respective powder increasing significantly from below 10 m2 g−1 in the native powder to over 32 m2 g−1 in post-extraction samples of blue crab and spider crab exoskeletons—while the spiny lobster exoskeleton exhibited low porosity, as measured by the BET method. This new insight could improve exoskeleton processing in the sustainable circular economy and applied blue bioeconomy—most notably for adsorbent materials for pollutants dissolved in water or as ordered, nature-derived nanostructured templates. Full article
Show Figures

Figure 1

18 pages, 7599 KiB  
Article
Antibacterial Activity and Cell Viability of Biomimetic Magnesian Calcite Coatings on Biodegradable Mg
by Monica Popa, Mihai Anastasescu, Laura M. Stefan, Ana-Maria Prelipcean and Jose Calderon Moreno
J. Funct. Biomater. 2023, 14(2), 98; https://doi.org/10.3390/jfb14020098 - 10 Feb 2023
Cited by 5 | Viewed by 2737
Abstract
Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even [...] Read more.
Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even though carbonate mineralization is the most important source of biominerals, such as the skeletons and shells of many marine organisms, there has been little success in the controlled growth of carbonate layers by synthetic processes. We present here the formation mechanism, antibacterial activity, and cell viability of magnesian calcite biomimetic coatings grown on biodegradable Mg via a green, one-step route. Cell compatibility assessment showed cell viability higher than 80% after 72 h using fibroblast cells (NCTC, clone L929) and higher than 60% after 72 h using human osteoblast-like cells (SaOS-2); the cells displayed a normal appearance and a density similar to the control sample. Antimicrobial potential evaluation against both Gram-positive (Staphylococcus aureus (ATCC 25923)) and Gram-negative (Pseudomonas aeruginosa (ATCC 27853)) strains demonstrated that the coated samples significantly inhibited bacterial adhesion and biofilm formation compared to the untreated control. Calcite coatings grown on biodegradable Mg by a single coating process showed the necessary properties of cell compatibility and bacterial resistance for application in surface-modified Mg biomaterials for temporary implants. Full article
Show Figures

Figure 1

17 pages, 2277 KiB  
Article
Authigenic Minerals of the Derbent and South Caspian Basins (Caspian Sea): Features of Forms, Distribution and Genesis under Conditions of Hydrogen Sulfide Contamination
by Nina Kozina, Liudmila Reykhard and Olga Dara
Minerals 2022, 12(1), 87; https://doi.org/10.3390/min12010087 - 13 Jan 2022
Cited by 3 | Viewed by 2714
Abstract
This paper presents the results of complex lithological, mineralogical, and geochemical studies of bottom sediments of deep-water basins of the Caspian Sea (Derbent and South Caspian Basins) in areas contaminated by hydrogen sulfide. In the course of complex studies, numerous manifestations of authigenic [...] Read more.
This paper presents the results of complex lithological, mineralogical, and geochemical studies of bottom sediments of deep-water basins of the Caspian Sea (Derbent and South Caspian Basins) in areas contaminated by hydrogen sulfide. In the course of complex studies, numerous manifestations of authigenic mineral formation associated with the stage of early diagenesis have been established. Authigenic minerals belonging to the groups of sulfates (gypsum, barite), chlorides (halite), carbonates (calcite, low Mg-calcite; kutnohorite), and sulfides (framboidal pyrite), as well as their forms and composition, have been identified by a complex of analytical methods (X-ray diffractometry (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS); atomic absorption spectroscopy (AAS); coulometric titration (CT)); the nature of their distribution in bottom sediments has been assessed. Carbonates and sulfates are predominant authigenic minerals in the deep-water basins of the Caspian Sea. As a part of the study, differences have been established in the composition and distribution of associations of authigenic minerals in the bottom sediments in the deep-water basins. These are mineral associations characteristic of the uppermost part of the sediments (interval 0–3 cm) and underlying sediments. In the Derbent Basin, in sediments of the interval 3–46 cm, an authigenic association is formed from gypsum, calcite, magnesian calcite, siderite, and framboidal pyrite. An association of such authigenic minerals as gypsum and calcite is formed in sediments of the 0–3 cm interval. In the South Caspian Basin, in sediments of the interval 3–35 cm, an association of such authigenic minerals as gypsum, halite, calcite, magnesian calcite, and framboidal pyrite is formed. The association of such authigenic minerals as gypsum, halite, calcite, magnesian calcite, kutnohorite, and framboidal pyrite is characteristic of sediments of the 0–3 cm interval. We consider the aridity of the climate in the South Caspian region to be the main factor that determines the appearance of such differences in the uppermost layer of sediments of the basins. Judging by the change in the composition of authigenic associations, the aridity of the South Caspian increased sharply by the time of the accumulation of the upper layer of sediments (interval 0–3 cm). Taking into account lithological, mineralogical and geochemical data, the features of the processes of authigenic mineral formation in the deep-water basins of the Caspian Sea under conditions of hydrogen sulfide contamination have been determined. Analysis of the results obtained and published data on the conditions of sedimentation in the Caspian Sea showed that hydrogen sulfide contamination recorded in the bottom layer of the water column of the deep-water basins of the Caspian Sea may affect the formation of authigenic sulfides (framboidal pyrite), sulfates (gypsum), and carbonates (calcite and kutnohorite) associated with the activity of sulfate-reducing bacteria in reducing conditions. Full article
(This article belongs to the Special Issue Elemental Concentration and Pollution in Soil, Water, and Sediment)
Show Figures

