Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = lysine-based monomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3178 KB  
Article
Catalyst Selection for Body-Temperature Curable Polyurethane Networks from Poly(δ-Decalactone) and Lysine Diisocyanate
by Marine Boursier, Aurelien Lebrun, Karine Parra, Sylvain Caillol, Claire Negrell and Julien Pinaud
Polymers 2025, 17(18), 2548; https://doi.org/10.3390/polym17182548 - 20 Sep 2025
Viewed by 219
Abstract
With aging, harsh working conditions or sports injuries, the meniscus can degrade, causing pains to the patient. Nowadays, the treatment consists of the surgical replacement of this cartilage. Since this procedure can lead to complications due to open wounds and potential infections, synthesizing [...] Read more.
With aging, harsh working conditions or sports injuries, the meniscus can degrade, causing pains to the patient. Nowadays, the treatment consists of the surgical replacement of this cartilage. Since this procedure can lead to complications due to open wounds and potential infections, synthesizing a polyurethane-based injectable joint filler represents an interesting alternative. In this study, poly(δ-decalactone)triol oligomers and Lysine diisocyanate were chosen as starting monomers to create an isocyanate-based prepolymer, because of their biocompatibility and liquid state at room temperature. Nevertheless, to fully replace the meniscus, the joint filler must crosslink in vivo, and this should occur in a short time window. Accordingly, in this work, we studied the catalytic activity of a range of relatively safe compounds for the alcohol/isocyanate addition reaction. A preliminary 1H NMR kinetic study of the catalyzed addition of 1-butanol or 3-pentanol on lysine diisocyanate ethyl ester at body temperature has been performed to reach this objective. Among catalysts, stannous octoate was the most effective with either primary or secondary alcohol, allowing them to reach 92 and 80% alcohol conversion, respectively. In addition, the conversion of the primary and secondary isocyanates of lysine diisocyanate ethyl ester was monitored for all the catalysts and revealed different behaviors depending on the catalyst employed. Stannous octoate, unlike the others, showed a similar reactivity for primary and secondary isocyanates with conversions of 49 and 47%, respectively. Finally, when employing the most effective catalyst, curing of the poly(δ-decalactone) triisocyanate with glycerol at 35 °C provided a polyurethane elastomer that exhibits an elastic modulus of 519 kPa and a swelling index lower than 3% in PBS, making it suitable for injectable polyurethane joint filler application. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Biomedical Applications)
Show Figures

Figure 1

13 pages, 3132 KB  
Article
Shear-Thinning Extrudable Hydrogels Based on Star Polypeptides with Antimicrobial Properties
by Dimitrios Skoulas, Muireann Fallon, Katelyn J. Genoud, Fergal J. O’Brien, Deirdre Fitzgerald Hughes and Andreas Heise
Gels 2024, 10(10), 652; https://doi.org/10.3390/gels10100652 - 11 Oct 2024
Viewed by 1663
Abstract
Hydrogels with low toxicity, antimicrobial potency and shear-thinning behavior are promising materials to combat the modern challenges of increased infections. Here, we report on 8-arm star block copolypeptides based on poly(L-lysine), poly(L-tyrosine) and poly(S-benzyl-L-cysteine) blocks. Three star block copolypeptides were synthesized with poly(S-benzyl-L-cysteine) [...] Read more.
Hydrogels with low toxicity, antimicrobial potency and shear-thinning behavior are promising materials to combat the modern challenges of increased infections. Here, we report on 8-arm star block copolypeptides based on poly(L-lysine), poly(L-tyrosine) and poly(S-benzyl-L-cysteine) blocks. Three star block copolypeptides were synthesized with poly(S-benzyl-L-cysteine) always forming the outer block. The inner block comprised either two individual blocks of poly(L-lysine) and poly(L-tyrosine) or a statistical block copolypeptide from both amino acids. The star block copolypeptides were synthesized by the Ring Opening Polymerization (ROP) of the protected amino acid N-carboxyanhydrides (NCAs), keeping the overall ratio of monomers constant. All star block copolypeptides formed hydrogels and Scanning Electron Microscopy (SEM) confirmed a porous morphology. The investigation of their viscoelastic characteristics, water uptake and syringe extrudability revealed superior properties of the star polypeptide with a statistical inner block of L-lysine and L-tyrosine. Further testing of this sample confirmed no cytotoxicity and demonstrated antimicrobial activity of 1.5-log and 2.6-log reduction in colony-forming units, CFU/mL, against colony-forming reference laboratory strains of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively. The results underline the importance of controlling structural arrangements in polypeptides to optimize their physical and biological properties. Full article
Show Figures

