Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = loose deposit landslide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16746 KiB  
Article
Estimation Model of Rockfall Trajectory Lateral Dispersion on Slopes with Loose Granular Cushion Layer Based on Three-Dimensional Discrete Element Method Simulations
by Tingbin Qian, Wei Luo, Baojing Zheng, Yixin Feng and Desheng Yin
Processes 2024, 12(12), 2788; https://doi.org/10.3390/pr12122788 - 6 Dec 2024
Viewed by 907
Abstract
Rockfall is a typical successive hazard with a high incidence rate following primary geological disasters such as landslides, rock avalanches, and debris flows. The lateral dispersion of rockfall is significantly affected by the loose granular cushion layer deposited on slopes. This paper aims [...] Read more.
Rockfall is a typical successive hazard with a high incidence rate following primary geological disasters such as landslides, rock avalanches, and debris flows. The lateral dispersion of rockfall is significantly affected by the loose granular cushion layer deposited on slopes. This paper aims to develop a quick estimation model for this effect based on the 3D-DEM (discrete element method) numerical simulations. The DEM model employs particles with different bonding properties to create a modeling double-layer granular slope. The present model is also verified by comparing the data from the antecedent large-scale outdoor rockfall experiment with the numerical simulations. Accordingly, the influences of four factors: the initial horizontal release velocity, the size of the rock mass, the granular cushion thickness, and the slope angle on the lateral dispersion of the rockfall trajectory are analyzed, and the underlying physical mechanism is discussed thoroughly. Ultimately, we identify a nondimensional parameter that demonstrates a strong correlation with the evolution of the lateral dispersion ratio of the rockfall trajectory. Based on this insight, we propose an estimation model for predicting the lateral dispersion of the rockfall trajectory. This model can assist engineering and construction personnel in rapidly determining the lateral dispersion range of the rockfall. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

19 pages, 98931 KiB  
Article
Semi-Automatic Detection of Ground Displacement from Multi-Temporal Sentinel-1 Synthetic Aperture Radar Interferometry Analysis and Density-Based Spatial Clustering of Applications with Noise in Xining City, China
by Dianqiang Chen, Qichen Wu, Zhongjin Sun, Xuguo Shi, Shaocheng Zhang, Yi Zhang and Yunlong Wu
Remote Sens. 2024, 16(16), 3066; https://doi.org/10.3390/rs16163066 - 21 Aug 2024
Cited by 3 | Viewed by 2400
Abstract
The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP particularly vulnerable to geohazards such as landslides, collapses, and subsidence, resulting in substantial geological and environmental challenges. Xining [...] Read more.
The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP particularly vulnerable to geohazards such as landslides, collapses, and subsidence, resulting in substantial geological and environmental challenges. Xining City, situated at the northwest edge of the CLP, is especially prone to frequent geological hazards due to intensified human activities and natural forces. Synthetic Aperture Radar Interferometry (InSAR) has become a widely used tool for identifying landslide hazards and displacement monitoring because of its high accuracy, low cost, and wide coverage. In this study, we utilized the small baseline subset (SBAS) InSAR technique to derive the line of sight (LOS) displacements of Xining City using Sentinel-1 datasets from ascending and descending orbits between October 2014 and September 2022. By integrating LOS displacements from the two datasets, we retrieved the eastward and vertical displacements to characterize the kinematics of active slopes. To identify the active areas semi-automatically, we applied the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster InSAR measurement points (IMPs). Forty-eight active slopes with areas ranging from 0.0049 to 0.5496 km2 and twenty-five subsidence-dominant areas ranging from 0.023 to 3.123 km2 were identified across Xining City. Kinematics analysis of the Jiujiawan landslide indicated that acceleration started in August 2016, likely triggered by rainfall, and continued until the landslide. The extreme rainfall in August 2022 may have pushed the Jiujiawan landslide beyond its critical threshold, leading to instability. Additionally, the study identified nine active slopes that threaten the normal operation of the Lanzhou–Xinjiang High-Speed Railway, with kinematic analysis suggesting rainfall-related accelerations. The influence of anthropogenic activities on ground displacements in loess areas was also confirmed through time series displacement analysis. Our results can be leveraged for geohazard prevention and management in Xining City. As SAR image data continue to accumulate, InSAR can serve as a regular tool for maintaining up-to-date landslide inventories, thereby contributing to more sustainable geohazard management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

