Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = macromolecular crowding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3264 KB  
Article
Site-Specific Recruitment, Localization of Ionized Monomer to Macromolecular Crowded Droplet Compartments Can Lead to Catalytic Coacervates for Photo-RAFT in Dilution
by Wenjing Niu, Xiyu Wang, Ran Zhang and Yuanli Cai
Polymers 2026, 18(1), 106; https://doi.org/10.3390/polym18010106 - 30 Dec 2025
Viewed by 271
Abstract
Catalytic coacervates, or droplet reactors, represent a forefront research area in chemistry and materials science. Despite advancements in this field, challenges persist in achieving liquid–liquid phase separation (LLPS) droplet compartmentalization and site-specific reactant recruitment/localization for reaction catalysis, similar to those within biological systems. [...] Read more.
Catalytic coacervates, or droplet reactors, represent a forefront research area in chemistry and materials science. Despite advancements in this field, challenges persist in achieving liquid–liquid phase separation (LLPS) droplet compartmentalization and site-specific reactant recruitment/localization for reaction catalysis, similar to those within biological systems. Herein, we describe the catalytic coacervates for aqueous photo-RAFT in dilution, focusing on the site-specific recruitment/localization of ionized monomer with the aid of macromolecular crowding and confinement. Cooperative hydrogen-bonded interpolymer complexation (IPC) of imidazolium-copolymers initiates the ion-cluster formation. Further hierarchical inter-cluster complexation (ICC) leads to the LLPS droplet compartmentalization into charged dense-phase and neutral dilute-phase compartments. Site-specific recruitment and localization of the oppositely charged monomer into dense-phase compartments are achieved by salt-bridging molecular recognition. “Substantial DMA-dilution” (that is, macromolecular crowding) results in sustainable dense-phase catalytic sites within dilute-phase crowding surroundings, enabling reaction catalysis in dilution (<2% w/w monomer) to 97% conversion in 12 min. These findings underscore the key roles of macromolecular crowding and confinement in the tailorable LLPS droplet compartmentalization and also the site-specific reactant recruitment/localization essential for enzyme reaction catalysis, and provide practical guidelines for creating catalytic coacervates towards lifelike reaction functions. Full article
(This article belongs to the Special Issue Smart Polymer: New Design and Applications)
Show Figures

Graphical abstract

20 pages, 3040 KB  
Review
Quantitative Characterization of Nonspecific Interactions Between Macromolecules in Complex Media: Comparison of Experiment, Theory, and Simulation
by Allen P. Minton
Biophysica 2025, 5(3), 25; https://doi.org/10.3390/biophysica5030025 - 24 Jun 2025
Cited by 1 | Viewed by 912
Abstract
A brief summary of the effect of nonspecific interactions upon chemical equilibria in solutions containing a high total concentration of macromolecular solutes comparable to that found in biological fluid media is presented. Analyses of experimental measurements permitting relatively direct quantitation of the free [...] Read more.
A brief summary of the effect of nonspecific interactions upon chemical equilibria in solutions containing a high total concentration of macromolecular solutes comparable to that found in biological fluid media is presented. Analyses of experimental measurements permitting relatively direct quantitation of the free energy of nonspecific intermolecular interaction in solutions of one or two macrosolutes are described, and a table listing published experimental studies of both homo- and hetero-interactions is provided. Methods for calculating the free energy of nonspecific interaction via theory and computer simulation are described. Recommendations for further progress in both measurement and calculation of interaction free energies are presented. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