Graphical abstract

1 pages, 155 KB  
Abstract
Polymeric Hydrogels for the Removal of Emerging Contaminants from Water
by Giusy Curcuruto, Chiara Zagni and Sabrina Carola Carroccio
Proceedings 2023, 92(1), 14; https://doi.org/10.3390/proceedings2023092014 - 21 Nov 2023
Viewed by 833
Abstract
Herein, a proof of concept is reported, concerning the formulation of methacrylic and styrene-based hydrogels with adsorption properties versus the emerging pollutants (dyes, pesticides, and pharmaceuticals). The synthesis of the hydrogels was achieved by functionalizing the HEMA monomer with specifically chelating groups, such [...] Read more.
Herein, a proof of concept is reported, concerning the formulation of methacrylic and styrene-based hydrogels with adsorption properties versus the emerging pollutants (dyes, pesticides, and pharmaceuticals). The synthesis of the hydrogels was achieved by functionalizing the HEMA monomer with specifically chelating groups, such as amino acids (lysine and histidine), cyclodextrins, and meglumine. The as-prepared monomers were polymerized in water at different temperatures to obtain macroporous samples. All the samples were characterized by chemical–physical and morphological analyses confirming the success of the reactions. The resulting systems were successfully tested to adsorb 2, 4 D, methylene blue, and lomefloxacin. In addition, up to five cycles of regeneration tests were performed, confirming the aptitude of the samples to be used several times without losing efficiency and maintaining their mechanical properties. Full article
(This article belongs to the Proceedings of International Conference EcoBalt 2023 "Chemicals & Environment")
17 pages, 3291 KB  
Article
Receptor-Targeted Carbon Nanodot Delivery through Polymer Caging and Click Chemistry-Supported LRP1 Ligand Attachment
by Fengrong Zhang, Teoman Benli-Hoppe, Wei Guo, Johanna Seidl, Yi Wang, Rongqin Huang and Ernst Wagner
Polymers 2023, 15(20), 4039; https://doi.org/10.3390/polym15204039 - 10 Oct 2023
Cited by 1 | Viewed by 1587
Abstract
Carbon nanodots present resistance to photobleaching, bright photoluminescence, and superior biocompatibility, making them highly promising for bioimaging applications. Herein, nanoprobes were caged with four-armed oligomers and subsequently modified with a novel DBCO–PEG-modified retro-enantio peptide ligand reL57, enhancing cellular uptake into U87MG glioma cells [...] Read more.
Carbon nanodots present resistance to photobleaching, bright photoluminescence, and superior biocompatibility, making them highly promising for bioimaging applications. Herein, nanoprobes were caged with four-armed oligomers and subsequently modified with a novel DBCO–PEG-modified retro-enantio peptide ligand reL57, enhancing cellular uptake into U87MG glioma cells highly expressing low-density lipoprotein receptor-related protein 1 (LRP1). A key point in the development of the oligomers was the incorporation of ε-amino-linked lysines instead of standard α-amino-linked lysines, which considerably extended the contour length per monomer. The four-armed oligomer 1696 was identified as the best performer, spanning a contour length of ~8.42 nm for each arm, and was based on an altering motive of two cationic ε-amidated lysine tripeptides and two tyrosine tripeptides for electrostatic and aromatic stabilization of the resulting formulations, cysteines for disulfide-based caging, and N-terminal azidolysines for click-modification. This work highlights that well-designed four-armed oligomers can be used for noncovalent coating and covalent caging of nanoprobes, and click modification using a novel LRP1-directed peptide ligand facilitates delivery into receptor-expressing target cells. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 2041 KB  
Article
In Silico Design of Engineering Optimization via OptHandle for Effective Synthesis of Adipic Acid Precursor, α-Aminoadipate
by Yang Zhang, Bingqi Cai, Meng Liu, Keqin He, Zhijin Gong, Haoran Bi, Kai Wang, Biqiang Chen, Meng Wang, Haijia Su and Tianwei Tan
Fermentation 2023, 9(9), 859; https://doi.org/10.3390/fermentation9090859 - 21 Sep 2023
Cited by 5 | Viewed by 2573
Abstract
The green biosynthesis of adipic acid, an important monomer of nylon 6,6, has become a research hotspot. α-Aminoadipate is a key intermediate in the metabolic pathway that converts L-lysine to produce adipic acid. In addition, metabolic flux analysis has become an important [...] Read more.
The green biosynthesis of adipic acid, an important monomer of nylon 6,6, has become a research hotspot. α-Aminoadipate is a key intermediate in the metabolic pathway that converts L-lysine to produce adipic acid. In addition, metabolic flux analysis has become an important part of metabolic engineering. Many metabolic optimization algorithms have been developed to predict engineering intervention strategies with the aim of improving the production of target chemicals. Here, OptHandle, a new metabolic optimization algorithm, has been developed. And, we use OptHandle to optimize the biosynthesis of α-aminoadipate. Based on the results of OptHandle, an engineered Escherichia coli with a 13-fold higher titer was obtained, and 1.10 ± 0.02 g/L of α-aminoadipate was produced. The efficient synthesis of α-aminoadipate lays a foundation for the green production of adipic acid. Full article
(This article belongs to the Special Issue Microbial Fermentation Pathway for Clean Energy Production)
Show Figures

