Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = low angle normal fault

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3676 KB  
Article
Three-Dimensional Modelling Approach for Low Angle Normal Faults in Southern Italy: The Need for 3D Analysis
by Asha Saxena, Giovanni Toscani, Lorenzo Bonini and Silvio Seno
Geosciences 2025, 15(2), 53; https://doi.org/10.3390/geosciences15020053 - 5 Feb 2025
Viewed by 908
Abstract
This paper presents three 3D reconstructions of different analogue models used to reproduce, interpret, and describe the geological setting of a seismogenic area in Southern Italy—the Messina Strait. Three-dimensional analysis is a technique that allows for less sparse and more congruent and coherent [...] Read more.
This paper presents three 3D reconstructions of different analogue models used to reproduce, interpret, and describe the geological setting of a seismogenic area in Southern Italy—the Messina Strait. Three-dimensional analysis is a technique that allows for less sparse and more congruent and coherent information about a study zone whose complete understanding reduces uncertainties and risks. A thorough structural and geodynamic description of the effects of low-angle normal faulting in the same region through analogue models has been widely investigated in the scientific literature. Sandbox models for fault behaviour during deformation and the effects of a Low Angle Normal Fault (LANF) on the seismotectonic setting are also studied. The deformational patterns associated with seismogenic faults, rotational behaviour of faults, and other related problems have not yet been thoroughly analysed. Most problems, like the evolution of normal faults, fault geometry, and others, have been cited and briefly outlined in earlier published works, but a three-dimensional approach is still significant. Here, we carried out a three-dimensional digital model for a complete and continuous structural model of a debated, studied area. The aim of this study is to highlight the importance of fully representing faults in complex and/or non-cylindrical structures, mainly when the shape and dimensions of the fault(s) are key parameters, like in seismogenic contexts. Full article
Show Figures

Figure 1

22 pages, 29370 KB  
Article
Investigating the Structure of Detachment Faulting and Its Role in Ore Formation: The Kallintiri Detachment System and the Associated Polymetallic Ore Deposit (Rhodope, NE Greece)
by Konstantinos Soukis, Christos Kanellopoulos, Panagiotis Voudouris, Constantinos Mavrogonatos, Ilias Lazos, Sotiris Sboras, Alexandre Tarantola, Daniel Koehn and Robert Moritz
Geosciences 2025, 15(2), 46; https://doi.org/10.3390/geosciences15020046 - 1 Feb 2025
Viewed by 2030
Abstract
The Kallintiri area (SW Byala Reka–Kechros Dome, Rhodope) hosts a polymetallic (critical, base, and precious metals) ore deposit, tectonically controlled by the late Eocene–Oligocene, top-to-SW Kallintiri Detachment System. The earliest structure associated with the Kallintiri Detachment is a ductile shear zone at the [...] Read more.
The Kallintiri area (SW Byala Reka–Kechros Dome, Rhodope) hosts a polymetallic (critical, base, and precious metals) ore deposit, tectonically controlled by the late Eocene–Oligocene, top-to-SW Kallintiri Detachment System. The earliest structure associated with the Kallintiri Detachment is a ductile shear zone at the interface between the high-grade footwall gneisses of the Lower and Intermediate Rhodope Terranes. The detachment zone encompasses the uppermost part of the gneisses and the ultramylonitic Makri Unit marble. The marble is bound by a brittle–ductile shear zone at the base and a knife-sharp, low-angle normal fault at the roof, exhibiting considerable brecciation and ultracataclasite development. The hanging wall includes the Makri Unit phyllites and the overlying mid–late-Eocene–Oligocene supra-detachment sediments, which show syn-depositional slump structures and brittle deformation with low- and high-angle faulting and non-cohesive cataclasites. Extensive hydrothermal fluid circulation along the detachment zone and through NW tension gashes and high-angle faults led to pronounced silicification and ore deposition. Field observations and mineralogical and geochemical analyses revealed two primary types of ore mineralization spatially and temporally associated with different structures. Base and precious metals-rich ores are associated with the detachment, while Sb ore deposition is localized mostly within the NW-trending tension gashes and high-angle faults. Full article
Show Figures