12 pages, 3398 KB  
Article
Melting Profile of DNA in Crowded Solution: Model-Based Study
by Neha Mathur, Amar Singh and Navin Singh
Int. J. Mol. Sci. 2025, 26(11), 5305; https://doi.org/10.3390/ijms26115305 - 31 May 2025
Viewed by 1319
Abstract
Recent advances in molecular dynamics (MD) simulations and the introduction of artificial intelligence (AI) have resulted in a significant increase in accuracy for structure prediction. However, the cell is a highly crowded environment consisting of various macromolecules, such as proteins and nucleic acids. [...] Read more.
Recent advances in molecular dynamics (MD) simulations and the introduction of artificial intelligence (AI) have resulted in a significant increase in accuracy for structure prediction. However, the cell is a highly crowded environment consisting of various macromolecules, such as proteins and nucleic acids. The macromolecular crowding and solution conditions, such as temperature, ion concentration, and the presence of crowders, significantly influence the molecular interactions between and structural changes in proteins and nucleic acids. In this study, we investigate the presence of crowders and their effect on the melting of DNA molecules by analyzing melting profiles of short and long heterogeneous DNA duplexes. In particular, we examine how multiple inert crowders, randomly distributed along long DNA chains, influence DNA melting. We find that the presence of crowders stabilizes double-stranded DNA (dsDNA), with this effect being more pronounced in short DNA duplexes. These findings complement in vitro observations and improve our understanding of dsDNA in cell-like environments. Full article
Show Figures

Figure 1

12 pages, 2715 KB  
Article
Role Assessment of Water-Soluble Pharmaceutical Form of Phosphatidylcholine on the Catalytic Activity of Cytochrome P450 2C9 and 2D6
by Polina I. Koroleva, Tatiana V. Bulko, Alexey V. Kuzikov, Andrei A. Gilep, Yulia A. Romashova, Elena G. Tichonova, Lyubov V. Kostrukova, Alexander I. Archakov and Victoria V. Shumyantseva
Int. J. Mol. Sci. 2025, 26(1), 4; https://doi.org/10.3390/ijms26010004 - 24 Dec 2024
Cited by 2 | Viewed by 1362
Abstract
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% [...] Read more.
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution. These results indicate the ability of wPC in the form of the phospholipid ultra-small nanoparticles to work as a membrane additive and crowding agent to accelerate the electroenzymatic reactions of cytochrome P450. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 7091 KB  
Article
Pitfalls of Using ANS Dye Under Molecular Crowding Conditions
by Sergey A. Silonov, Alexander I. Kuklin, Semen V. Nesterov, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Int. J. Mol. Sci. 2024, 25(24), 13600; https://doi.org/10.3390/ijms252413600 - 19 Dec 2024
Cited by 1 | Viewed by 1745
Abstract
The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein [...] Read more.
The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS. Furthermore, GdnHCl can disrupt these clusters and directly affect the ANS spectral characteristics. A model for the interaction between GdnHCl, crowders, and ANS is proposed. Using bovine serum albumin (BSA) as a model protein, the limitations of using ANS for studying conformational transitions induced by GdnHCl in the presence of crowding agents are demonstrated. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 10346 KB  
Article
Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding
by Mehmet Gurdal, Gulinnaz Ercan, Ozlem Barut Selver, Daniel Aberdam and Dimitrios I. Zeugolis
Life 2024, 14(12), 1552; https://doi.org/10.3390/life14121552 - 26 Nov 2024
Cited by 3 | Viewed by 1971
Abstract
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, [...] Read more.
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest (p < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased (p < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach. Full article
Show Figures