Figure 1

12 pages, 2027 KB  
Article
Lysine-Based Silicone Surfactants
by Abygail Camacho Ramirez, Miguel Melendez-Zamudio, Antonio Guerra Contreras and Michael A. Brook
Sustain. Chem. 2023, 4(2), 197-208; https://doi.org/10.3390/suschem4020015 - 4 May 2023
Cited by 8 | Viewed by 3565
Abstract
Highly efficient silicone surfactants are typically based on polyether hydrophiles. As part of a program to increase the natural content of silicones, we describe the synthesis of silicone surfactants with amino acid hydrophiles (cysteine, arginine, and lysine). The compounds were prepared using a [...] Read more.
Highly efficient silicone surfactants are typically based on polyether hydrophiles. As part of a program to increase the natural content of silicones, we describe the synthesis of silicone surfactants with amino acid hydrophiles (cysteine, arginine, and lysine). The compounds were prepared using a radial thiol–ene reaction with vinylsilicones for cysteine derivatives and a catalyst-free aza-Michael reaction with arginine and lysine. Short chain surfactants with silicone monomer:hydrophile ratios of 5:1 or less (e.g., telechelic silicones of lysine-linker-(Me2OSi)n-linker-lysine n = 10) were ineffective at stabilizing emulsions of silicone oil (D4): water. However, excellent surfactants were realized as the chain length (n) increased to 25 or 50, stabilizing water-in-oil emulsions with high water content (80% or 90%). The surfactants, especially the longer chain compounds, were stable against pH except <4 or >9 and survived freeze/thaw cycles. These surfactants contain 12–25% natural materials, improving their sustainability compared to those containing synthetic hydrophiles. Full article
(This article belongs to the Topic Green and Sustainable Chemistry)
Show Figures

