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Abstract: Steep slopes covered by loose unsaturated pyroclastic deposits widely dispersed in Campa-
nia, Southern Italy, are often subjected to shallow landslides that turn into fast debris flows causing a
large amount of damage and many casualties, triggered by heavy and persistent precipitation. The
slope of Cervinara, located around 40 km northeast of Naples, was involved in a destructive flowslide
between 15 and 16 December 1999, triggered by a rain event of 325 mm in 48 h. Hydrometeorological
monitoring activities have been carried out near the landslide scarp of 1999 since 2017 to assess the
water balance and to identify major hydrological processes involving the cover and the shallow
groundwater system developing in the upper part of the underlying limestone fractured bedrock.
Since 1 December 2022, a remotely accessible low-cost network has been installed to expand the field
hydrological monitoring. The use of a network of low-cost capacitive sensors, communicating within
the domain of Internet of Things (IoT) technology, aiming at dispersed monitoring of soil moisture,
has been tested. Specifically, the tested prototype network allows measurements of the soil water
content at two different points, communicating through a Wi-Fi-based IoT system using ESP32 boards.
The ThingSpeakTM IoT platform has been used for remote field data visualization. Based on the
obtained results, the prototype of this IoT-based low-cost network shows the potential to expand the
amount of hydrological data, suitable for setting up early warning systems in landslide-prone areas.

Keywords: landslide early warning systems; capacitive soil moisture sensors; Internet of Things;
ThingSpeakTM

1. Introduction

Rainfall-induced shallow landslides are worldwide threats, especially in urban areas,
causing many casualties, heavy damage to roads and buildings, and notable economic
losses each year [1]. Many of these events are destructive, catastrophic, and dangerous,
owing to their frequent fast propagation [2,3]. Although short periods of intense rainfall are
commonly considered as triggering factors of landslides, a reliable landslide early warning
system (LEWS) should also consider the major hydrological processes occurring in the
slope, which may predispose it to failure [4]. These processes are nonlinear, occur over a
large-scale through the boundaries of the slope, evolve over long timescales, and affect the
initial conditions of the slope at the onset of precipitation (predisposing causes) [5].

Much research has been conducted in the past decade in landslides studies, providing
new perspectives to better understand and identify the predisposing hydrological con-
ditions that determine the response of slopes to precipitation [4], as well as to develop
physically based models capable of reliably predicting landslide occurrence [6–12].

The triggering of rainfall-induced shallow landslides is favored by the storage of
rainwater within the soil cover after intense and persistent precipitation [5]. The storage of
water also requires that the drainage mechanisms, spontaneously developing in the slopes
in response to the precipitation, are not capable of draining out much of the infiltrating
water [8]. Thus, to better investigate how the complex predisposing processes control the
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mechanism leading to slope failure in terms of water storage, field hydrological monitoring
is often still needed.

Many hydrological monitoring campaigns in landslide-prone areas around the world
are carried out by field sensors [13–17] or satellite measurements [18,19]. Moreover, some
recent applications show that root zone soil moisture is often the most valuable hydrologic
information for shallow landslide prediction [20]; so, its dispersed monitoring should be
considered by low-cost networks with easy installation and maintenance.

Lately, recent advances in open-source software and hardware technologies show the
potential for the development of low-cost programmed electronic microcontroller boards
for field research with analog or digital sensors [21–23]. The Internet of Things (IoT) deals
with the physical world through a network of objects that are connected to the internet
and process the collected information automatically [24]. Moreover, in recent years, the
design of low-cost microcontroller boards based on IoT technologies has been spreading
worldwide and has become increasingly important for the establishment of monitoring
networks in landslide-prone areas [25–28].