Graphical abstract

19 pages, 4503 KB  
Article
Oral Antiviral Defense: Saliva- and Beverage-like Hypotonicity Dynamically Regulate Formation of Membraneless Biomolecular Condensates of Antiviral Human MxA in Oral Epithelial Cells
by Pravin B. Sehgal, Huijuan Yuan, Anthony Centone and Susan V. DiSenso-Browne
Cells 2024, 13(7), 590; https://doi.org/10.3390/cells13070590 - 28 Mar 2024
Cited by 1 | Viewed by 2288
Abstract
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and [...] Read more.
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and pH by the drinks we imbibe (e.g., hypotonic: water, tea, and coffee; hypertonic: assorted fruit juices, and red wines). In the mouth, the broad-spectrum antiviral mediator MxA (a dynamin-family large GTPase) is constitutively expressed in healthy periodontal tissues and induced by Type III interferons (e.g., IFN-λ1/IL-29). Endogenously induced human MxA and exogenously expressed human GFP-MxA formed membraneless biomolecular condensates in the cytoplasm of oral carcinoma cells (OECM1 cell line). These condensates likely represent storage granules in equilibrium with antivirally active dispersed MxA. Remarkably, cytoplasmic MxA condensates were exquisitely sensitive sensors of hypotonicity—the condensates in oral epithelium disassembled within 1–2 min of exposure of cells to saliva-like one-third hypotonicity, and spontaneously reassembled in the next 4–7 min. Water, tea, and coffee enhanced this disassembly. Fluorescence changes in OECM1 cells preloaded with calcein-AM (a reporter of cytosolic “macromolecular crowding”) confirmed that this process involved macromolecular uncrowding and subsequent recrowding secondary to changes in cell volume. However, hypertonicity had little effect on MxA condensates. The spontaneous reassembly of GFP-MxA condensates in oral epithelial cells, even under continuous saliva-like hypotonicity, was slowed by the protein-phosphatase-inhibitor cyclosporin A (CsA) and by the K-channel-blocker tetraethylammonium chloride (TEA); this is suggestive of the involvement of the volume-sensitive WNK kinase-protein phosphatase (PTP)-K-Cl cotransporter (KCC) pathway in the regulated volume decrease (RVD) during condensate reassembly in oral cells. The present study identifies a novel subcellular consequence of hypotonic stress in oral epithelial cells, in terms of the rapid and dynamic changes in the structure of one class of phase-separated biomolecular condensates in the cytoplasm—the antiviral MxA condensates. More generally, the data raise the possibility that hypotonicity-driven stresses likely affect other intracellular functions involving liquid–liquid phase separation (LLPS) in cells of the oral mucosa. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Immunity to Infectious Viruses)
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures
by Salome Guillaumin, Mehmet Gurdal and Dimitrios I. Zeugolis
Life 2024, 14(4), 435; https://doi.org/10.3390/life14040435 - 25 Mar 2024
Cited by 5 | Viewed by 3402
Abstract
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition [...] Read more.
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control). Dynamic light scattering analysis revealed that all macromolecules had negative charge and were polydispersed. None of the macromolecules affected basic cellular function. At day 7 (the longest time point assessed), gel electrophoresis analysis revealed that all macromolecules significantly increased collagen type I deposition in comparison to the non-macromolecular crowding group. Also at day 7, immunofluorescence analysis revealed that carrageenan; the 50 µg/mL, 75 µg/mL, and 100 µg/mL gum gellan; and the 500 µg/mL and 1000 µg/mL gum xanthan significantly increased both collagen type I and collagen type III deposition and only carrageenan significantly increased collagen type V deposition, all in comparison to the non-macromolecular crowding group at the respective time point. This preliminary study demonstrates the potential of gums as macromolecular crowding agents, but more detailed biological studies are needed to fully exploit their potential in the development of tissue-engineered medicines. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

16 pages, 6765 KB  
Article
Ultrasensitive Detection of PSA Using Antibodies in Crowding Polyelectrolyte Multilayers on a Silicon Nanowire Field-Effect Transistor
by Galina V. Presnova, Denis E. Presnov, Mariya M. Ulyashova, Ilia I. Tsiniaikin, Artem S. Trifonov, Ekaterina V. Skorb, Vladimir A. Krupenin, Oleg V. Snigirev and Maya Yu. Rubtsova
Polymers 2024, 16(3), 332; https://doi.org/10.3390/polym16030332 - 25 Jan 2024
Cited by 4 | Viewed by 2672
Abstract
Immunosensors based on field-effect transistors with nanowire channels (NWFETs) provide fast and real-time detection of a variety of biomarkers without the need for additional labels. The key feature of the developed immunosensor is the coating of silicon NWs with multilayers of polyelectrolytes (polyethylenimine [...] Read more.
Immunosensors based on field-effect transistors with nanowire channels (NWFETs) provide fast and real-time detection of a variety of biomarkers without the need for additional labels. The key feature of the developed immunosensor is the coating of silicon NWs with multilayers of polyelectrolytes (polyethylenimine (PEI) and polystyrene sulfonate (PSS)). By causing a macromolecular crowding effect, it ensures the “soft fixation” of the antibodies into the 3-D matrix of the oppositely charged layers. We investigated the interaction of prostate-specific antigen (PSA), a biomarker of prostate cancer, and antibodies adsorbed in the PEI and PSS matrix. In order to visualize the formation of immune complexes between polyelectrolyte layers using SEM and AFM techniques, we employed a second clone of antibodies labeled with gold nanoparticles. PSA was able to penetrate the matrix and concentrate close to the surface layer, which is crucial for its detection on the nanowires. Additionally, this provides the optimal orientation of the antibodies’ active centers for interacting with the antigen and improves their mobility. NWFETs were fabricated from SOI material using high-resolution e-beam lithography, thin film vacuum deposition, and reactive-ion etching processes. The immunosensor was characterized by a high sensitivity to pH (71 mV/pH) and an ultra-low limit of detection (LOD) of 0.04 fg/mL for PSA. The response of the immunosensor takes less than a minute, and the measurement is carried out in real time. This approach seems promising for further investigation of its applicability for early screening of prostate cancer and POC systems. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