Figure 1

15 pages, 3240 KB  
Article
L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications
by Madhappan Santhamoorthy, Ramkumar Vanaraj, Kokila Thirupathi, Selvakumari Ulagesan, Taek-Jeong Nam, Thi Tuong Vy Phan and Seong-Cheol Kim
Gels 2023, 9(5), 363; https://doi.org/10.3390/gels9050363 - 25 Apr 2023
Cited by 14 | Viewed by 2842
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified [...] Read more.
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices. Full article
(This article belongs to the Special Issue Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

19 pages, 5250 KB  
Review
Catalytic Production of Functional Monomers from Lysine and Their Application in High-Valued Polymers
by Kangyu Liu, Bingzhang Shao, Bo Zheng and Baoning Zong
Catalysts 2023, 13(1), 56; https://doi.org/10.3390/catal13010056 - 27 Dec 2022
Cited by 9 | Viewed by 4907
Abstract
Lysine is a key raw material in the chemical industry owing to its sustainability, mature fermentation process and unique chemical structure, besides being an important nutritional supplement. Multiple commodities can be produced from lysine, which thus inspired various catalytic strategies for the production [...] Read more.
Lysine is a key raw material in the chemical industry owing to its sustainability, mature fermentation process and unique chemical structure, besides being an important nutritional supplement. Multiple commodities can be produced from lysine, which thus inspired various catalytic strategies for the production of these lysine-based chemicals and their downstream applications in functional polymer production. In this review, we present a fundamental and comprehensive study on the catalytic production process of several important lysine-based chemicals and their application in highly valued polymers. Specifically, we first focus on the synthesis process and some of the current industrial production methods of lysine-based chemicals, including ε-caprolactam, α-amino-ε-caprolactam and its derivatives, cadaverine, lysinol and pipecolic acid. Second, the applications and prospects of these lysine-based monomers in functional polymers are discussed such as derived poly (lysine), nylon-56, nylon-6 and its derivatives, which are all of growing interest in pharmaceuticals, human health, textile processes, fire control and electronic manufacturing. We finally conclude with the prospects of the development of both the design and synthesis of new lysine derivatives and the expansion of the as-synthesized lysine-based monomers in potential fields. Full article
(This article belongs to the Special Issue Green Chemistry & Engineering towards Zero-Carbon Goals)
Show Figures

Figure 1

17 pages, 3467 KB  
Article
Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines
by Marc Martínez de Sarasa Buchaca, Felipe de la Cruz-Martínez, Enrique Francés-Poveda, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Andrés Garcés, José A. Castro-Osma and Agustín Lara-Sánchez
Polymers 2022, 14(13), 2719; https://doi.org/10.3390/polym14132719 - 2 Jul 2022
Cited by 11 | Viewed by 4614
Abstract
Nonisocyanate polyurethane materials with pending alcohol groups in the polymeric chain were synthesized by polyaddition reaction of bis(cyclic carbonates) onto diamines. For the platform molecule, 1,4-butanediol bis(glycidyl ether carbonate) (BGBC, 1) was used. The polyaddition reaction of 1 onto a wide range [...] Read more.
Nonisocyanate polyurethane materials with pending alcohol groups in the polymeric chain were synthesized by polyaddition reaction of bis(cyclic carbonates) onto diamines. For the platform molecule, 1,4-butanediol bis(glycidyl ether carbonate) (BGBC, 1) was used. The polyaddition reaction of 1 onto a wide range of diamines with different electronic and physical properties was explored. All PHUs were obtained quantitatively after 16 h at 80 °C temperature in MeCN as solvent. The low nucleophilicity of L-lysine has proven unable to ring-open the cyclic carbonate and, thus, no reaction occurred. The addition of DBU or TBD as the catalyst was tested and allows the obtention of the desired PHU. However, the presence of strong bases also led to the formation of polyurea fragments in the new PHU. The different poly(hydroxyurethane) materials were characterized using a wide range of spectroscopic techniques such as NMR, IR, MALDI-ToF, and using GPC studies. The thermal properties of the NIPUs were investigated by DSC and TGA analyses. Moreover, reactions employing different monomer ratios were performed, obtaining novel hydroxycarbamate compounds. Finally, sequential and one-pot experiments were also carried out to synthesize the PHUs polymers in one-step reaction. Full article
(This article belongs to the Collection Polyurethanes)
Show Figures

