A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. UV-VIS Experiments
2.4. Static and Dynamic Light Scattering
2.5. Cell Culture and Application of PIC, S0271, and S2275
2.6. Influence of the Dyestuffs on the Viability of HeLa Cells
3. Results
3.1. Optical Spectroscopy of the Cyanine Dyes
PCYN | TDBC | S0271 | S2275 | |
---|---|---|---|---|
λJ [nm] | 640 (a) | 586 | 561 | 650 |
[dye]JA at TJA = 20 °C | - | - | 1 µM | 0.6 mM |
λJf [nm] | - | 583 (b) | 556 | 625 |
λmf [nm] | 525 | 586 |
3.2. Threshold Temperature of Cyanine Dyes
3.3. Determination of the Size and Shape of Aggregates
3.4. Applicability of S0271 and S2275 as Self-Assembly Sensors in Living Cells in Comparison to PIC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, D.; Minton, A.P. Effects of inert volume-excluding macromolecules on protein fiber formation. I. Equilibriu models. Biophys. Chem. 2002, 98, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol. Cell. Biochem. 1983, 55, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Macromolecular crowding. Curr. Biol. 2006, 16, R269–R271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Cheng, W.; Ji, C.; Zhang, J.; Yin, M. Detection of metal ions in biological systems: A review. Rev. Anal. Chem. 2020, 39, 231–246. [Google Scholar] [CrossRef]
- Lobas, M.A.; Tao, R.; Nagai, J.; Kronschläger, M.T.; Borden, P.M.; Marvin, J.S.; Looger, L.L.; Khakh, B.S. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 2019, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Gnutt, D.; Gao, M.; Brylski, O.; Heyden, M.; Ebbinghaus, S. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. Engl. 2015, 54, 2548–2551. [Google Scholar] [CrossRef] [Green Version]
- Büning, S.; Sharma, A.; Vachharajani, S.; Newcombe, E.; Ormsby, A.; Gao, M.; Gnutt, D.; Vöpel, T.; Hatters, D.M.; Ebbinghaus, S. Conformational dynamics and self-association of intrinsically disordered Huntingtin exon 1 in cells. Phys. Chem. Chem. Phys. 2017, 19, 10738–10747. [Google Scholar] [CrossRef]
- Mateju, D.; Franzmann, T.M.; Patel, A.; Kopach, A.; Boczek, E.E.; Maharana, S.; Lee, H.O.; Carra, S.; Hyman, A.A.; Alberti, S. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 2017, 36, 1669–1687. [Google Scholar] [CrossRef]
- Raeburn, C.B.; Ormsby, A.R.; Cox, D.; Gerak, C.A.; Makhoul, C.; Moily, N.S.; Ebbinghaus, S.; Dickson, A.; McColl, G.; Hatters, D.M. A biosensor of protein foldedness identifies increased “holdase” activity of chaperones in the nucleus following increased cytosolic protein aggregation. J. Biol. Chem. 2022, 298, 102158. [Google Scholar] [CrossRef]
- Sahoo, B.; Arduini, I.; Drombosky, K.W.; Kodali, R.; Sanders, L.H.; Greenamyre, J.T.; Wetzel, R. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer. PLoS ONE 2016, 11, e0155747. [Google Scholar] [CrossRef] [Green Version]
- LeVine, H. Quantification of β-sheet amyloid fibril structures with thioflavin T. In Amyloid, Prions, and Other Protein Aggregates; Wetzel, R., Ed.; Academic Press: San Diego, CA, USA, 1999; pp. 274–284. ISBN 9780121822101. [Google Scholar]
- Smiley, S.T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T.W.; Steele, G.D.; Chen, L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 1991, 88, 3671–3675. [Google Scholar] [CrossRef] [PubMed]