Figure 1

24 pages, 21321 KB  
Article
Uncovering the Fracturing Mechanism of Granite Under Compressive–Shear Loads for Sustainable Hot Dry Rock Geothermal Exploitation
by Xiaoran Wang, Tiancheng Shan, Dongjie Wang, Xiaofei Liu and Wendong Zhou
Sustainability 2024, 16(20), 9113; https://doi.org/10.3390/su16209113 - 21 Oct 2024
Cited by 1 | Viewed by 1433
Abstract
Shear-dominated hazards, such as induced earthquakes, pose an escalating threat to the sustainability and safety of the geothermal exploitation. Variations in fault orientations and compression–shear stress ratios exert a profound influence on the failure processes underlying these disasters. To better understand these effects [...] Read more.
Shear-dominated hazards, such as induced earthquakes, pose an escalating threat to the sustainability and safety of the geothermal exploitation. Variations in fault orientations and compression–shear stress ratios exert a profound influence on the failure processes underlying these disasters. To better understand these effects on the shear failure mechanisms of hot dry rocks, mode-II fracturing tests on granites were conducted at varying loading angles (specifically, 55°, 60°, 65°, and 70°). These tests were accompanied by a comprehensive analysis of the mechanical properties, energy dissipation behavior, acoustic emission (AE) responses, and digital image correlation (DIC)-extracted displacement fields. The tensile–shear properties of stress-induced microcracks were discerned via AE characteristic parameter analysis and DIC displacement decomposition, and the mode-II fracture energy release rate was quantitatively characterized. The results reveal that with increasing compression–shear loading angles, the mechanical properties of granites are weakened, and the elastic strain energy at peak stress gradually decreases, while the slip-related dissipated energy increases. Throughout the fracturing process, the AE count progressively climbs and reaches a peak near catastrophic failure, with an upsurge in low-frequency and high-amplitude AE events. Microcrack distribution concentrates aggregation along the shear plane, reflecting the emergent displacement discontinuities evident in DIC contours. Both the AE characteristic parameter analysis and DIC displacement decomposition demonstrate that shear-sliding constitutes the paramount mechanism, and the fraction of shear-oriented microcracks and the ratio of tangential versus normal displacement escalate with increases in shear stress. This analysis is supported by the heightened propensity for transgranular microcracking events observed through scanning electron microscopy. As the shear-to-compression stress increases, the energy concentration along the shear band intensifies, with the gradient of the fitting line between cumulative AE energy and slip displacement steepening, indicative of a heightened mode-II energy release rate. These results contribute to a deeper understanding of the mode-II fracture mechanism of rocks, thereby providing a foundational basis for early warnings of shear-dominant geomechanical disasters, and improving the safety and sustainability of subsurface rock engineering. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

18 pages, 5592 KB  
Article
Three-Dimensional Point Cloud Stitching Method in Infrared Images of High-Voltage Cables
by Guang Yu, Yan Huang and Yujia Cheng
Coatings 2024, 14(9), 1079; https://doi.org/10.3390/coatings14091079 - 23 Aug 2024
Cited by 1 | Viewed by 1358
Abstract
High-voltage power cables are crucial to the normal operation of all electrical equipment. The insulation surrounding these cables is subject to faults. The traditional methods for detecting cable insulation characteristics primarily focus on breakdown performance tests. However, the measurement precision is low, the [...] Read more.
High-voltage power cables are crucial to the normal operation of all electrical equipment. The insulation surrounding these cables is subject to faults. The traditional methods for detecting cable insulation characteristics primarily focus on breakdown performance tests. However, the measurement precision is low, the risk coefficient is high, and the test cost is high. Additionally, it is difficult to precisely pinpoint high-voltage cable faults. Therefore, in this study, a method for inspecting high-voltage cable faults using infrared stereoscopic vision is proposed. This method enables non-contact remote safety measurements to be conducted. For a limited lens angle in an infrared camera, an area matching stitching method that incorporates feature point matching is developed. The key technologies for three-dimensional (3D) point cloud stitching include feature point extraction and image matching. To address the problem of the Harris algorithm not having scale invariance, Gaussian multi-scale transform parameters were added to the algorithm. During the matching process, a random sampling consistency algorithm is used to eliminate incorrect pairs of matching points. Subsequently, a 3D point cloud stitching experiment on infrared cable images was conducted. The feasibility of the stitching algorithm was verified through qualitative and quantitative analyses of the experimental results. Based on the mechanism by which thermal breakdowns occur, a method for detecting anomalous temperatures in cables is developed based on infrared stereoscopic vision. In this manuscript, the infrared technique, 3D point cloud stitching, and cables inspection are combined for the first time. The detection precision is high, which contributes to the development of high-voltage electrical equipment nondestructive testing. Full article
Show Figures