Figure 1

19 pages, 6764 KiB  
Article
Optical and Electronic Microscope for Minero-Petrographic and Microchemical Studies of Lime Binders of Ancient Mortars
by Emma Cantisani, Fabio Fratini and Elena Pecchioni
Minerals 2022, 12(1), 41; https://doi.org/10.3390/min12010041 - 28 Dec 2021
Cited by 24 | Viewed by 3320
Abstract
In this paper, the advances in the use of optical and electronic microscope for study of the minero-petrographic and microchemical features of lime binders of ancient mortars are discussed for various case studies. Mortars belonging to several historic periods and with different functions [...] Read more.
In this paper, the advances in the use of optical and electronic microscope for study of the minero-petrographic and microchemical features of lime binders of ancient mortars are discussed for various case studies. Mortars belonging to several historic periods and with different functions in building structures and archaeological sites were selected in order to verify the complementarity of optical and electronic microscope analyses applied to these artificial materials. The data obtained with the application of optical and microscope analyses were able to provide detailed and more precise information on the composition, structure, and texture of lime binders, highlighting the features of air hardening calcitic lime binder, air hardening magnesian lime binder, natural hydraulic lime binder, and air hardening binders with materials providing hydraulic characteristics added. Furthermore, a complete analysis and classification of the lime lumps was determined. Full article
Show Figures