- Hämisch, B.; Pollak, R.; Ebbinghaus, S.; Huber, K. Self-Assembly of Pseudo-Isocyanine Chloride as a Sensor for Macromolecular Crowding In Vitro and In Vivo. Chemistry 2020, 26, 7041–7050. [Google Scholar] [CrossRef]
- Daltrozzo, E.; Scheibe, G.; Gschwind, K.; Haimerl, F. Structure of J-Aggregates of Pseudoisocyanine. Photogr. Sci. Eng. 1974, 18, 441–450. [Google Scholar]
- Hämisch, B.; Pollak, R.; Ebbinghaus, S.; Huber, K. Thermodynamic Analysis of the Self-Assembly of Pseudo Isocyanine Chloride in the Presence of Crowding Agents. ChemSystemsChem 2021, 3, e2000051. [Google Scholar] [CrossRef]
- Herzog, B.; Huber, K.; Stegemeyer, H. Aggregation of a Pseudoisocyanine Chloride in Aqueous NaCl Solution. Langmuir 2003, 19, 5223–5232. [Google Scholar] [CrossRef]
- Scheibe, G. Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache. Angew. Chem. 1937, 50, 212–219. [Google Scholar] [CrossRef]
- Jelley, E.E. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 1936, 138, 1009–1010. [Google Scholar] [CrossRef]
- Jelley, E.E. Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride. Nature 1937, 139, 631. [Google Scholar] [CrossRef]
- Scheibe, G.; Kandler, L.; Ecker, H. Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen. Naturwissenschaften 1937, 25, 75. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Yang, D.; Tan, R.; Zhao, R.R.; Xu, R.; Zhou, Z.J.; Zhang, J.F.; Zhou, Y. A cyanine-based colorimetric and fluorescent probe for highly selective sensing and bioimaging of phosphate ions. Dye. Pigment. 2016, 133, 127–131. [Google Scholar] [CrossRef]
- Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Recent Development of Chemosensors Based on Cyanine Platforms. Chem. Rev. 2016, 116, 7768–7817. [Google Scholar] [CrossRef] [PubMed]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Zimm, B.H. The Scattering of Light and the Radial Distribution Function of High Polymer Solutions. J. Chem. Phys. 1948, 16, 1093–1099. [Google Scholar] [CrossRef]
- Guinier, G.F.A. Small-Angle Scattering of X-ray; Wiley: New York, NY, USA, 1955. [Google Scholar]
- Koppel, D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972, 57, 4814–4820. [Google Scholar] [CrossRef]
- Burchard, W.; Schmidt, M.; Stockmayer, W.H. Influence of Hydrodynamic Preaveraging on Quasi-Elastic Scattering from Flexible Linear and Star-Branched Macromolecules. Macromolecules 1980, 13, 580–587. [Google Scholar] [CrossRef]
- Burchard, W. Static and dynamic light scattering from branched polymers and biopolymers. In Advances in Polymer Science: Fortschritte der Hochpolymeren-Forschung; Burchard, W., Patterson, G.D., Eds.; Springer: Berlin/Heidleberg, Germany; New York, NY, USA, 1983; pp. 1–124. ISBN 978-3-540-12030-8. [Google Scholar]
- Schmidt, M. Combined integrated and dynamic light scattering by poly(γ-benzyl glutamate) in a helocogenic solvent. Macromolecules 1984, 17, 553–560. [Google Scholar] [CrossRef]
- Berlepsch, H.V.; Ludwig, K.; Böttcher, C. Pinacyanol chloride forms mesoscopic H- and J-aggregates in aqueous solution—A spectroscopic and cryo-transmission electron microscopy study. Phys. Chem. Chem. Phys. 2014, 16, 10659–10668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moll, J.; Daehne, S.; Durrant, J.R.; Wiersma, D.A. Optical dynamics of excitons in J aggregates of a carbocyanine dye. J. Chem. Phys. 1995, 102, 6362–6370. [Google Scholar] [CrossRef] [Green Version]
