Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = low-frequency spread-spectrum acoustic signals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2090 KB  
Article
Design and Implementation of a Multi-Function Hydrophone for Underwater Acoustic Application
by Rong Wang, Yuehai Zhou, Xiaoyu Yang, Feng Tong and Jianming Wu
J. Mar. Sci. Eng. 2023, 11(11), 2203; https://doi.org/10.3390/jmse11112203 - 20 Nov 2023
Cited by 4 | Viewed by 5337
Abstract
In recent years, underwater acoustic applications have attracted much attention, for example, for underwater environmental monitoring, underwater exploration, etc. Hydrophones play a particularly important role. Although hydrophone design has been in multifarious application forms, it still needs to consider increasing demand for low-cost, [...] Read more.
In recent years, underwater acoustic applications have attracted much attention, for example, for underwater environmental monitoring, underwater exploration, etc. Hydrophones play a particularly important role. Although hydrophone design has been in multifarious application forms, it still needs to consider increasing demand for low-cost, low-consumption, and multiple-function devices, as well as issues around miniaturization, lossless data collection, etc. In this paper, we design a compact underwater acoustic device that has the capability of underwater acoustic signal storage, underwater acoustic signal transmission via the Internet, and decoding based on the direct sequences spread spectrum (DSSS). The key problem is how to implement multiple functions in only one micro-controller unit (MCU). The hardware and software of the proposed multi-function hydrophone are described in detail. In particular, the MCU, the pre-amplifier with gain control, and the analog-to-digital integrated chip are introduced. Moreover, underwater acoustic data storage, underwater acoustic transmission, and the DSSS receiver are depicted in terms of software. The different functions of the hydrophone are verified in sea trial experiments. The results show that the proposed multi-function hydrophone is able to sample underwater acoustic data at high quality. In addition, to demonstrate configurable parameters, the DSSS receiver with different carrier frequencies is provided. The proposed multi-function hydrophone realizes zero bit error rate (BER) when carrier frequency fc=9 kHz, and the BER with 103 order of magnitude when carrier frequency fc=15.5 kHz. The results show that the proposed multi-function hydrophone has great potential to explore the ocean. Full article
(This article belongs to the Special Issue Underwater Acoustics and Digital Signal Processing)
Show Figures

Figure 1

15 pages, 4690 KB  
Article
Research on Acquisition Performance of FFT Algorithm for Low-Frequency Spread-Spectrum Signals Using Acoustic Sensors
by Yongzhuang Tang, Qidou Zhou, Zhiyong Xie, Wenxi Liu and Xiaojun Lü
Sustainability 2023, 15(8), 6405; https://doi.org/10.3390/su15086405 - 9 Apr 2023
Cited by 4 | Viewed by 2483
Abstract
An essential precondition for the effective use of low-frequency spread-spectrum acoustic signals is their synchronous acquisition. Due to the low bit rate that low-frequency spread-spectrum signals have, the length of the spreading spectrum code and the number of intra-chip carriers need to be [...] Read more.
An essential precondition for the effective use of low-frequency spread-spectrum acoustic signals is their synchronous acquisition. Due to the low bit rate that low-frequency spread-spectrum signals have, the length of the spreading spectrum code and the number of intra-chip carriers need to be precisely designed to balance the acquisition performance and the bit rate in low-frequency spread-spectrum signals. Furthermore, the selection of the acquisition method and sampling frequency depends on the specific application and system requirements, which will directly affect the processing speed and accuracy. Firstly, this study uses a cyclical stepping search combined with a fixed threshold and maximum correlation discriminant method to improve the FFT acquisition algorithm with a low Doppler frequency. Secondly, the effects of the spreading spectrum code parameters and sampling frequency on the acquisition performance are also investigated through simulation and experiments with acoustic sensors. The results show that both lengthening the spreading spectrum code and increasing the number of intra-chip carriers can greatly improve the acquisition performance. Increasing the sampling frequency can improve the ranging accuracy but has a very limited improvement effect on the acquisition performance. Full article
Show Figures