Figure 1

20 pages, 3988 KiB  
Article
Characterisation and Traceability of Calcium Carbonate from the Seaweed Lithothamnium calcareum
by Rosana Pereira da Silva, Giovanna Sayuri Domingues Kawai, Fabio Ramos Dias de Andrade, Vinicius Danilo Nonato Bezzon and Humberto Gomes Ferraz
Solids 2021, 2(2), 192-211; https://doi.org/10.3390/solids2020013 - 6 May 2021
Cited by 13 | Viewed by 10572
Abstract
Calcium carbonate (CaCO3) from the seaweed Lithothamnium calcareum is a suitable dietary supplement for the prevention of osteoporosis, due to its chemical composition. This study compared CaCO3 from L. calcareum to CaCO3 from oyster shell and inorganic minerals that [...] Read more.
Calcium carbonate (CaCO3) from the seaweed Lithothamnium calcareum is a suitable dietary supplement for the prevention of osteoporosis, due to its chemical composition. This study compared CaCO3 from L. calcareum to CaCO3 from oyster shell and inorganic minerals that are already used in the pharmaceutical industry. The Rietveld refinement of the XRD showed that the mineral fraction of L. calcareum is composed of aragonite (50.3 wt%), magnesian calcite (45.3 wt%), calcite (4.4 wt%), comin contrast to oyster shell and inorganic minerals, which contain only calcite. The morphology of L. calcareum carbonate particles is granular xenomorphic, which is distinct from the scalenohedral form of inorganic calcite and the fibrous and scale-like fragments of oyster shell. The crystal structures of aragonite and magnesian calcite, present in L. calcareum, have higher contents of oligoelements than the pure calcite in other materials. The isotopic composition (stable isotopes of carbon and oxygen) is heavy in the CaCO3 from L. calcareum13C = 1.1‰; δ18O = −0.1‰) and oyster shell (δ13C = −4‰; δ18O = −2.8‰) in marked contrast to the much lighter isotopic composition of inorganic mineral CaCO313C = −19.2‰; δ18O = −26.3‰). The differences indicated above were determined through principal component analysis, where the first and second principal components are sufficient for the clear distinction and traceability of CaCO3 sources. Full article
(This article belongs to the Special Issue Feature Papers of Solids 2021)
Show Figures

Graphical abstract

16 pages, 5618 KiB  
Article
Compositional Variations of Spinels from Ultramafic Lamprophyres of the Chadobets Complex (Siberian Craton, Russia)
by Yazgul Nugumanova, Anna Doroshkevich, Ilya Prokopyev and Anastasiya Starikova
Minerals 2021, 11(5), 456; https://doi.org/10.3390/min11050456 - 26 Apr 2021
Cited by 10 | Viewed by 2935
Abstract
Ultramafic lamprophyres (UMLs) are mantle rocks that provide important information about the composition of specific carbonate–silicate alkaline melts in the mantle as well as the processes contributing to their origin. Minerals of the spinel group typically occur in UMLs and have a unique [...] Read more.
Ultramafic lamprophyres (UMLs) are mantle rocks that provide important information about the composition of specific carbonate–silicate alkaline melts in the mantle as well as the processes contributing to their origin. Minerals of the spinel group typically occur in UMLs and have a unique “genetic memory.” Investigations of the spinel minerals from the UMLs of the Chadobets complex show the physicochemical and thermodynamic features of the alkaline rocks’ crystallization. The spinels of these UMLs have four stages of crystallization. The first spinel xenocrysts were found only in damtjernite pipes, formed from mantle peridotite, and were captured during the rising of the primary melt to the surface. The next stages of the spinel composition evolution are related to the high-chromium spinel crystallization, which changed to a high-alumina composition. The composition then changed to magnesian ulvöspinel–magnetites with strong decreases in the Al and Cr amounts caused by the release of carbon dioxide, rapid temperature changes, and crystallization of the main primary groundmass minerals such as phlogopite and carbonates. Melt inclusion analyses showed the predominance of aluminosilicate (phlogopite, clinopyroxene, and/or albite) and carbonate (calcite and dolomite) daughter phases in the inclusions that are consistent with the chemical evolution of the Cr-spinel trend. The further evolution of the spinels from magnesian ulvöspinel–magnetite to Ti-magnetite is accompanied by the formation of atoll structures caused by resorption of the spinel minerals. Full article
(This article belongs to the Special Issue Petrogenesis and Geochemistry in Alkaline Ultramafic Rocks)
Show Figures