Many slopes of the Southern Apennines in Campania, Italy, covered with pyroclastic
loose granular deposits laying upon fractured bedrock, are often involved in destructive
debris flows triggered after heavy rainfall events, with about 300 mm depth and a duration
of 24–48 h [20,29]. The sudden triggering and fast propagation of these landslides makes
the monitoring of the precursors (i.e., rainfall, soil moisture, and suction) the only way
to develop effective early warning systems to mitigate the relevant risk [30]. The total
thickness of the mobilized deposits, mainly consisting of ashes and pumices (initially in
unsaturated conditions), is usually a few meters (1.0 m–1.5 m) in the steepest part of the
slopes, and it is larger at the foot. The pyroclastic granular deposits, nearly cohesionless,
often rest on slopes with an inclination larger than the effective friction angle of the soil [31].
In such conditions, the equilibrium is guaranteed by the contribution of the soil suction
to the soil shear strength, and the slope failure is caused by the reduction in the soil
suction, owing to wetting during rainwater infiltration [9]. The unsaturated state of the
involved soils makes drainage interventions ineffective to prevent landslides. However,
understanding the major hydrological processes that develop within the soil covers and
the exchanges of water with the underlying bedrock, which may control the predisposing
conditions, is still undergoing development.

This study refers to the slope of Cervinara, located about 40 km east of Naples (Campa-
nia, Italy), which was involved in a catastrophic debris flow between 15 and 16 December
1999, triggered by a rainfall event of 325 mm in about 48 h, causing damage and casu-
alties [32]. Since 2002, hydrological monitoring activities have been carried out at the
Cervinara slope near the landslide scarp [11,15]. Moreover, in December 2017, a new
automatic hydrometeorological station was installed, aiming at the quantification of the
various terms of the hydrological balance of the slope [14].

This paper proposes an upgrade of the conventional hydrometeorological network,
making use of low-cost sensors, based on a communication system within the domain
of the IoT. In each node of the network, low-cost sensors are connected by an IoT-based
control board and communicate with other nodes, transmitting data by a short-range
wireless communication network (i.e., Wi-Fi), allowing node-to-node distance of some
tens of meters. The choice of low-cost components for the development of the monitoring
network is deliberate, to show that dispersed environmental monitoring is easily affordable.
However, the proposed IoT network architecture can be replicated with the use of more
expensive electronic components, according to the available financial resources. The
deployment of dispersed sensor networks based on the IoT can be useful for setting up real-
time monitoring for early warning systems, providing easily manageable information for
nonexpert decision makers, such as the personnel of small municipalities in charge of local
civil protection actions. Thus, this work provides practical means for future applications
for communities threatened by landslides, with limited economic resources, to implement
and manage monitoring networks over large areas.
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To show the potential of the proposed IoT network, in December 2022, a prototype
network was installed in Cervinara, for dispersed measurements of soil moisture in different
points located 20 m apart from each other, moving away from the landslide scarp of 1999.

2. Materials and Methods

The inclusion of hydrometeorological information is a key feature for understanding
the major processes controlling the slope response to rainfall events. Basically, new hydro-
logical monitoring activities at the slope of Cervinara have been designed for extending the
measurements previously carried out with a new prototype of a low-cost sensor network
based on the IoT.

Despite the advancements in communications and internet technologies, most con-
ventional monitoring stations do not collect and publish data automatically on public
clouds (such as for IoT applications), even if the community claims live data to enhance the
effectiveness of landslide early warning systems (LEWS).

The uploading of live data, which are collected by the new low-cost sensors, as well as
by the hydrometeorological station operating since December 2017, has been accomplished,
to enable remote hydrological monitoring. Specifically, all the measurements carried out at
the slope of Cervinara have been transferred to the ThingSpeakTM internet server for the IoT
framework, by a Wi-Fi signal installed near the hydrometeorological station. ThingSpeakTM

is an IoT analytics platform (Website: https://www.thingspeak.com/, accessed on 21
December 2022) from MathWorks. It easily allows visualization, analysis, and elaboration
of live data sources posted in the cloud by one or more IoT devices that are connected to
each other [33].

2.1. Study Area

This study focuses on the slopes of Mt. Cornito, located near the town of Cervinara,
northeast of Naples, belonging to the Partenio Massif in the Southern Apennines (Campa-
nia, Italy).

The slopes of the investigated area present a soil cover composed by loose pyroclastic
deposits, usually in unsaturated conditions, resulting from various volcanic eruptions from
the Vesuvius and the Phlegrean Fields, occurring during the last 40,000 years [29,34]. The
soil cover, a few meters thick, consists of different strata of ashes and pumices, overlaying
a bedrock formed by Mesozoic–Cenozoic fractured limestone, usually allocating karst
aquifers, with a 200 mm/year average deep groundwater recharge [35].