Figure 1

19 pages, 21095 KB  
Article
Fabrication of Superhydrophobic Coatings by Using Spraying and Analysis of Their Anti-Icing Properties
by Lei Fan, Mingyong Xia, Jian Liu, Bo Li, Tao Zhu, Yingying Zhao, Linbo Song and Yuan Yuan
Coatings 2023, 13(10), 1792; https://doi.org/10.3390/coatings13101792 - 19 Oct 2023
Cited by 11 | Viewed by 2723
Abstract
Ice accumulation on glass insulators is likely to cause faults such as flashover, tripping and power failure, which interfere with the normal operation of the power grid. Accordingly, superhydrophobic coatings with great anti-icing potential have received much attention. In this study, three superhydrophobic [...] Read more.
Ice accumulation on glass insulators is likely to cause faults such as flashover, tripping and power failure, which interfere with the normal operation of the power grid. Accordingly, superhydrophobic coatings with great anti-icing potential have received much attention. In this study, three superhydrophobic coatings (PTFE, Al2O3 and SiO2) were successfully prepared on glass surfaces by using one-step spraying. The microscopic morphology, wettability, anti-icing and anti-glaze icing properties of the superhydrophobic coatings were comparatively analyzed. The results indicated that the PTFE coating had a densely distributed rough structure, showing a contact angle of 165.5° and a sliding angle of 3.1°. The water droplets on the surface could rebound five times. Compared with the Al2O3 and SiO2 coatings, the anti-icing performance of the PTFE coating was significantly improved. The freezing time was far more than 16 times that of glass (4898.7 s), and the ice adhesion strength was 9 times lower than that of glass (27.5 kPa). The glaze icing test in the artificial climate chamber showed that the icing weight of the PTFE coating was 1.38 g, which was about 32% lower than that of the glass. In addition, the icing/melting and abrasion cycles destroyed the low-surface-energy substances and nanostructures on the surface, leading to the degradation of the anti-icing durability of the PTFE coatings. However, the PTFE coating still maintained excellent hydrophobicity and anti-icing properties after UV irradiation for up to 624 h. The superhydrophobic coatings prepared in this work have promising development prospects and offer experimental guidance for the application of anti-icing coatings on glass insulators. Full article
(This article belongs to the Special Issue Durability of Transmission Lines)
Show Figures

Figure 1

21 pages, 5034 KB  
Article
A Self-Supervised Fault Detection for UAV Based on Unbalanced Flight Data Representation Learning and Wavelet Analysis
by Shenghan Zhou, Tianhuai Wang, Linchao Yang, Zhao He and Siting Cao
Aerospace 2023, 10(3), 250; https://doi.org/10.3390/aerospace10030250 - 6 Mar 2023
Cited by 8 | Viewed by 2657
Abstract
This paper aims to build a Self-supervised Fault Detection Model for UAVs combined with an Auto-Encoder. With the development of data science, it is imperative to detect UAV faults and improve their safety. Many factors affect the fault of a UAV, such as [...] Read more.
This paper aims to build a Self-supervised Fault Detection Model for UAVs combined with an Auto-Encoder. With the development of data science, it is imperative to detect UAV faults and improve their safety. Many factors affect the fault of a UAV, such as the voltage of the generator, angle of attack, and position of the rudder surface. A UAV is a typical complex system, and its flight data are typical high-dimensional large sample data sets. In practical applications such as UAV fault detection, the fault data only appear in a small part of the data sets. In this study, representation learning is used to extract the normal features of the flight data and reduce the dimensions of the data. The normal data are used for the training of the Auto-Encoder, and the reconstruction loss is used as the criterion for fault detection. An Improved Auto-Encoder suitable for UAV Flight Data Sets is proposed in this paper. In the Auto-Encoder, we use wavelet analysis to extract the low-frequency signals with different frequencies from the flight data. The Auto-Encoder is used for the feature extraction and reconstruction of the low-frequency signals with different frequencies. To improve the effectiveness of the fault localization at inference, we develop a new fault factor location model, which is based on the reconstruction loss of the Auto-Encoder and edge detection operator. The UAV Flight Data Sets are used for hard-landing detection, and an average accuracy of 91.01% is obtained. Compared with other models, the results suggest that the developed Self-supervised Fault Detection Model for UAVs has better accuracy. Concluding this study, an explanation is provided concerning the proposed model’s good results. Full article
(This article belongs to the Special Issue Fault Detection and Prognostics in Aerospace Engineering II)
Show Figures