Figure 1

24 pages, 6617 KiB  
Article
First Steps towards Understanding the Non-Linear Impact of Mg on Calcite Solubility: A Molecular Dynamics Study
by Janou A. Koskamp, Sergio E. Ruiz Hernandez, Nora H. De Leeuw and Mariette Wolthers
Minerals 2021, 11(4), 407; https://doi.org/10.3390/min11040407 - 13 Apr 2021
Cited by 8 | Viewed by 3532
Abstract
Magnesium (Mg2+) is one of the most common impurities in calcite and is known to have a non-linear impact on the solubility of magnesian calcites. Using molecular dynamics (MD), we observed that Mg2+ impacts overall surface energies, local free energy [...] Read more.
Magnesium (Mg2+) is one of the most common impurities in calcite and is known to have a non-linear impact on the solubility of magnesian calcites. Using molecular dynamics (MD), we observed that Mg2+ impacts overall surface energies, local free energy profiles, interfacial water density, structure and dynamics and, at higher concentrations, it also causes crystal surface deformation. Low Mg concentrations did not alter the overall crystal structure, but stabilised Ca2+ locally and tended to increase the etch pit nucleation energy. As a result, Ca-extraction energies over a wide range of 39 kJ/mol were observed. Calcite surfaces with an island were less stable compared to flat surfaces, and the incorporation of Mg2+ destabilised the island surface further, increasing the surface energy and the calcium extraction energies. In general, Ca2+ is less stable in islands of high Mg2+ concentrations. The local variation in free energies depends on the amount and distance to nearest Mg in addition to local disruption of interfacial water and the flexibility of surface carbonate ions to rotate. The result is a complex interplay of these characteristics that cause variability in local dissolution energies. Taken together, these results illustrate molecular scale processes behind the non-linear impact of Mg2+ concentration on the solubility of magnesium-bearing calcites. Full article
Show Figures

Figure 1

15 pages, 3177 KiB  
Article
The Impact of Ambient Atmospheric Mineral-Dust Particles on the Calcification of Lungs
by Mariola Jabłońska, Janusz Janeczek and Beata Smieja-Król
Minerals 2021, 11(2), 125; https://doi.org/10.3390/min11020125 - 27 Jan 2021
Cited by 2 | Viewed by 4317
Abstract
For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in [...] Read more.
For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification. Full article
Show Figures

Graphical abstract

19 pages, 3928 KiB  
Article
Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals
by Jingyao Xu, Joan Carles Melgarejo, Qiuli Li, Lisard Torró i Abat and Montgarri Castillo-Oliver
Minerals 2020, 10(9), 829; https://doi.org/10.3390/min10090829 - 20 Sep 2020
Cited by 2 | Viewed by 3395
Abstract
We present the results of a detailed petrographic study of fresh coherent samples of the Menominee kimberlite sampled at site 73, located in Menominee County, MI, USA. Our objective is to account for its unusual and complex paragenetic sequence. Several generations of olivine, [...] Read more.
We present the results of a detailed petrographic study of fresh coherent samples of the Menominee kimberlite sampled at site 73, located in Menominee County, MI, USA. Our objective is to account for its unusual and complex paragenetic sequence. Several generations of olivine, ilmenite, and spinel-group minerals are described. Early olivine and ilmenite are xenocrystic and were replaced or overgrown by primary minerals. Zoned microcrysts of olivine have a xenocrystic core mantled by a first rim in which rutile, geikielite, and spinel s.s. (spinel sensu stricto) cocrystallized. The in situ U–Pb dating of a microcryst of primary rutile yielded 168.9 ± 4.4 Ma, which was interpreted as the age of emplacement. The groundmass consists of olivine, spinel s.s., a magnesian ulvöspinel–ulvöspinel–magnetite (MUM) spinel, calcite, and dolomite. An extremely low activity of Si is suggested by the crystallization of spinel s.s. instead of phlogopite in the groundmass. The presence of djerfisherite microcrysts indicates high activities of Cl and S during the late stages of melt crystallization. The occurrence of two distinct spinel-group minerals (spinel s.s. and qandilite-rich MUM) in the groundmass is interpreted as clear evidence of the mingling of a magnesiocarbonatitic melt with a dominant kimberlitic melt. Full article
(This article belongs to the Special Issue Spinel Group Minerals, Volume II)
Show Figures