16 pages, 5946 KiB  
Article
Pressure Characteristics of Landslide-Generated Waves on Bridge Piers
by Ye Tian, Pingyi Wang and Meili Wang
Water 2023, 15(20), 3623; https://doi.org/10.3390/w15203623 - 16 Oct 2023
Cited by 3 | Viewed by 1737
Abstract
In a reservoir area, landslides can generate waves that pose a significant threat to bridge piers, endangering both property and human safety. This study utilized three-dimensional water tank experiments to simulate the generation of landslide-induced waves and their impact on bridge piers located [...] Read more.
In a reservoir area, landslides can generate waves that pose a significant threat to bridge piers, endangering both property and human safety. This study utilized three-dimensional water tank experiments to simulate the generation of landslide-induced waves and their impact on bridge piers located on both riverbanks. The analysis focused on the types and distribution patterns of wave pressures on bridge piers. The results reveal the following key findings: (1) The results show that the wave pressures on the piers can be classified into two types: Pulsating pressure (Ppu) and Resonance pressure (Pre). Ppu represents the pressure generated during the wave action process. Ppu closely corresponds to the wave height-time process, with frequencies ranging from 0.2 to 0.5 Hz. Pre occurs prior to Ppu. Pre represents high-frequency vibrational waves generated when bridge piers resonate during wave action. Pre is observed primarily in deep water conditions and on the opposite riverbank, with frequencies ranging from 300 to 900 Hz. (2) On the bridge piers of the opposite riverbank, Ppu exhibits a nearly vertical distribution along the water depth, while on the same side, Ppu exhibits a sawtooth-like decrease along the water depth. Ppu increases with greater landslide volume and steeper landslide angles, and the maximum wave pressure distribution occurs near the water surface. (3) The distribution of Pre/Ppu along the water depth exhibits three forms: multiple-peak, single-peak, and no-peak, with the maximum positions for all conditions of Pre/Ppu occurring at approximately one-third of the water depth from the surface (Y/h=0.3). Finally, predictive formulas for the maximum wave pressures are provided. Full article
Show Figures

Figure 1

19 pages, 3498 KiB  
Article
Disaster Mechanism and Evolution Characteristics of Landslide–Debris-Flow Geohazard Chain Due to Strong Earthquake—A Case Study of Niumian Gully
by Na He, Xiangyang Qu, Zhiquan Yang, Linjuan Xu and Filip Gurkalo
Water 2023, 15(6), 1218; https://doi.org/10.3390/w15061218 - 20 Mar 2023
Cited by 6 | Viewed by 3202
Abstract
Taking the Niumian Gully landslide–debris-flow geohazard chain as an example, we analyze the disaster mechanism of the landslide–debris-flow geohazard chain and its evolution process through field investigation as a reference for disaster prevention and risk reduction in areas with strong earthquakes by analyzing [...] Read more.
Taking the Niumian Gully landslide–debris-flow geohazard chain as an example, we analyze the disaster mechanism of the landslide–debris-flow geohazard chain and its evolution process through field investigation as a reference for disaster prevention and risk reduction in areas with strong earthquakes by analyzing the accumulative sliding amount and the critical rainfall for debris flow formed by loose deposits. Due to the 8.0 Ms earthquake in Wenchuan, the cumulative sliding of the slope reached 230.51 m, much greater than the critical sliding in the Longmen Mountain earthquake area. Permanent damage to the slope occurred, resulting in a landslide, which provided the material source for the occurrence of debris flows. When the study area experienced concentrated rainfall (e.g., exceeding 10.31 mm/h or 54.67 mm/d), loose deposits in the basin began to form a debris flow, causing a landslide–debris-flow geohazard chain. During the evolution process of the geohazard chain, the following stages were observed: pre-earthquake gestation, landslide starting during a strong earthquake, landslide blocking a channel and forming a dammed lake, bursting of the dammed lake flood–debris-flow, sliding of loose deposits, and reciprocating loose-deposit sliding and debris flows. Thus, the formation of the Niumian Valley geohazard chain can be attributed to the combined result of strong earthquake activities and rainfall. In addition, under the action of rainfall, the occurrence of the debris flow and unstable sliding of loose deposits also caused the reciprocating occurrence of debris flows, loose-deposit sliding, and flood-induced debris flows in the study area. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