20 pages, 761 KB  
Review
Macromolecular Crowding and DNA: Bridging the Gap between In Vitro and In Vivo
by Dylan Collette, David Dunlap and Laura Finzi
Int. J. Mol. Sci. 2023, 24(24), 17502; https://doi.org/10.3390/ijms242417502 - 15 Dec 2023
Cited by 22 | Viewed by 6575
Abstract
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the [...] Read more.
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the gap between in vitro and in vivo measurements. This is a review of the reported effects of macromolecular crowding on the compaction and extension of DNA, the effect of macromolecular crowding on DNA kinetics, and protein-DNA interactions. Theoretical models related to macromolecular crowding and DNA are briefly reviewed. Gaps in the literature, including the use of biologically relevant crowders, simultaneous use of multi-sized crowders, empirical connections between macromolecular crowding and liquid–liquid phase separation of nucleic materials are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Genome Maintenance Studies)
Show Figures

Figure 1

22 pages, 700 KB  
Review
Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle
by Masamichi Kohiyama, John Herrick and Vic Norris
Life 2023, 13(9), 1890; https://doi.org/10.3390/life13091890 - 10 Sep 2023
Cited by 5 | Viewed by 2837
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, [...] Read more.
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division. Full article
Show Figures

Figure 1

19 pages, 3007 KB  
Article
Carrageenan-Based Crowding and Confinement Combination Approach to Increase Collagen Deposition for In Vitro Tissue Development
by Joseph Krebs, Samuel Stealey, Alyssa Brown, Austin Krohn, Silviya Petrova Zustiak and Natasha Case
Gels 2023, 9(9), 705; https://doi.org/10.3390/gels9090705 - 1 Sep 2023
Cited by 6 | Viewed by 2607
Abstract
Connective tissue models grown from cell monolayers can be instrumental in a variety of biomedical fields such as drug screening, wound healing, and regenerative engineering. However, while connective tissues contain abundant fibrillar collagen, achieving a sufficient assembly and retention of fibrillar collagen in [...] Read more.
Connective tissue models grown from cell monolayers can be instrumental in a variety of biomedical fields such as drug screening, wound healing, and regenerative engineering. However, while connective tissues contain abundant fibrillar collagen, achieving a sufficient assembly and retention of fibrillar collagen in vitro is challenging. Unlike the dilute cell culture environment, the body’s environment is characterized by a high density of soluble macromolecules (crowding) and macromolecular networks (confinement), which contribute to extracellular matrix (ECM) assembly in vivo. Consequently, macromolecular crowding (MMC) has been successfully used to enhance the processing of type I procollagen, leading to significant increases in fibrillar collagen assembly and accumulation during in vitro culture of a variety of cell types. In this study, we developed a combination approach using a carrageenan hydrogel, which released soluble macromolecules and served as a confinement barrier. We first evaluated the local carrageenan release and then confirmed the effectiveness of this combination approach on collagen accumulation by the human MG-63 bone cell line. Additionally, computational modeling of oxygen and glucose transport within the culture system showed no negative effects of the hydrogel and its releasates on cell viability. Full article
Show Figures