Graphical abstract

21 pages, 4416 KB  
Article
Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery
by Iuliia Pilipenko, Olga Korovkina, Nina Gubina, Viktoria Ekimova, Anastasia Ishutinova, Evgenia Korzhikova-Vlakh, Tatiana Tennikova and Viktor Korzhikov-Vlakh
Int. J. Mol. Sci. 2022, 23(10), 5363; https://doi.org/10.3390/ijms23105363 - 11 May 2022
Cited by 8 | Viewed by 3328
Abstract
Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow [...] Read more.
Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications. Full article
(This article belongs to the Special Issue Biopolymers in Drug and Gene Delivery Systems 2.0)
Show Figures

Graphical abstract

13 pages, 3939 KB  
Article
Oligomeric States and Hydrodynamic Properties of Lysyl Oxidase-Like 2
by Alex A. Meier, Hee-Jung Moon, Ronald Toth, Ewa Folta-Stogniew, Krzysztof Kuczera, C. Russell Middaugh and Minae Mure
Biomolecules 2021, 11(12), 1846; https://doi.org/10.3390/biom11121846 - 8 Dec 2021
Cited by 7 | Viewed by 3550
Abstract
Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking of these proteins, and thereby plays [...] Read more.
Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking of these proteins, and thereby plays a major role in ECM remodeling. LOXL2 secretes as 100-kDa full-length protein (fl-LOXL2) and then undergoes proteolytic cleavage of the first two scavenger receptor cysteine-rich (SRCR) domains to yield 60-kDa protein (Δ1-2SRCR-LOXL2). This processing does not affect the amine oxidase activity of LOXL2 in vitro. However, the physiological importance of this cleavage still remains elusive. In this study, we focused on characterization of biophysical properties of fl- and Δ1-2SRCR-LOXL2s (e.g., oligomeric states, molecular weights, and hydrodynamic radii in solution) to gain insight into the structural role of the first two SRCR domains. Our study reveals that fl-LOXL2 exists predominantly as monomer but also dimer to the lesser extent when its concentration is <~1 mM. The hydrodynamic radius (Rh) determined by multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS) indicates that fl-LOXL2 is a moderately asymmetric protein. In contrast, Δ1-2SRCR-LOXL2 exists solely as monomer and its Rh is in good agreement with the predicted value. The Rh values calculated from a 3D modeled structure of fl-LOXL2 and the crystal structure of the precursor Δ1-2SRCR-LOXL2 are within a reasonable margin of error of the values determined by SEC-MALS for fl- and Δ1-2SRCR-LOXL2s in mature forms in this study. Based on superimposition of the 3D model and the crystal structure of Δ1-2SRCR-LOXL2 (PDB:5ZE3), we propose a configuration of fl-LOXL2 that explains the difference observed in Rh between fl- and Δ1-2SRCR-LOXL2s in solution. Full article
(This article belongs to the Special Issue Lysyl Oxidases: Novel Roles in Disease and Therapeutic Opportunities)
Show Figures