15 pages, 4708 KiB  
Article
Prototype of an IoT-Based Low-Cost Sensor Network for the Hydrological Monitoring of Landslide-Prone Areas
by Pasquale Marino, Daniel Camilo Roman Quintero, Giovanni Francesco Santonastaso and Roberto Greco
Sensors 2023, 23(4), 2299; https://doi.org/10.3390/s23042299 - 18 Feb 2023
Cited by 13 | Viewed by 4128
Abstract
Steep slopes covered by loose unsaturated pyroclastic deposits widely dispersed in Campania, Southern Italy, are often subjected to shallow landslides that turn into fast debris flows causing a large amount of damage and many casualties, triggered by heavy and persistent precipitation. The slope [...] Read more.
Steep slopes covered by loose unsaturated pyroclastic deposits widely dispersed in Campania, Southern Italy, are often subjected to shallow landslides that turn into fast debris flows causing a large amount of damage and many casualties, triggered by heavy and persistent precipitation. The slope of Cervinara, located around 40 km northeast of Naples, was involved in a destructive flowslide between 15 and 16 December 1999, triggered by a rain event of 325 mm in 48 h. Hydrometeorological monitoring activities have been carried out near the landslide scarp of 1999 since 2017 to assess the water balance and to identify major hydrological processes involving the cover and the shallow groundwater system developing in the upper part of the underlying limestone fractured bedrock. Since 1 December 2022, a remotely accessible low-cost network has been installed to expand the field hydrological monitoring. The use of a network of low-cost capacitive sensors, communicating within the domain of Internet of Things (IoT) technology, aiming at dispersed monitoring of soil moisture, has been tested. Specifically, the tested prototype network allows measurements of the soil water content at two different points, communicating through a Wi-Fi-based IoT system using ESP32 boards. The ThingSpeakTM IoT platform has been used for remote field data visualization. Based on the obtained results, the prototype of this IoT-based low-cost network shows the potential to expand the amount of hydrological data, suitable for setting up early warning systems in landslide-prone areas. Full article
Show Figures

Figure 1

18 pages, 11371 KiB  
Article
Characteristics of Debris Flow Activities at Different Scales after the Disturbance of Strong Earthquakes—A Case Study of the Wenchuan Earthquake-Affected Area
by Yu Yang, Chenxiao Tang, Yinghua Cai, Chuan Tang, Ming Chen, Wenli Huang and Chang Liu
Water 2023, 15(4), 698; https://doi.org/10.3390/w15040698 - 10 Feb 2023
Cited by 5 | Viewed by 3082
Abstract
Of the catastrophic earthquakes over the past few decades, the 2008 Wenchuan earthquake triggered the greatest number of landslides and deposited a large amount of loose material on steep terrains and deep gullies, which was highly conducive to the occurrence of post-earthquake debris [...] Read more.
Of the catastrophic earthquakes over the past few decades, the 2008 Wenchuan earthquake triggered the greatest number of landslides and deposited a large amount of loose material on steep terrains and deep gullies, which was highly conducive to the occurrence of post-earthquake debris flows. It is of great importance to clarify the evolution of debris flow activity for hazard evaluation, prediction, and prevention after a strong earthquake, especially in the face of large debris flow hazards. We established a long-time span database consisting of 1668 debris flow events before and after the earthquake, with information including the occurrence time, location, and scale (small, medium, and large). In order to analyze how the environmental background before and after the earthquake controlled the debris flow activity, we examined various controlling factors, including the material source, topography (relative relief and slope degree), rainfall, normalized vegetation index, and lithology. After completing the analysis of the spatial and temporal evolution of the debris flow events in the database, a 10 × 10 km grid was introduced to grade the controlling factors in ArcGIS. Based on the same grid, the density of debris flow events for each scale in different time periods was calculated and graded. We introduced the certainty factor to figure out the spatial–temporal relationships between debris flow activities at each scale and the controlling factors. The results can provide guidance on how to dynamically adjust our strategies for debris flow prevention after a strong earthquake. Lastly, Spearman rank correlation analysis was performed to clarify the variation in the magnitude of the influence of controlling factors on the debris flow activities of different scales with time. This can provide a reference for the dynamic evaluation of debris flow hazards in the Wenchuan earthquake-affected area. Full article
(This article belongs to the Special Issue Rainfall-Induced Geological Disasters)
Show Figures