Figure 1

19 pages, 9195 KB  
Article
Seismicity and Stress State in the Ryukyu Islands Subduction Zone
by Zhuojuan Xie, Enhui Wang and Yuejun Lyu
Sustainability 2022, 14(22), 15146; https://doi.org/10.3390/su142215146 - 15 Nov 2022
Cited by 2 | Viewed by 4315
Abstract
Based on the newly compiled and mostly complete unified earthquake catalogue for China’s seas and adjacent areas, further information was obtained about the structural shape and dip angle of the Benioff zone in the Ryukyu Islands subduction zone during the different subduction stages. [...] Read more.
Based on the newly compiled and mostly complete unified earthquake catalogue for China’s seas and adjacent areas, further information was obtained about the structural shape and dip angle of the Benioff zone in the Ryukyu Islands subduction zone during the different subduction stages. In addition, using the damped regional stress tensor inversion method, we were able to investigate the complex stress field characteristics and the dynamic significance of the shallow and intermediate earthquakes in the Ryukyu Islands subduction zone. The results show that the tectonic stress field of the Ryukyu Islands subduction zone was extensional along the subduction direction in the northern area of the Tokara Strait and was compressional along the subduction direction in the southern area of the Tokara Strait. The R value of the shallow stress field of the Okinawa Trough was low, and the σ3 was stable in the NNW direction with a small dip angle (>30°). The type of stress field in the shallow part of the Okinawa Trough transitioned from strike-slip type to normal fault type from north to south, reflecting the difference in the degree of development of the trough, and the southern segment of the trough began to transform into the expansion stage. The northeastern portion of the study area and southeast Taiwan constituted the high R value (0.68–0.87) region where the σ2 had tensile components. The stress state was biaxial tension–uniaxial compression, and the principal compressive stress was determined to be in the SEE direction with a large dip angle (>30°). The σ1 in northeast Taiwan exhibited a nearly vertical (>60°) plunge, while the σ2 and σ3 were nearly horizontal. The σ2 was thrust in the ENE–WSW direction, and the σ3 was extended in the NNW direction. Through this research, a greater understanding has been gained of the seismicity characteristics and shape of the Ryukyu Islands subduction zone. Supplementary research has also been completed on the focal mechanism solution and stress field of the Ryukyu Islands subduction zone. Finally, this research is important for earthquake hazard analysis and earthquake engineering safety evaluation in this area. Full article
(This article belongs to the Special Issue Exploration of Marine Geological Resources and Geological Technology)
Show Figures