Hydrological monitoring activities at the slope of Cervinara have been carried out
since 2002. The last operating monitoring devices, installed in December 2017, consist
of an automatic hydrometeorological station located near the scarp of the 1999 landslide.
The equipment includes a complete meteorological station, tensiometers, and TDR probes.
The acquisition and the storage of the data at an hourly resolution are ensured by a
Campbell Scientific Inc. CR-1000 data logger. The monitoring station is powered by a 12 V
battery connected to solar panels through a charge controller [14]. In December 2022, the
existing equipment was supplemented with dispersed measurements of soil moisture, by
establishing a prototype of a wireless network with two low-cost sensors located 20 m
apart from each other. All the operating devices were connected to the internet to ensure
the real-time availability of the data, according to the paradigm of the IoT (Figure 1).

https://www.thingspeak.com/
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Figure 1. Location of the study area with a closeup view of the position of the installed monitoring
IoT devices.

2.2. IoT Upgrade of the Existing Hydrometeorological Station

The first step in designing a monitoring system based on the IoT was made by updating
the data communication from the hydrometeorological station installed in December 2017,
by sending live measurements to the ThinkSpeakTM cloud through the internet connection.
To accomplish a low-cost internet connection, an Orange Pi microcomputer and an external
4G USB-WIFI portable modem were connected to the existing datalogger (Figure 2).
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Figure 2. Integration of the internet connection to a conventional datalogger (CR-1000) by adding a
control board (Orange Pi) and a portable Wi-Fi router.

The connection between the Orange Pi and the datalogger CR-1000 was made by an
RS-232 cable with a USB adapter. The Orange Pi was powered by a “switching 12 V” port
of the CR1000, through an adaptor to 5 V (the input tension of the microcomputer). The
microcomputer is powered on only while sending data (every hour) to avoid the overuse
of the 12 V battery supplied by solar panels, which powers the entire monitoring station.
In this configuration, the external modem was connected to Orange Pi via a USB port to
enable internet access by using the 4G public mobile network with a micro sim. The Orange
Pi is also equipped with a 4 Gb SD. It can also provide the temporary storage of data when
the public mobile network signal is low.

Moreover, an alarm message notification on Telegram channel to a predefined list of
users is also sent whenever the power battery consumption falls below the set threshold of
the operating voltage for CR-1000 (∼10.9 Volts).

The Orange Pi was programmed to operate automatically from the CR-1000 datalogger
to send the hourly data of the rainfall, the voltage of battery, the soil temperature, the soil
water contents, and the suction on public channels in ThingSpeakTM IoT.

2.3. IoT-Based Low-Cost Network

For each measurement point (Figure 1), ESP32 control boards were used. These boards
were provided with an integrated antenna working at 2.4 GHz, suitable for the application
of the IoT concept to the network (Figure 3).
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Figure 3. ESP32 Dev kit used to control the system.

The default resolution of a single ESP32 board is 12-bits. The devices are powered via
a micro-USB port with lead acid batteries of 12 V 2.3 Ah, regulated to 5 V.

Firstly, for this prototype of a hydrological network consisting of only two nodes
(Figure 1), the furthest ESP32 microcontroller board (node 2) was programmed to send the
data to node 1 located 20 m apart, using a mesh communication algorithm that broadcasted
the data between the nodes with a Wi-Fi protocol.

Node 1 receives the data from node 2 via mesh broadcasting and uploads all informa-
tion to an IoT dedicated platform (i.e., ThingSpeakTM). Specifically, to upload field data
coming from both remote nodes and the local node, an ESP-8266EX microcontroller was
installed in node 1, connected to the ESP32 main controller, capable of receiving the data
via serial communication. The internet connection is provided by a 4G USB-WIFI modem,
located near the hydrometeorological station.

Thus, all the data collected by the sensors installed at node 2 and node 1 are sent to
ThingSpeakTM cloud every hour. After the connection, both devices are set to a power save
mode (deep sleep mode). Consequently, a Real-Time Clock (RTC) (specifically the model
DS3231) is used to set an alarm to turn on the ESP32 every time. Additionally, a relay mod-
ule was added to control the power supply to the sensors, reducing the power consumption
during the sleep mode. Given the flexibility of the ESP32 and its low power consumption,
these microcontrollers simplify the prototyping of a WI-FI-based IoT application.