Figure 1

20 pages, 7173 KiB  
Article
Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment
by Wen Jin, Hao Wang, Guotao Zhang, Dingzhu Liu and Jiao Wang
Remote Sens. 2022, 14(23), 6060; https://doi.org/10.3390/rs14236060 - 29 Nov 2022
Cited by 3 | Viewed by 2040
Abstract
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small [...] Read more.
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small Unmanned Aerial Vehicle (sUAV) data were used to quantitatively analyze channel evolution by a large flash flood event on 25 and 26 June 2018. It was found that the stable riverbed structure formed by the armour layer appeared in the tenth year after the Wenchuan earthquake. In a confined channel, the layer can protect the channel and resist the drastic change after the flash flood event with only a small bed elevation from 0.2 m to 2 m. Without the protection of the armour, the change could reach 6 m in the unconfined channel. Meanwhile, more materials with a deposition volume of about 7450 m3 from tributaries were generally taken to the main channel, and more intense erosion with a volume of 105 m3 mostly occurred downstream of tributaries. It was noted that, in the cross-section, the increased channel width could lead to a significant change with the large volume of 35 m3. Additionally, a conceptual diagram of the generalized channel response to large flash floods was provided during multi-stage periods after the Wenchuan earthquake. It determined the rebalance processes of channel evolution in the tenth year after the earthquake. This study will contribute to understanding the post-earthquake long-term channel evolutions and could provide decision-makers of assessing the mitigation strategies for higher-magnitude flood disasters triggered by channel change in earthquake-affected watersheds. Full article
Show Figures

Figure 1

20 pages, 17854 KiB  
Article
Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall—A Case Study of Janina Mine, Poland
by Phu Minh Vuong Nguyen, Aleksander Wrana, Sylwester Rajwa, Zenon Różański and Robert Frączek
Energies 2022, 15(21), 8311; https://doi.org/10.3390/en15218311 - 7 Nov 2022
Cited by 25 | Viewed by 3953
Abstract
In Poland, the mining waste from underground coal mines is commonly deposited in surface dump sites, forming slopes or piles of materials dozens of meters high. Because of the loose structure of a mine waste dump slope, landslides may occur after a heavy [...] Read more.
In Poland, the mining waste from underground coal mines is commonly deposited in surface dump sites, forming slopes or piles of materials dozens of meters high. Because of the loose structure of a mine waste dump slope, landslides may occur after a heavy rainfall. This requires significant labor costs in reforming the mine waste dump sites and disturbs the continuity of the depositing operations. Moreover, if the mine waste dump sites located in the built-up areas, such as in the Janina mine waste dump, landslides apparently can threaten even lives and properties. Therefore, a mine waste dump stability analysis is necessary for ensuring safety. In this paper, slope stability analysis was conducted using numerical modeling under the impact of rainfall for the Janina mine waste dump, located in Libiąż, Poland. The results indicated that slope tends to loose stability in case of high rainfall intensity and short duration. Then, slope reinforcement using soil nailing and steel mesh was proposed to prevent landslide under the impact of high rainfall intensity. Once again, slope stability analysis was carried out with selected reinforcement. Meanwhile, slope monitoring was performed to assess the slope reinforcement implementation at the Janina mine waste dumps against the impact of high rainfall intensity. Based on the modeling and monitoring outcomes, assessments of slope stability and selected landslide prevention measures for the Janina mine waste dump under the impact of rainfall were presented. Full article
(This article belongs to the Special Issue Coal Mining)
Show Figures