Figure 1

17 pages, 7541 KB  
Article
High-Reliability Underwater Acoustic Communication Using an M-ary Cyclic Spread Spectrum
by HyungIn Ra, Changhyun Youn and Kiman Kim
Electronics 2022, 11(11), 1698; https://doi.org/10.3390/electronics11111698 - 26 May 2022
Cited by 10 | Viewed by 3435
Abstract
Multipath propagation, frequency selective fading, low-propagation velocity, and narrow bandwidth are all characteristics of underwater acoustic channels. Doppler shifts and diffusions can occur as a result of the low transmission speed of an acoustic signal, which can be caused by the movement of [...] Read more.
Multipath propagation, frequency selective fading, low-propagation velocity, and narrow bandwidth are all characteristics of underwater acoustic channels. Doppler shifts and diffusions can occur as a result of the low transmission speed of an acoustic signal, which can be caused by the movement of ocean currents or the transceiver. Furthermore, frequency selective fading and excessive noise interference can disrupt underwater acoustic communication on a continual basis. Because of its high anti-interference ability and high confidentiality, spread spectrum technology is commonly adopted in underwater acoustic communications. Although the direct sequence spread spectrum method has a low data rate, it is advantageous in a multipath propagation channel environment or an environment with a low signal-to-noise ratio (SNR). This advantage is suitable for long-distance transmission or LPD (Low Probability of Detection) communication, and the direct sequence spread spectrum method is applied. In this paper, we propose a highly reliable M-ary cyclic spread spectrum technique by superimposing the M-ary spread spectrum, an extension of the direct sequence spread spectrum technique, and cyclic shift keying. Furthermore, by estimating the Doppler frequency using M-ary spread spectrum codes and performing synchronization correction of the ensuing symbol based on the estimation results, higher performance can be attained. Simulations and experiments showed that the M-ary cyclic spread spectrum method can reduce Doppler estimation and synchronization error accumulation while maintaining a high data rate. Furthermore, the MCSS method had a lower bit error rate than the standard spread spectrum method. Full article
Show Figures

Figure 1

23 pages, 6515 KB  
Article
Optimized Doppler Estimation and Symbol Synchronization for Mobile M-ary Spread Spectrum Underwater Acoustic Communication
by Guang Yang, Feng Zhou, Gang Qiao, Yunjiang Zhao, Yufei Liu, Yinheng Lu and Yuanan He
J. Mar. Sci. Eng. 2021, 9(9), 1001; https://doi.org/10.3390/jmse9091001 - 13 Sep 2021
Cited by 7 | Viewed by 3506
Abstract
In mobile underwater acoustic (UWA) communications, the Doppler effect causes severe signal distortion, which leads to carrier frequency shift and compresses/broadens the signal length. This situation has a more severe impact on communication performance in the case of low signal-to-noise ratio and variable-speed [...] Read more.
In mobile underwater acoustic (UWA) communications, the Doppler effect causes severe signal distortion, which leads to carrier frequency shift and compresses/broadens the signal length. This situation has a more severe impact on communication performance in the case of low signal-to-noise ratio and variable-speed movement. This paper proposes a non-data-aided Doppler estimation method for M-ary spread spectrum UWA communication systems in mobile scenarios. The receiver uses the spread spectrum codes dedicated to transmitting signals with different frequency offsets as local reference signals. Correlation operations are performed symbol by symbol with the received signal. The decoding and Doppler estimation of the present symbol are achieved by searching the correlation maximum in the code domain and frequency domain. The length of the current symbol is corrected for the next symbol synchronization using the estimated Doppler coefficient. To optimize the process of Doppler estimation and symbol synchronization, a heuristic search method is used. By adjusting the Doppler factor search step size, setting the threshold value, and using the Doppler factor estimation of the previous symbol, the search range can be significantly reduced and the computational complexity decreased. The Fisher-Yates shuffle algorithm is used to traverse the search range to ensure reliability of the results. Simulation results show that enlarging the frequency-domain search step size in some degree does not affect the decoding accuracy. On 15 May 2021, a shallow-water mobile UWA spread spectrum communication experiment was conducted in Weihai, China. The horizontal distance between the transmitter and the receiver is 3.7–4.0 km, and the communication rate is 41.96 bits per second. The transmitting ship moves at a speed of 0–3 m/s, and the bit error rate (BER) is lower than 1e−3, which is better than that of the sliding correlation despreading method with average Doppler compensation. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