Figure 1

35 pages, 10794 KB  
Article
Design and Analysis of DFIG-STATCOM Coordinated P2P Grid Connected System Using RMSProp
by R. R. Hete, Sanjay Kumar Mishra, Ritesh Dash, Kalvakurthi Jyotheeswara Reddy, Vivekanandan Subburaj and Dhanamjayulu C
Sustainability 2022, 14(22), 15105; https://doi.org/10.3390/su142215105 - 15 Nov 2022
Cited by 6 | Viewed by 2559
Abstract
This research work establishes a relationship between STATCOM and DFIG wind turbines in a transmission network for coordinated operation during grid disturbances. A change in wind gust also produces a variable output nonlinearly, thereby making the system unstable. Assuring bus voltage and proper [...] Read more.
This research work establishes a relationship between STATCOM and DFIG wind turbines in a transmission network for coordinated operation during grid disturbances. A change in wind gust also produces a variable output nonlinearly, thereby making the system unstable. Assuring bus voltage and proper balance of load angle in all the connected generating stations becomes challenging. Therefore, increasing voltage security at all the lines and further enhancing system stability leads to the placement of STATCOM at the proper location in the transmission line. Appropriate coordinated control of STATCOM and DFIG can lead to adequate power flow in the system. This research includes a multi-objective optimization problem for properly tuning the PI- controller. The voltage at the controlled bus, low-frequency oscillating waveforms, and real power available at the bus under pre-fault and post-fault conditions are identified as objective function parameters. To avoid the overgrowth of error inside the search space due to lack of normalization, this method uses the RMSProp algorithm for proper convergence in the state vector. The coordinated control action has been investigated in the different shunt fault conditions. Again, to enhance the system stability, low voltage ride-through capability has been thoroughly verified using Matlab software. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 51355 KB  
Review
The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis
by Sotiris Sboras, Spyros Pavlides, Adamantios Kilias, Dimitris Galanakis, Athanasios Chatziioannou and Alexandros Chatzipetros
Geotechnics 2022, 2(4), 935-960; https://doi.org/10.3390/geotechnics2040044 - 4 Nov 2022
Cited by 6 | Viewed by 3468
Abstract
Knowing the rich presence of active faults in northern Thessaly and the lack of any significant seismic activity since at least the mid-1940s, the 2021 seismic sequence did not surprise us. What did surprise us was the fact that (i) despite the great [...] Read more.
Knowing the rich presence of active faults in northern Thessaly and the lack of any significant seismic activity since at least the mid-1940s, the 2021 seismic sequence did not surprise us. What did surprise us was the fact that (i) despite the great knowledge of the neotectonic faults in the area, the causative faults were unknown, or almost unknown; (ii) the direction of the 2021 faulting was different than the expected, and given that the focal mechanisms showed almost pure normal dip-slip motion, the extensional main axis was also different than the one we thought we knew for this area; and (iii) besides the co-seismic ruptures that occurred within the Domeniko-Amouri basin and along the Titarissios River valley, there is evidence of rupturing in the alpine basement of Zarkos mountains. After thoroughly reviewing both the alpine and neotectonic structural setting and all the available literature concerning the seismotectonic data and interpretations of the 2021 sequence, including investigations of our own, we end up in a complex tectonic setting with older alpine structures now operating as inherited faults, and we also suggest the possible occurrence of a roughly N-dipping, low-angle, detachment-type fault. This fault runs below Mt Zarkos, reaching at least the Elassona Basin, with splay faults bifurcating upwards from the main fault zone. Following this complexity, rupture of the first mainshock must have chosen a split route reaching the surface through the gneiss rocks of Zarkos and almost (?) reaching the basinal sediments of the local tectonic depressions. This seismic sequence is a perfect case study to shed some light on the tectonic and rupture processes in the context of both geodynamics and seismic hazard assessment. Full article
Show Figures

Figure 1

15 pages, 5196 KB  
Article
The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps)
by Valentina Argante, David Colin Tanner, Christian Brandes, Christoph von Hagke and Sumiko Tsukamoto
Geosciences 2022, 12(7), 268; https://doi.org/10.3390/geosciences12070268 - 30 Jun 2022
Cited by 5 | Viewed by 5623
Abstract
Faut gouge forms at the core of the fault as the result of a slip in the upper brittle crust. Therefore, the deformation mechanisms and conditions under which the fault gouge was formed can document the stages of fault movement in the crust. [...] Read more.
Faut gouge forms at the core of the fault as the result of a slip in the upper brittle crust. Therefore, the deformation mechanisms and conditions under which the fault gouge was formed can document the stages of fault movement in the crust. We carried out a microstructural analysis on a fault gouge from a hanging-wall branch fault of the Simplon Fault Zone, a major low-angle normal fault in the European Alps. We use thin-section analysis, together with backscattered electron imaging and X-ray diffractometry (XRD), to show that a multistage history from ductile to brittle deformation within the fault gouge. We argue that this multistage deformation history is the result of continuous exhumation history from high to low temperature, along the Simplon Fault Zone. Because of the predominance of pressure solution and veining, we associated a large part of the deformation in the fault gouge with viscous-frictional behaviour that occurred at the brittle-ductile transition. Phyllosilicates and graphite likely caused fault lubrication that we suggested played a role in localizing slip along this major low-angle normal fault. Full article
(This article belongs to the Special Issue Microstructural Analyses of Fault Rocks)
Show Figures