IoT Network Sensors

The prototype IoT network was equipped with soil water content capacitive sensors
connected to ESP32 microcontrollers. However, also other sensors could be connected to
the nodes of the IoT network, thus allowing any desired hydrometeorological monitor-
ing activity.

Specifically, the capacitive soil moisture sensors used in this work had a 662 K transis-
tor, acting as a voltage regulator component on board, which regulated the supply voltage
at a constant 3.3 Volts, even with a non-constant voltage power source (almost any type
of battery).

Moreover, these adopted low-cost capacitive sensors use a TL555C-timer integrated
circuit to convert the resonance frequency to an analog signal. The output is a voltage
signal proportional to the resonance frequency of the LC circuit of the sensor, strongly
dependent on the water content of the soil.

To use these sensors for field soil moisture measurements, specific calibration was
required. Owing to the dependence of the resonance frequency on the square root of the
dielectric permittivity of the bulk soil, the inverse of the output voltage was linearly fit to
approximate the volumetric water content [36–38].
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The nodes of this prototype were also equipped with DS18B20 sensors for soil tem-
perature. This sensor operates within a tension range from 3.0 V to 5.5 V. The sensor was
calibrated directly with a curve provided by the manufacturer in Celsius degrees with an
accuracy of ±0.5 ◦C at 25 ◦C. It was also equipped with a stainless-steel cap that enabled
inserting the sensor directly into the soil.

Each electronic component was put inside a hermetically sealed box. The configura-
tion at each node of the mesh including the controlling boards, sensors, relays, voltage
regulators, and batteries is sketched in Figure 4. Moreover, node 1 was powered with two
batteries, owing to the larger energy consumption of the two processors using the Wi-Fi
connection (ESP32 and ESP8266).
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The boxes were fixed to a PVC pole 0.5 m above the ground surface, to ensure WiFi
connectivity. For the installation of the network sensors, a trench was excavated, and the
probes were gently pushed horizontally into its walls at the depth of 0.5 m below the
ground surface (Figure 5).
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2.4. IoT-Based System Architecture

The entire hydrological monitoring system installed at the slope of Cervinara was
designed considering three main communication levels: (1) data collection and exchange,
(2) internet access to a database on a web server, and (3) data communication and visualiza-
tion to the users.

The schematic representation of the entire architecture of the hydrological monitoring
system based on the IoT framework is shown in Figure 6.
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Figure 6. Schematic representation of the IoT framework designed for the monitoring system.

The first level consisted of two layers: the instruments of the main hydrometeorological
station (Layer A) and the nodes of the dispersed network (Layer B). Firstly, the CR-1000
datalogger collected all the data from the meteorological and hydrological measurements,
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and then it exchanged only the information of the rainfall, soil temperature, battery voltage,
water contents, and pressures with the Orange Pi (via cable connection).

Differently, the IoT devices of the network (ESP32 boards) collected the data from the
temperature and soil moisture sensors. Then, the information was sent from node 2 to node
1 via Wi-Fi communication.

At the central level, all data were sent from the Orange Pi (layer A) and the low-cost
Wi-Fi microchip ESP-8266 (layer B) to ThingSpeakTM IoT cloud to enable the real-time
remote monitoring. Communication with the existing 4G telephony network was allowed
through the internet access provided by the 4G USB-WIFI modem.

Finally, the third level involved the users in charge. They may be either academic
researchers, the authorities in charge of risk management, or even the citizens, to which
selected information could be made directly accessible. Authorized users could down-
load the entire field dataset on specific channels in ThingSpeakTM cloud (i.e., https://
thingspeak.com/channels/1800121-1800122-1663815 (accessed on 21 December 2022) for
the hydrometeorological station and https://thingspeak.com/channels/1900126 (accessed
on 21 December 2022) for the sensor network).

In principle, monitoring information is accessible from anywhere, by means of dedi-
cated apps through tablets or smartphones. At this level, landslide prediction models and
early warning systems could also be implemented.