Figure 1

17 pages, 5132 KB  
Article
Structural Analysis of Saccharomyces cerevisiae Dihydroorotase Reveals Molecular Insights into the Tetramerization Mechanism
by Hong-Hsiang Guan, Yen-Hua Huang, En-Shyh Lin, Chun-Jung Chen and Cheng-Yang Huang
Molecules 2021, 26(23), 7249; https://doi.org/10.3390/molecules26237249 - 29 Nov 2021
Cited by 11 | Viewed by 2292
Abstract
Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer [...] Read more.
Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer or dimer. Here, we report and analyze two crystal structures of the eukaryotic Saccharomyces cerevisiae DHOase (ScDHOase) complexed with malate. The structures of different DHOases were also compared. An asymmetric unit of these crystals contained four crystallographically independent ScDHOase monomers. ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). Unlike EcDHOase, ScDHOase can form tetramers, both in the crystalline state and in solution. In addition, the subunit-interacting residues of ScDHOase for dimerization and tetramerization are significantly different from those of other DHOases. The tetramerization pattern of ScDHOase is also different from those of DHPase and ALLase. Based on sequence analysis and structural evidence, we identify two unique helices (α6 and α10) and a loop (loop 7) for tetramerization, and discuss why the residues for tetramerization in ScDHOase are not necessarily conserved among DHOases. Full article
(This article belongs to the Special Issue Structure of Bacterial Proteins)
Show Figures

Figure 1

13 pages, 4438 KB  
Article
Alkyl Chain Length Effects of Imidazolium Ionic Liquids on Electrical and Mechanical Performances of Polyacrylamide/Alginate-Based Hydrogels
by Chen-Kang Chen, Po-Wen Chen, Huan-Jung Wang and Mei-Yu Yeh
Gels 2021, 7(4), 164; https://doi.org/10.3390/gels7040164 - 5 Oct 2021
Cited by 14 | Viewed by 4110
Abstract
Conductive hydrogels with stretchable, flexible and wearable properties have made significant contributions in the area of modern electronics. The polyacrylamide/alginate hydrogels are one of the potential emerging materials for application in a diverse range of fields because of their high stretch and toughness. [...] Read more.
Conductive hydrogels with stretchable, flexible and wearable properties have made significant contributions in the area of modern electronics. The polyacrylamide/alginate hydrogels are one of the potential emerging materials for application in a diverse range of fields because of their high stretch and toughness. However, most researchers focus on the investigation of their mechanical and swelling behaviors, and the adhesion and effects of the ionic liquids on the conductivities of polyacrylamide/alginate hydrogels are much less explored. Herein, methacrylated lysine and different alkyl chain substituted imidazole-based monomers (IMCx, x = 2, 4, 6 and 8) were introduced to prepare a series of novel pAMAL-IMCx-Ca hydrogels. We systematically investigated their macroscopic and microscopic properties through tensile tests, electrochemical impedance spectra and scanning electron microscopy, as well as Fourier transform infrared spectroscopy, and demonstrated that an alkyl chain length of the IMCx plays an important role in the designing of hydrogel strain sensors. The experiment result shows that the hexyl chains of IMC6 can effectively entangle with LysMA through hydrophobic and electrostatic interactions, which significantly enhance the mechanical strength of the hydrogels. Furthermore, the different strain rates and the durability of the pAMAL-IMC6-Ca hydrogel were investigated and the relative resistance responses remain almost the same in both conditions, making it a potential candidate for wearable strain sensors. Full article
(This article belongs to the Collection Feature Papers in Gel Materials)
Show Figures