Figure 1

22 pages, 12748 KB  
Article
Methods to Improve Dynamic System Response of Power Compensators Using Supercapacitors in Low-Voltage Ride-Through (LVRT) Conditions
by Mi-na Kim, Jun-sin Yi, Chung-Yuen Won and Jung-Hyo Lee
Electronics 2022, 11(7), 1144; https://doi.org/10.3390/electronics11071144 - 5 Apr 2022
Cited by 2 | Viewed by 2593
Abstract
In this paper, a power compensator using supercapacitors in parallel to protect grid-connected devices connected to the distributed power supply in the case of a low-voltage ride-through (LVRT) situation in designed, and a grid-connected device control method with improved responsiveness is proposed. In [...] Read more.
In this paper, a power compensator using supercapacitors in parallel to protect grid-connected devices connected to the distributed power supply in the case of a low-voltage ride-through (LVRT) situation in designed, and a grid-connected device control method with improved responsiveness is proposed. In the LVRT situation, the distributed generation power may boost the DC_link voltage, increasing the risk of destroying grid-connected devices. To prevent this, the power compensator designed in this study absorbs active power in a fault situation and stores it in the supercapacitor to suppress the DC_link voltage rise and efficiently use the power. In addition, we propose methods to improve the response of the grid reactive power through the reactive power compensation of the power compensator in LVRT situation. To this end, the power angle (θPW) was extracted through the formula, and the reactive power command, to be compensated by the power compensator, and the reactive power command, compensated by the grid-connected devices, were calculated according to the active power value. In this way, the grid power controlled by the power compensation device and the grid-connected devices was controlled by the active/reactive power of the same power angle and analyzed mathematically. Active power control and static grid support were performed in the normal state where the reduction rate of the normal value of the grid voltage was around 10%. However, when the grid voltage dropped by 10% to 100%, the reactive power control was appropriately performed with dynamic grid support by increasing the voltage from 10% to 20% or more. We conducted a simulation of the new and renewable energy grid-connected devices using the OPAL-RT-based Hardware-in-the Loop Simulation (HILS) system to control the proposed active/reactive power. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

17 pages, 16961 KB  
Article
Metasomatism by Boron-Rich Fluids along Permian Low-Angle Normal Faults (Central Southern Alps, N Italy)
by Stefano Zanchetta, Sofia Locchi, Gregorio Carminati, Manuel Mancuso, Chiara Montemagni and Andrea Zanchi
Minerals 2022, 12(4), 404; https://doi.org/10.3390/min12040404 - 25 Mar 2022
Cited by 4 | Viewed by 3810
Abstract
Low-Angle Normal Faults (LANFs) represent in the central Southern Alps area (N Italy) the main structures along which the Variscan basement is in contact with the Upper Carboniferous-Permian volcanic-sedimentary succession. Tourmalinites frequently occur along LANFs, usually replacing former cataclasites. The mineralogy and chemical [...] Read more.
Low-Angle Normal Faults (LANFs) represent in the central Southern Alps area (N Italy) the main structures along which the Variscan basement is in contact with the Upper Carboniferous-Permian volcanic-sedimentary succession. Tourmalinites frequently occur along LANFs, usually replacing former cataclasites. The mineralogy and chemical composition of tourmalinites point to a metasomatic origin. LANFs, together with high-angle faults, controlled the opening of the Permian Orobic Basin and likely acted as a preferred pathway for hydrothermal fluids that triggered the Boron-metasomatism. Along the Aga-Vedello LANF, tourmalinites appear to have formed after the cessation of fault activity, as no brittle post-metasomatism deformation overprint has been observed. These relationships suggest that the circulation of B-rich fluids occurred after the opening of the Orobic Basin that is broadly constrained to the Early Permian. At the same time, ca. 285–270 Ma, a strong magmatic activity affected all the Southern Alps, ranging in composition from mafic to acidic rocks and from intrusions at deep crustal levels to effusive volcanic products. The Early Permian magmatism was likely the source of the late-stage hydrothermal fluids that formed the tourmalinites. The same fluids could also have played a significant role in the formation of the Uranium ore deposit of the Novazza-Vedello mining district, as the ore bodies in the Vedello valley are concentrated along the basement-cover contact. Full article
Show Figures