Figure 1

23 pages, 8535 KiB  
Article
Monitoring the Hydrological Balance of a Landslide-Prone Slope Covered by Pyroclastic Deposits over Limestone Fractured Bedrock
by Pasquale Marino, Luca Comegna, Emilia Damiano, Lucio Olivares and Roberto Greco
Water 2020, 12(12), 3309; https://doi.org/10.3390/w12123309 - 25 Nov 2020
Cited by 18 | Viewed by 3370
Abstract
Many mountainous areas in Campania, Southern Italy, are characterized by steep slopes covered by loose unsaturated pyroclastic deposits laying upon fractured limestone bedrock. The soil covers are mainly constituted by layers of ashes and pumices. Large and intense rainfall events trigger shallow landslides, [...] Read more.
Many mountainous areas in Campania, Southern Italy, are characterized by steep slopes covered by loose unsaturated pyroclastic deposits laying upon fractured limestone bedrock. The soil covers are mainly constituted by layers of ashes and pumices. Large and intense rainfall events trigger shallow landslides, often turning into debris flows that cause huge damage and casualties. The slope of Cervinara, around 40 km Northeast of Naples, was involved in a catastrophic flowslide on 16 December 1999, triggered by a rainstorm of 325 mm in 48 h. To capture the main effects of precipitation on the slope stability, hydro-meteorological monitoring activities have been carried out at the slope to assess the water balance for three years (2017–2020). The field monitoring data allowed the identification of the complex hydrological processes involving the unsaturated pyroclastic soil and the shallow groundwater system developing in the limestone bedrock, which control the conditions that potentially predispose the slope to landslide triggering. Specifically, late autumn has been identified as the potentially most critical period, when slope drainage processes are not yet effective, and soil covers already receive large amounts of precipitation. Full article
(This article belongs to the Special Issue Rainfall Infiltration Processes and Their Effects on Landslide Hazard)
Show Figures

Figure 1

12 pages, 4379 KiB  
Article
Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018
by Huicong Jia, Fang Chen and Donghua Pan
Int. J. Environ. Res. Public Health 2019, 16(23), 4707; https://doi.org/10.3390/ijerph16234707 - 26 Nov 2019
Cited by 44 | Viewed by 5986
Abstract
As a “starting zone” and “amplifier” of global climate change, the Qinghai–Tibet Plateau is very responsive to climate change. The global temperature rise has led directly to an acceleration of glacial melting in the plateau and various glacier avalanche disasters have frequently occurred. [...] Read more.
As a “starting zone” and “amplifier” of global climate change, the Qinghai–Tibet Plateau is very responsive to climate change. The global temperature rise has led directly to an acceleration of glacial melting in the plateau and various glacier avalanche disasters have frequently occurred. The landslide caused by glacier avalanches will damage the surrounding environment, causing secondary disasters and a disaster chain effect. Take the disaster chain of the Yarlung Zangbo River at Milin County in Tibet on 17 and 29 October 2018 as an example; a formation mechanical model was proposed. The evolution mechanism for the chain of events is as follows: glacial melt → loose moraine deposit → migration along the steep erosion groove resulting in glacier clastic deposition then debris flow → formation of the dam plug to block the river → the dammed lake. This sequence of events is of great significance for understanding the developmental trends for future avalanches, landslides, and river blocking dam disasters, and for disaster prevention planning and mitigation in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Special Issue Advances in Hazard, Risk and Disaster Management)
Show Figures