Graphical abstract

20 pages, 2237 KB  
Article
Fully Bio-Based Thermosetting Polyurethanes from Bio-Based Polyols and Isocyanates
by Roberto Morales-Cerrada, Romain Tavernier and Sylvain Caillol
Polymers 2021, 13(8), 1255; https://doi.org/10.3390/polym13081255 - 13 Apr 2021
Cited by 79 | Viewed by 10928
Abstract
The trend towards the utilization of bioresources for the manufacturing of polymers has led industry players to bring to the market new monomers. In this work, we studied 3 polyisocyanates and 2 polyols with high renewable carbon contents, namely L-lysine ethyl ester diisocyanate [...] Read more.
The trend towards the utilization of bioresources for the manufacturing of polymers has led industry players to bring to the market new monomers. In this work, we studied 3 polyisocyanates and 2 polyols with high renewable carbon contents, namely L-lysine ethyl ester diisocyanate (LDI), pentamethylene-diisocyanate (PDI) isocyanurate trimer, and hexamethylene-diisocyanate (HDI) allophanate as the isocyanates, as well as castor oil and polypropanediol as the polyols. These monomers are commercially available at a large scale and were used in direct formulations or used as prepolymers. Thermosetting polymers with Tg values ranging from −41 to +21 °C and thermal stabilities of up to 300 °C were obtained, and the polymerization was studied using NMR, DSC, and rheology. Cured materials were also characterized using FTIR, DMA, gel content, and swelling index determinations. These high bio-based content materials can successfully be obtained and could be used as alternatives to petro-based materials. Full article
(This article belongs to the Special Issue Green Chemistry in Polymer Science and Sustainable Polymers)
Show Figures

Figure 1

17 pages, 3732 KB  
Article
Synthesis Characterization of Platinum (IV) Complex Curcumin Backboned Polyprodrugs: In Vitro Drug Release Anticancer Activity
by Honglei Zhang, Yanjuan Wu, Xiao Xu, Chen Chen, Xiukun Xue, Ben Xu, Tianduo Li and Zhaowei Chen
Polymers 2021, 13(1), 67; https://doi.org/10.3390/polym13010067 - 26 Dec 2020
Cited by 16 | Viewed by 3773
Abstract
The conventional mono-chemotherapy still suffers from unsatisfied potency for cancer therapy due to tumor heterogeneity and the occurrence of drug resistance. Combination chemotherapy based on the nanosized drug delivery systems (nDDSs) has been developed as a promising platform to circumvent the limitations of [...] Read more.
The conventional mono-chemotherapy still suffers from unsatisfied potency for cancer therapy due to tumor heterogeneity and the occurrence of drug resistance. Combination chemotherapy based on the nanosized drug delivery systems (nDDSs) has been developed as a promising platform to circumvent the limitations of mono-chemotherapy. In this work, starting from cisplatin and curcumin (Cur), we prepared a dual drug backboned shattering polymeric nDDS for synergistic chemotherapy. By in situ polymerization of the Cur, platinum (IV) complex-based prodrug monomer (DHP), L-lysine diisocyanate (LDI), and then conjugation with a hydrophilic poly (ethylene glycol) monomethyl ether (mPEG) derivative, a backbone-type platinum (IV) and Cur linkage containing mPEG-poly(platinum-co-Cur)-mPEG (PCPt) copolymer was synthesized. Notably, the platinum (IV) (Pt (IV)) and Cur were incorporated into the hydrophobic segment of PCPt with the fixed drugs loading ratio and high drugs loading content. The batch-to-batch variability could be decreased. The resulting prodrug copolymer then self-assembled into nanoparticles (PCPt NPs) with an average diameter around 100 nm, to formulate a synergetic nDDS. Importantly, PCPt NPs could greatly improve the solubility and stability of Cur. In vitro drug release profiles have demonstrated that PCPt NPs were stable in PBS 7.4, rapid burst release was greatly decreased, and the Pt and Cur release could be largely enhanced under reductive conditions due to the complete dissociation of the hydrophobic main chain of PCPt. In vitro cell viability test indicated that PCPt NPs were efficient synergistic chemotherapy units. Moreover, PCPt NPs were synergistic for cisplatin-resistant cell lines A549/DDP cells, and they exhibited excellent reversal ability of tumor resistance to cisplatin. This work provides a promising strategy for the design and synthesis of nDDS for combination chemotherapy. Full article
(This article belongs to the Special Issue Advanced Polymers for Cancer Therapy and Bioimaging)
Show Figures

Graphical abstract

Back to TopTop