Figure 1

26 pages, 41297 KB  
Article
Three-Dimensional Structural Modeling (3D SM) and Joint Geophysical Characterization (JGC) of Hydrocarbon Reservoir
by Baoyi Zhang, Yongqiang Tong, Jiangfeng Du, Shafqat Hussain, Zhengwen Jiang, Shahzad Ali, Ikram Ali, Majid Khan and Umair Khan
Minerals 2022, 12(3), 363; https://doi.org/10.3390/min12030363 - 16 Mar 2022
Cited by 20 | Viewed by 4974
Abstract
A complex structural geology generally leads to significant consequences for hydrocarbon reservoir exploration. Despite many existing wells in the Kadanwari field, Middle Indus Basin (MIB), Pakistan, the depositional environment of the early Cretaceous stratigraphic sequence is still poorly understood, and this has implications [...] Read more.
A complex structural geology generally leads to significant consequences for hydrocarbon reservoir exploration. Despite many existing wells in the Kadanwari field, Middle Indus Basin (MIB), Pakistan, the depositional environment of the early Cretaceous stratigraphic sequence is still poorly understood, and this has implications for regional geology as well as economic significance. To improve our understanding of the depositional environment of complex heterogeneous reservoirs and their associated 3D stratigraphic architecture, the spatial distribution of facies and properties, and the hydrocarbon prospects, a new methodology of three-dimensional structural modeling (3D SM) and joint geophysical characterization (JGC) is introduced in this research using 3D seismic and well logs data. 3D SM reveals that the field in question experienced multiple stages of complex deformation dominated by an NW to SW normal fault system, high relief horsts, and half-graben and graben structures. Moreover, 3D SM and fault system models (FSMs) show that the middle part of the sequence underwent greater deformation compared to the areas surrounding the major faults, with predominant one oriented S30°–45° E and N25°–35° W; with the azimuth at 148°–170° and 318°–345°; and with the minimum (28°), mean (62°), and maximum (90°) dip angles. The applied variance edge attribute better portrays the inconsistencies in the seismic data associated with faulting, validating seismic interpretation. The high amplitude and loss of frequency anomalies of the sweetness and root mean square (RMS) attributes indicate gas-saturated sand. In contrast, the relatively low-amplitude and high-frequency anomalies indicate sandy shale, shale, and pro-delta facies. The petrophysical modeling results show that the E sand interval exhibits high effective porosity (∅eff) and hydrocarbon saturation (Shc) compared to the G sand interval. The average petrophysical properties we identified, such as volume of shale (Vshale), average porosity (∅avg), ∅eff, water saturation (SW), and the Shc of the E sand interval, were 30.5%, 17.4%, 12.2%, 33.2% and, 70.01%, respectively. The findings of this study can help better understand the reservoir’s structural and stratigraphic characteristics, the spatial distribution of associated facies, and petrophysical properties for reliable reservoir characterization. Full article
(This article belongs to the Special Issue 3D/4D Geological Modeling for Mineral Exploration)
Show Figures