Figure 1

16 pages, 7598 KiB  
Article
Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h
by Kervin Chunga, Franz A. Livio, Carlos Martillo, Hernán Lara-Saavedra, Maria Francesca Ferrario, Ivan Zevallos and Alessandro Maria Michetti
Geosciences 2019, 9(9), 371; https://doi.org/10.3390/geosciences9090371 - 26 Aug 2019
Cited by 25 | Viewed by 8369
Abstract
We provide a dataset of the landslides induced by the 2016 Pedernales megathrust earthquake, Ecuador (Mw 7.8, focal depth of 20 km) and compare their spatial distribution with mapped bedrock lithology, horizontal peak ground acceleration (PGA-h) and the macroseismic intensity based on earthquake-induced [...] Read more.
We provide a dataset of the landslides induced by the 2016 Pedernales megathrust earthquake, Ecuador (Mw 7.8, focal depth of 20 km) and compare their spatial distribution with mapped bedrock lithology, horizontal peak ground acceleration (PGA-h) and the macroseismic intensity based on earthquake-induced environmental effects (ESI-07). We studied 192 coseismic landslides (classified as coherent, disrupted and lateral spreads) located in the epicentral area, defined by the VII to IXESI-07 isoseismals. Based on our findings, lahar deposits, tuffs and volcanoclastic units are the most susceptible to landslides occurrence. Alluvial plains with fluvial loose fine sand are the most susceptible setting for lateral spreading, with a maximum intensity of IXESI-07. The coherent landslides are frequently found in altered shale and siltstone geological units with moderate slopes (8°–16°), with typical intensity ranging between VII and VIIIESI-07. Our analysis draws a typical framework for slope movements triggered by subduction earthquakes in Ecuador. The most dangerous setting is the coastal region, a relatively highly urbanized area located near the epicenter and where liquefaction can trigger massive lateral spreading events. Coherent and disrupted landslides, dominating the more internal hilly region, can be triggered also in moderate slope settings (i.e., less than 10°). Indeed, the regression analysis between seismic intensity, PGA-h and landslide occurrence shows that most of the events occurred at PGA-h values between 0.4 g and 1.2 g, at a distance of 30 to 50 km from the rupture plane. Our database suggests that lithology and hillslope geometry are the main geological/geomorphological factors controlling coseismic landslides occurrence; while the distance from the rupture plane plays a significant role on determining the landslide size. Finally, we underline that coseismically-triggered landslides are among the most common environmental effects occurring during large subduction events that can be effectively used to properly evaluate the earthquake macroseismic field. The landslide inventory we compiled is suitable for assessing the vulnerability of physical environment from subduction earthquakes in Ecuador, and offers a primary data source for future worldwide analysis. Full article
Show Figures

Figure 1

19 pages, 11618 KiB  
Article
An Instrumented Flume for Infiltration Process Modeling, Landslide Triggering and Propagation
by Gennaro Spolverino, Giovanna Capparelli and Pasquale Versace
Geosciences 2019, 9(3), 108; https://doi.org/10.3390/geosciences9030108 - 28 Feb 2019
Cited by 9 | Viewed by 3443
Abstract
Rainfall is the most common cause of landslides, so it is important to know the processes underlying failure starting with the rainfall infiltration processes into the granular soils, the distribution of the water content and pore pressure in both saturated and unsaturated layers, [...] Read more.
Rainfall is the most common cause of landslides, so it is important to know the processes underlying failure starting with the rainfall infiltration processes into the granular soils, the distribution of the water content and pore pressure in both saturated and unsaturated layers, to include their effects in terms of slope stability. Although the literature is full of simulation models, the complexity of phenomena would impose a more detailed analysis by a well-equipped flume. For that purpose, a meter-scale laboratory experiment at the University of Calabria was designed and built. It is very useful for carrying out complex tests to analyze the response of loose soils or debris in terms of stability. It is composed of two channels: the first one was adopted for analyzing the triggering mechanisms, the second one for the propagation phases. Both channels are equipped with suitable sensors for monitoring the main physical variables, i.e., spray nozzle systems to apply a specific rainfall intensity; minitensiometers and TDR (Time Domain Reflectometry) for measuring, respectively, suction values and water content; miniaturized pressure transducers for pore water pressures; and laser displacement sensors. This paper describes in detail the instrumented flume and explores its potential through the analysis of a homogeneous slope of pyroclastic soil. An experiment was carried out to reproduce landslide triggering in pyroclastic soils, evolving in mudflow, by considering a homogeneous deposit. The measurements carried out allowed testing the apparatus, describing the behavior of the soil after rainfall infiltration and better identifying factors particularly significant in the collapse mechanism and process evolution. Full article
(This article belongs to the Special Issue Soil Hydrology and Erosion)
Show Figures