- Herz, A.H. Aggregation of sensitizing dyes in solution and their adsorption onto silver halides. Adv. Colloid Interface Sci. 1977, 8, 237–298. [Google Scholar] [CrossRef]
- Hämisch, B.; Huber, K. Mechanism and equilibrium thermodynamics of H- and J-aggregate formation from pseudo isocyanine chloride in water. Soft Matter 2021, 17, 8140–8152. [Google Scholar] [CrossRef] [PubMed]
- Gräfenstein, A.; Rumancev, C.; Pollak, R.; Hämisch, B.; Galbierz, V.; Schroeder, W.H.; Garrevoet, J.; Falkenberg, G.; Vöpel, T.; Huber, K.; et al. Spatial Distribution of Intracellular Ion Concentrations in Aggregate-Forming HeLa Cells Analyzed by μ-XRF Imaging. ChemistryOpen 2022, 11, e202200024. [Google Scholar] [CrossRef] [PubMed]
- Dainton, F.S.; Ivin, K.J. Some thermodynamic and kinetic aspects of addition polymerisation. Q. Rev. Chem. Soc. 1958, 12, 61. [Google Scholar] [CrossRef]
- Denkinger, P.; Burchard, W. Determination of chain stiffness and polydispersity from static light-scattering. J. Polym. Sci. B Polym. Phys. 1991, 29, 589–600. [Google Scholar] [CrossRef]
- Neugebauer, T. Berechnung der Lichtzerstreuung von Fadenkettenlösungen. Ann. Phys. 1943, 434, 509–533. [Google Scholar] [CrossRef]
- Holtzer, A. Interpretation of the angular distribution of the light scattered by a polydisperse system of rods. J. Polym. Sci. 1955, 17, 432–434. [Google Scholar] [CrossRef]
- Doucet, M.; Cho, J.H.; Alina, G.; Attala, Z.; Bakker, J.; Bouwman, W.; Butler, P.; Campbell, K.; Cooper-Benun, T.; Durniak, C.; et al. SasView, version 5.0.4; Zenodo: Honolulu, HI, USA, 2021. [Google Scholar]
- Benoit, H.; Doty, P. Light scattering from Non-Gaussian Chains. J. Phys. Chem. 1953, 57, 958–963. [Google Scholar] [CrossRef]
Zimm | Guinier | ||||||
---|---|---|---|---|---|---|---|
C [µM] | Rh [nm] | Rg [nm] | Mw [g/mol] | Ρ | Rg [nm] | Mw [g/mol] | ρ |
27.1 | 81.2 | 144 | 1.4 × 108 | 1.77 | 139 | 1.7 ×108 | 1.71 |
30.2 | 87.9 | 156 | 1.6 ×108 | 1.77 | 133 | 1.3 ×108 | 1.51 |
45.7 | 97.7 | 164 | 6.2 ×107 | 1.69 | 147 | 5.9 ×107 | 1.50 |
C/µM | L/nm | b/nm | r/nm | PD | Χ2 | Mw/g mol−1 | Rg/nm | |
---|---|---|---|---|---|---|---|---|
27.1 | 1 h | 716.9 | 123.7 | 10 | 0.4 | 0.90 | 1.2 ×108 | 137.6 |
30.2 | 1 h | 917.4 | 85.3 | 10 | 0.4 | 195.5 | 9.8 ×107 | 129.2 |
45.7 | 1 h | 1031.4 | 113.3 | 10 | 0.4 | 2.31 | 4.8 ×107 | 157.9 |
Reference | S0271 | S2275 | PIC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
[dye] /µM | 10 | 50 | 100 | 10 | 50 | 100 | 10 | 50 | 100 | |
Cell count [×103] | 34.0 | 7.5 | 20.0 | 22.0 | 25.5 | 31.5 | 20.6 | 30.7 | 37.4 | 36.0 |
Cells alive [%] | 100 | 89.96 | 84.02 | 77.84 | 94.52 | 78.97 | 71.81 | 90.36 | 81.71 | 77.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, L.; Pollak, R.; Ebbinghaus, S.; Huber, K. A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo. Biosensors 2023, 13, 720. https://doi.org/10.3390/bios13070720
Koch L, Pollak R, Ebbinghaus S, Huber K. A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo. Biosensors. 2023; 13(7):720. https://doi.org/10.3390/bios13070720
Chicago/Turabian StyleKoch, Leon, Roland Pollak, Simon Ebbinghaus, and Klaus Huber. 2023. "A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo" Biosensors 13, no. 7: 720. https://doi.org/10.3390/bios13070720
APA StyleKoch, L., Pollak, R., Ebbinghaus, S., & Huber, K. (2023). A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo. Biosensors, 13(7), 720. https://doi.org/10.3390/bios13070720