Figure 1

22 pages, 48003 KB  
Article
The March 2021 Damasi Earthquake Sequence, Central Greece: Reactivation Evidence across the Westward Propagating Tyrnavos Graben
by Ioannis K. Koukouvelas, Konstantinos G. Nikolakopoulos, Aggeliki Kyriou, Riccardo Caputo, Alexandros Belesis, Vasiliki Zygouri, Sotirios Verroios, Dionysios Apostolopoulos and Ioannis Tsentzos
Geosciences 2021, 11(8), 328; https://doi.org/10.3390/geosciences11080328 - 2 Aug 2021
Cited by 30 | Viewed by 5127
Abstract
On 3 March 2021, a strong shallow earthquake affected northern Thessaly, Greece, with an epicenter close to Damasi village causing significant destruction of many stone houses. In this contribution, we provide fieldwork observations, satellite radar interferometry, mapping of the active faults exposed in [...] Read more.
On 3 March 2021, a strong shallow earthquake affected northern Thessaly, Greece, with an epicenter close to Damasi village causing significant destruction of many stone houses. In this contribution, we provide fieldwork observations, satellite radar interferometry, mapping of the active faults exposed in the epicentral area, liquefactions and coseismic surface ruptures, and preliminary geomorphological analyses of the epicentral area. The geomorphological analysis is based on air photographs, digital surface models analysis, Real-Time Kinematik (RTK) measurements with Global Navigation Satellite System (GNSS) receivers, and data from UAV flight campaigns. Although the seismotectonic setting of the area is complex and there is an apparent mismatch between field and interferometric data, the results of our investigations suggest that at least three fault segments were reactivated by the major shocks of the March seismic sequence. These tectonic structureslikely represent the westward propagation of the Tyrnavos Graben, where newly formed and inherited low-angle faults interplay in a complex manner. Full article
(This article belongs to the Special Issue Morphogenic Faulting: Current Practices and Future Challenges)
Show Figures

Figure 1

20 pages, 17698 KB  
Article
Combined Geodetic and Seismological Study of the December 2020 Mw = 4.6 Thiva (Central Greece) Shallow Earthquake
by Panagiotis Elias, Ioannis Spingos, George Kaviris, Andreas Karavias, Theodoros Gatsios, Vassilis Sakkas and Issaak Parcharidis
Appl. Sci. 2021, 11(13), 5947; https://doi.org/10.3390/app11135947 - 26 Jun 2021
Cited by 12 | Viewed by 3648
Abstract
On 2 December 2020, a moderate and shallow Mw = 4.6 earthquake occurred in Boeotia (Central Greece) near the city of Thiva. Despite its magnitude, the co-seismic ground deformation field was detectable and measurable by Sentinel-1, ascending and descending, synthetic aperture interferometry [...] Read more.
On 2 December 2020, a moderate and shallow Mw = 4.6 earthquake occurred in Boeotia (Central Greece) near the city of Thiva. Despite its magnitude, the co-seismic ground deformation field was detectable and measurable by Sentinel-1, ascending and descending, synthetic aperture interferometry radar (InSAR) acquisitions. The closest available GNSS station to the epicenter, located 11 km west, measured no deformation, as expected. We proceeded to the inversion of the deformation source. Moreover, we reassessed seismological data to identify the activated zone, associated with the mainshock and the aftershock sequence. Additionally, we used the rupture plane information from InSAR to better determine the focal mechanism and the centroid location of the mainshock. We observed that the mainshock occurred at a shallower depth and the rupture then expanded downdip, as revealed by the aftershock distribution. Our geodetic inversion modelling indicated the activation of a normal fault with a small left-lateral component, length of 2.0 km, width of 1.7 km, average slip of 0.2 m, a low dip angle of 33°, and a SW dip-direction. The inferred fault top was buried at a depth of ~0.5 km, rooted at a depth of ~1.4 km, with its geodetic centroid buried at 1.0 km. It was aligned with the Kallithea fault. In addition, the dip-up projection of the modeled fault to the surface was located very close (~0.4 km SW) to the mapped (by existing geological observations) trace of the Kallithea fault. The ruptured area was settled in a transition zone. We suggest the installation of at least one GNSS and seismological station near Kallithea; as the activated zone (inferred by the aftershock sequence and InSAR results) could yield events with M ≥ 5.0, according to empirical laws relating to rupture zone dimensions and earthquake magnitude. Full article
Show Figures

Figure 1

Back to TopTop