Figure 1

21 pages, 37319 KiB  
Article
Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China
by Hai-Min Lyu, Jack Shuilong Shen and Arul Arulrajah
Sustainability 2018, 10(2), 304; https://doi.org/10.3390/su10020304 - 24 Jan 2018
Cited by 136 | Viewed by 9202
Abstract
This research investigates geohazards and preventative countermeasures for Lanzhou City, China. To investigate the factors related to the development of geohazards in Lanzhou, the regional geological conditions around Lanzhou were investigated. The geomorphology of the region is comprised of a loess landform underlying [...] Read more.
This research investigates geohazards and preventative countermeasures for Lanzhou City, China. To investigate the factors related to the development of geohazards in Lanzhou, the regional geological conditions around Lanzhou were investigated. The geomorphology of the region is comprised of a loess landform underlying quaternary loess deposits. A large number of faults induced by strong neotectonic movements are present in the area. Therefore, earthquakes frequently occur around Lanzhou. Earthquakes cause numerous rock falls and landslides, with landslide masses found scattered on the upper middle level of the area’s mountains. When intense rainfall occurs, a lot of loose deposits are brought together along steep gullies, forming debris flows; hence, a disaster chain of earthquake–landslide–debris flow is formed. To evaluate the georisks around Lanzhou, the Analytic Hierarchy Process (AHP) was employed to assess geohazards. The spatial distribution of the evaluated georisk levels was mapped using a Geographic Information System (GIS). Based on the assessed results, about 55% of the urban area and 44% of Gaolan County have high or very high-risk levels. The ratio of relatively high disaster risk levels is up to 31% of the total area. To mitigate these geohazards, both strategic decision making and technical countermeasures should be implemented. Full article
Show Figures

Figure 1

21 pages, 21789 KiB  
Article
A Recognition and Geological Model of a Deep-Seated Ancient Landslide at a Reservoir under Construction
by Shengwen Qi, Yu Zou, Faquan Wu, Changgen Yan, Jinghui Fan, Mingdong Zang, Shishu Zhang and Ruyi Wang
Remote Sens. 2017, 9(4), 383; https://doi.org/10.3390/rs9040383 - 19 Apr 2017
Cited by 16 | Viewed by 6079
Abstract
Forty-six ancient Tibetan star-shaped towers and a village are located on a giant slope, which would be partially flooded by a nearby reservoir currently under construction. Ground survey, boreholes, and geophysical investigations have been carried out, with results indicating that the slope consists [...] Read more.
Forty-six ancient Tibetan star-shaped towers and a village are located on a giant slope, which would be partially flooded by a nearby reservoir currently under construction. Ground survey, boreholes, and geophysical investigations have been carried out, with results indicating that the slope consists of loose deposit with a mean thickness of approximately 80 m in addition to an overlying bedrock of micaceous schist and phyllite. Ground survey and Interferometric Synthetic Aperture Radar (InSAR) indicated that the slope is experiencing some local deformations, with the appearance of cracks and occurrence of two small landslides. Through using borehole logs with the knowledge of the regional geological background, it can be inferred that the loose deposit is a result of an ancient deep-seated translational landslide. This landslide was initiated along the weak layer of the bedding plane during the last glaciation in the late Pleistocene (Q3) period, which was due to deep incision of the Dadu River at that time. Although it has not shown a major reaction since the ancient Tibetan star-shaped towers have been built (between 200 and 1600 AD), and preliminary studies based on geological and geomorphological analyses incorporated with InSAR technology indicated that the landslide is deformable. Furthermore, these studies highlighted that the rate of deformation is gradually reducing from the head to the toe area of the landslide, with the deformation also exhibiting relationships with seasonal rainstorms. The state of the toe area is very important for stabilizing a landslide and minimizing damage. It can be expected that the coming impoundment of the reservoir will increase pore pressure of the rupture zone at the toe area, which will then reduce resistance and accelerate the deformation. Future measures for protection of the slope should be focused on toe erosion and some bank protection measures (i.e., rock armor) should be adopted in this area. Meanwhile, some long-term monitoring measures should be installed to gain a deep understanding on the stability of this important slope. Full article
(This article belongs to the Special Issue Remote Sensing of Landslides)
Show Figures

Graphical abstract

Back to TopTop