Graphical abstract

16 pages, 2307 KB  
Article
A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo
by Leon Koch, Roland Pollak, Simon Ebbinghaus and Klaus Huber
Biosensors 2023, 13(7), 720; https://doi.org/10.3390/bios13070720 - 8 Jul 2023
Cited by 2 | Viewed by 2465
Abstract
Pseudo isocyanine chloride (PIC) has been identified in a preceding work as a sensor suited to probe macromolecular crowding both in test tubes with solutions of synthetic crowding agents and in HeLa cells as a representative of living systems. The sensing is based [...] Read more.
Pseudo isocyanine chloride (PIC) has been identified in a preceding work as a sensor suited to probe macromolecular crowding both in test tubes with solutions of synthetic crowding agents and in HeLa cells as a representative of living systems. The sensing is based on a delicate response of the self-assembly pattern of PIC towards a variation in macromolecular crowding. Based on a suitable selection of criteria established in the present study, four additional cyanine dyestuffs (TDBC, S071, S2275, and PCYN) were scrutinized for their ability to act as such a sensor, and the results were compared with the corresponding performance of PIC. UV-VIS and fluorescence spectroscopy were applied to investigate the photo-physical properties of the four candidates and, if possible, light scattering was used to characterize the self-assembly of the dyestuffs in solution. Finally, HeLa cells were exposed to solutions of the most promising candidates in order to analyze their ability to infiltrate the cells and to self-assemble therein. None of the dyestuff candidates turned out to be as similarly promising in probing crowding effects in cells as PIC turned out to be. S0271 and S2275 are at least stable enough and meet the photophysical requirements necessary to act as sensors responding to changes in macromolecular crowding. Full article
(This article belongs to the Topic Bio-Inspired Systems and Signal Processing)
Show Figures

Figure 1

42 pages, 16183 KB  
Review
Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes
by Pablo M. Blanco, Claudio F. Narambuena, Sergio Madurga, Francesc Mas and Josep L. Garcés
Polymers 2023, 15(12), 2680; https://doi.org/10.3390/polym15122680 - 14 Jun 2023
Cited by 7 | Viewed by 4375
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some [...] Read more.
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called “wrong side” of the isoelectric point); (v) the influence of macromolecular crowding on CR. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

21 pages, 5897 KB  
Article
The Role of Cosolvent–Water Interactions in Effects of the Media on Functionality of Enzymes: A Case Study of Photobacterium leiognathi Luciferase
by Albert E. Lisitsa, Lev A. Sukovatyi, Anna A. Deeva, Dmitry V. Gulnov, Elena N. Esimbekova, Valentina A. Kratasyuk and Elena V. Nemtseva
Life 2023, 13(6), 1384; https://doi.org/10.3390/life13061384 - 13 Jun 2023
Cited by 7 | Viewed by 2252
Abstract
A complex heterogeneous intracellular environment seems to affect enzymatic catalysis by changing the mobility of biomolecules, their stability, and their conformational states, as well as by facilitating or hindering continuously occurring interactions. The evaluation and description of the influence of the cytoplasmic matrix [...] Read more.
A complex heterogeneous intracellular environment seems to affect enzymatic catalysis by changing the mobility of biomolecules, their stability, and their conformational states, as well as by facilitating or hindering continuously occurring interactions. The evaluation and description of the influence of the cytoplasmic matrix components on enzymatic activity are problems that remain unsolved. In this work, we aimed to determine the mechanisms of action of two-component media with cosolvents of various molecular sizes on the complex multi-stage bioluminescent reaction catalyzed by bacterial luciferase. Kinetic and structural effects of ethylene glycol, glycerol, sorbitol, glucose, sucrose, dextran, and polyethylene glycol on bacterial luciferase were studied using stopped-flow and fluorescence spectroscopy techniques and molecular dynamics simulations. We have found that diffusion limitations in the presence of cosolvents promote the stabilization of flavin substrate and peroxyflavin intermediate of the reaction, but do not provide any advantages in bioluminescence quantum yield, because substrate binding is slowed down as well. The catalytic constant of bacterial luciferase has been found to be viscosity-independent and correlated with parameters of water–cosolvent interactions (Norrish constant, van der Waals interaction energies). Crowding agents, in contrast to low-molecular-weight cosolvents, had little effect on peroxyflavin intermediate decay and enzyme catalytic constant. We attributed specific kinetic effects to the preferential interaction of the cosolvents with enzyme surface and their penetration into the active site. Full article
(This article belongs to the Special Issue Recent Advances in Bioluminescence)
Show Figures

Figure 1

Back to TopTop