12 pages, 1498 KB  
Article
Using Fast Frequency Hopping Technique to Improve Reliability of Underwater Communication System
by Jan H. Schmidt
Appl. Sci. 2020, 10(3), 1172; https://doi.org/10.3390/app10031172 - 10 Feb 2020
Cited by 33 | Viewed by 6654
Abstract
Acoustic underwater communication systems designed to work reliably in shallow coastal waters must overcome major limitations such as multipath propagation and the Doppler effect. These restrictions are the reason for the complexity of receivers being built, whose task is to decode a symbol [...] Read more.
Acoustic underwater communication systems designed to work reliably in shallow coastal waters must overcome major limitations such as multipath propagation and the Doppler effect. These restrictions are the reason for the complexity of receivers being built, whose task is to decode a symbol on the basis of the received signal. Additional complications are caused by the low propagation speed of the acoustic wave in the water and the relatively narrow bandwidth. Despite the continuous development of communication systems using coherent modulations, they are still not as reliable as is desirable for reliable data transmission applications. This article presents an acoustic underwater communication system that uses one of the varieties of the spread spectrum technique i.e., the fast frequency hopping technique (FFH). This technique takes advantage of binary frequency-shift keying (BFSK) with an incoherent detection method to ensure the implementation of a system whose main priority is reliable data transmission and secondary priority is the transmission rate. The compromised choice of parameters consisted of the selection between the narrow band of the hydroacoustic transducer and the maximum number of carrier frequency hops, which results from the need to take into account the effects of the Doppler effect. In turn, the number of hops and the symbol duration were selected adequately for the occurrence of multipath propagations of an acoustic wave. In addition, this article describes experimental communication tests carried out using a laboratory model of the FFH-BFSK data transmission system in the shallow water environment of Lake Wdzydze/Poland. The test results obtained for three channels of different lengths are discussed. Full article
(This article belongs to the Special Issue Underwater Acoustic Communications and Networks)
Show Figures

Figure 1

17 pages, 3328 KB  
Article
Experimental Estimation of the Constant Envelope FM-OFDM Method Usage in Underwater Acoustic Communication Systems
by Aleksandr Rodionov, Lyubov Statsenko, Peter Unru, Yury Morgunov, Aleksandr Golov, Eugene Voitenko and Alexey Kiryanov
Appl. Sci. 2018, 8(3), 402; https://doi.org/10.3390/app8030402 - 9 Mar 2018
Cited by 5 | Viewed by 4350
Abstract
Nowadays, more and more complex methods of signal modulating and processing are actively used for organizing underwater acoustic communication with and between submerged mobile vehicles due to harsh underwater conditions. In this research, the method that is based on multi-frequency signals forming (OFDM) [...] Read more.
Nowadays, more and more complex methods of signal modulating and processing are actively used for organizing underwater acoustic communication with and between submerged mobile vehicles due to harsh underwater conditions. In this research, the method that is based on multi-frequency signals forming (OFDM) with the constant envelope is applied to the problem. It is based on multi-frequency FM-OFDM signals forming with Quadrature Phase Shift Keying (QPSK) modulated subcarriers and FM spectrum spreading coefficients of 1, 2, 4, and 10. The proposed solution was modeled in a software simulator, which implements a noisy underwater acoustic multipath channel, changing the bit error rate (BER) from 0.15 to 10−3. In addition, it was tested during the full-scale data transmission experiments at 25 km distance using a low frequency (400 Hz) underwater acoustic apparatus under conditions of strong impulse noises and quasi-non-stationary channel. The results of in-situ experiments were similar to the ones that were obtained during the simulation. Full article
(This article belongs to the Special Issue Underwater Acoustics, Communications and Information Processing)
Show Figures

Figure 1

Back to TopTop