3. Results and Discussion
3.1. Calibration of the Capacitive Soil Moisture Sensors

To show the reliability of the measurements made with low-cost devices, the adopted
capacitive sensors were calibrated for the studied soil to define an empirical relationship
between the volumetric water content and the inverse of the output voltage (Vout

−1).
To achieve this, soil samples collected on the Cervinara slope were reconstituted in the
laboratory with the soil moist tamping technique [39,40], used for reconstructing samples
of granular soils at a desired porosity.

To achieve a chosen porosity, a known quantity of soil was put into a hollow cylindrical
vessel (equipped with the capacitive probe at the base) of 14.5 cm diameter up to 3 cm
height, tamping it in layers of 1 cm. The total initial weight (G) of the sample was estimated
using Equation (1).

G = (1 + w)(1 − n)γsV, (1)

where w is the gravimetric water content, estimated before the beginning of the test as
40.3% by oven-drying three small soil samples taken from the same material used in the
test; n is the porosity to be achieved; γs is the specific weight of the soil; and V is the volume
of the sample. The initial characteristics of the reconstituted sample are shown in Table 1.

Table 1. The general soil properties and the initial conditions of the remolded samples for calibra-
tion purposes.

Diameter (cm) 14.6

Height (cm) 3.0

V (cm3) 502.25

γs (kN/m3) 26.2

n (m3/m3) 0.68

w (g/g) 40.3%

G (g) 602.17

Gw (g) 242.84

θ initial (m3/m3) 0.48

https://thingspeak.com/channels/1800121-1800122-1663815
https://thingspeak.com/channels/1800121-1800122-1663815
https://thingspeak.com/channels/1900126
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The test was carried out letting the previously reconstituted sample dry by evaporation
at an ambient temperature, while the sensor probe output voltage and sample weight were
being recorded. Recordings were conducted every 2 h, as the evaporation rate evolved, and
they were stopped when the evaporation rate became very small. The evaporated water
was simply estimated as the weight loss between readings.

Specifically, knowing the evolution of the water evaporation in the sample, the volume–
weight relationships were used to estimate the volumetric water content θi at each time
step i. The volume of the water fraction Vw is:

VW =
Gi − Gs

γw
=

Gi − (G − Gw)

γw
=

Gi − G + Gw

γw
(2)

where Gi is the actual weight of the sample, Gs is the weight of the solid volume, G is the
initial sample weight, and Gw is the initial weight of the water fraction.

As θ = Vw/V, where Vw could be estimated at each measuring step by subtracting the
weight of the solid volume Gs from the actual weight, the water content θi at each time step
was estimated with Equation (3):

θi =
VW
V

=
Gi − Gs

γwV
=

Gi − G + Gw

γwV
(3)

The results of the calibration, shown in Figure 7, indicated that the free evaporation
allowed reaching a soil volumetric water content as small as 0.18. The investigated soil
moisture range, 0.18 < θ < 0.48, was representative of the most common field conditions.
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The inverse of the voltage was fitted with the least-squares regression, which resulted
in the following relationship with θ:

θ =
2.65
Vout

− 0.76 (4)

The good alignment of the measurement points along a straight line, indicated by
the high value of R2 = 0.98, was consistent with the expected behavior of the moist soil
according to mixing dielectric models [41]. In fact, the output voltage of the capacitive
sensor was proportional to the resonance frequency of the capacitor, in turn related to the
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inverse of the square root of the relative dielectric permittivity of the moist soil, which
usually exhibits a linear relationship with the soil volumetric water content [42]. Both the
sensitivity and the accuracy of the estimated soil moisture met the requirements of the
measurements for large-scale landslide early warning systems, for which the inclusion of
spatially coarse or averaged soil moisture information (i.e., not representative of the local
values of the soil moisture at landslide locations) has been shown to significantly improve
the ability of the systems to correctly predict landslide occurrences [43,44].

3.2. Field Monitoring Data

Field monitoring started on 1 December 2022, and it is still ongoing. A period of nearly
two weeks was considered for the visualization of the data from this prototype network
(Figure 8).
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During this time interval, the monitoring of the sensor network has been continuous,
despite the relatively low air temperature occurring in December at the altitude of the
investigated site (575 m a.s.l.), that could damage the instruments and the batteries. In
addition, the installation in sealed boxes has proven to be reliable for Wi-Fi communication
between the nodes located 20 m apart from each other, without discontinuous functioning.
The hourly trend of monitoring data allows analyzing the soil moisture dynamics, strictly
connected to the observed precipitations.