Figure 1

36 pages, 19999 KiB  
Article
The Petyayan-Vara Carbonatite-Hosted Rare Earth Deposit (Vuoriyarvi, NW Russia): Mineralogy and Geochemistry
by Evgeniy Kozlov, Ekaterina Fomina, Mikhail Sidorov, Vladimir Shilovskikh, Vladimir Bocharov, Alexey Chernyavsky and Miłosz Huber
Minerals 2020, 10(1), 73; https://doi.org/10.3390/min10010073 - 17 Jan 2020
Cited by 34 | Viewed by 8348
Abstract
The Vuoriyarvi Devonian carbonatite–ijolite–pyroxenite–olivinite complex comprises several carbonatite fields: Neske Vara, Tukhta-Vara, and Petyayan-Vara. The most common carbonatites in the Tukhta-Vara and Neske-Vara fields are calciocarbonatites, which host several P, Fe, Nb, and Ta deposits. This paper focuses on the Petyayan-Vara field, in [...] Read more.
The Vuoriyarvi Devonian carbonatite–ijolite–pyroxenite–olivinite complex comprises several carbonatite fields: Neske Vara, Tukhta-Vara, and Petyayan-Vara. The most common carbonatites in the Tukhta-Vara and Neske-Vara fields are calciocarbonatites, which host several P, Fe, Nb, and Ta deposits. This paper focuses on the Petyayan-Vara field, in which the primary magmatic carbonatites are magnesian. The least altered magnesiocarbonatites are composed of dolomite with burbankite and are rich in REE (up to 2.0 wt. %), Sr (up to 1.2 wt. %), and Ba (up to 0.8 wt. %). These carbonatites underwent several stages of metasomatism. Each metasomatic event produced a new rock type with specific mineralization. The introduction of K, Si, Al, Fe, Ti, and Nb by a F-rich fluid (or fluid-saturated melt) resulted in the formation of high-Ti magnesiocarbonatites and silicocarbonatites, composed of dolomite, microcline, Ti-rich phlogopite, and Fe–Ti oxides. Alteration by a phosphate–fluoride fluid caused the crystallization of apatite in the carbonatites. A sulfate-rich Ba–Sr–rare-earth elements (REE) fluid (probably brine-melt) promoted the massive precipitation of ancylite and baryte and, to a lesser extent, strontianite, bastnäsite, and synchysite. Varieties of carbonatite that contain the highest concentrations of REE are ancylite-dominant. The influence of sulfate-rich Ba-Sr-REE fluid on the apatite-bearing rocks resulted in the dissolution and reprecipitation of apatite in situ. The newly formed apatite generation is rich in HREE, Sr, and S. During late-stage transformations, breccias of magnesiocarbonatites with quartz-bastnäsite matrixes were formed. Simultaneously, strontianite, quartz, calcite, monazite, HREE-rich thorite, and Fe-hydroxides were deposited. Breccias with quartz-bastnäsite matrix are poorer in REE (up to 4.5 wt. % total REE) than the ancylite-dominant rocks (up to 11 wt. % total REE). Full article
Show Figures

Figure 1

14 pages, 8897 KiB  
Article
Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite
by Huifang Xu, Mo Zhou, Yihang Fang and H. Henry Teng
Minerals 2018, 8(1), 17; https://doi.org/10.3390/min8010017 - 12 Jan 2018
Cited by 28 | Viewed by 8280
Abstract
The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ [...] Read more.
The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001) surface also leads to the observed calcite (001) twinning. A second and less common orientation between calcite {104} and mica (001) was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice. Full article
(This article belongs to the Special Issue Fundamentals and Frontiers in Mineralogy)
Show Figures

Graphical abstract

Back to TopTop