Figure 8a shows the hourly volumetric water content at a 50 cm depth, where the
capacitive sensors were placed, estimated through the calibration relationship (4) from
the values of the output voltage and the hourly rainfall recorded by the rain gauge (CP)
belonging to the meteorological station of the Civil Protection Agency of Campania, not far
from the monitored site (Figure 1). Figure 8b shows the hourly soil temperature recorded
at the two nodes.

Two rainfall events were observed during the monitored period. In the first case,
18 mm of rainfall occurred in 41 h, while in the second 46.2 mm fell in 80 h, with a
maximum intensity of 10 mm/h.

During the first small event, no significant increase in the volumetric water content
was observed by any of the probes. Differently, during the longest and largest event,
rainwater infiltration reached the soil layer at 50 cm, where a clear increase in the soil water
content was detected by both probes.

Moreover, a slow decrease in the water content occurred between the two events,
consistent with the nearly absent upward evapotranspiration fluxes (i.e., the vegetation
in late autumn is characterized by leafless chestnut trees and no underbrush). Thus, the
water uptake from roots, which can be dense at 50 cm depth, remained low due to the
dormant vegetation, and the progressive reduction in the soil moisture was likely due to
slow vertical gravitational drainage.

Overall, it is quite clear that the obtained results for both nodes confirmed the same
response to the meteorological forcing, with similar trends in terms of the water content
and temperature, without a significant difference between the two nodes.

Nevertheless, the pyroclastic deposits of Cervinara are characterized by several soil
layers with different textural properties [15,31]. In fact, Figure 8a shows significantly
different values of water content at the two nodes, likely due to the variable hydraulic
properties of the soil throughout the slope. In fact, local heterogeneities play a big role in
the rainwater infiltration process. In fact, the variations in soil texture and aggregate size
would give rise to areas with different water content. Moreover, the local stratigraphy can
also affect the gravitational drainage towards the deeper layers within the soil cover.

In addition, it is worth noting that the temperature at the investigated depth of 50 cm
varied between 8.5 ◦C and 10 ◦C during the monitored period (Figure 8b), while the
calibration relationship (4) was obtained in the laboratory at an ambient temperature
(ranging between 19.5 ◦C and 20.5 ◦C). The temperature variations slightly affect the
dielectric permittivity of the free water stored in the soil pores and the response of the
capacitive soil moisture sensor, but temperature differences within 10 ◦C cause a few percent
variation in the sensor output voltage [45]. Thus, the water content values estimated in the
field with the specific calibration relationship (4) can be considered reliable.

4. Conclusions

The main idea of this study was to propose a prototype of a low-cost IoT-based moni-
toring network to expand the amount of available field hydrological data for a landslide-
prone area.

The communication between two nodes located 20 m apart through Wi-Fi connection
protocol was investigated. However, it is possible to replicate the same network architecture
with long-distance communication between one or more IoT devices (i.e., LoRa Network),
extending the distance between the nodes up to few kilometers [46].
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Since in the mountainous area of Campania, the risk of shallow landslides is widely
spread, and it is not affordable to instrument hundreds of slopes with expensive monitoring
devices, the future attractive perspective might be to obtain the required hydrometeorologi-
cal information with dispersed low-cost instruments.

Moreover, the proposed network architecture can be enlarged and integrated with
other hydrometeorological monitoring devices, such as rain gauges, piezometers, and
sensors for the measurement of electrical conductivity, temperature, and the water level
in nearby streams. All data could be received on laptops or smartphones, which can be
suitable even for a small municipality, allowing real-time monitoring to manage landslide
risk by means of early warning systems issuing local alarms. A more dispersed and
complete network could be used for early warning purposes in areas subjected to recurrent
shallow landslides, such as the slopes of the Partenio Massif around the city of Cervinara.

Indeed, this example may stimulate the development of practical approaches with low-
cost sensors to allow risk management in one or more watersheds of large landslide-prone
areas, opening new perspectives based on the benefits of the IoT in terms of environmen-
tal sustainability.
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