Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = long-span continuous girder bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12806 KiB  
Article
Analysis of Buffeting Response and Stay Cable Fatigue Damage in Super-Long-Span Carbon Fiber-Reinforced Polymer (CFRP) Cable-Stayed Bridges
by Yuanqing Nie, Zhitian Zhang, Jiadong Zeng and Feiyu Han
Appl. Sci. 2025, 15(10), 5267; https://doi.org/10.3390/app15105267 - 9 May 2025
Viewed by 583
Abstract
As the span of cable-stayed bridges continues to increase, traditional steel cables face challenges such as excessive self-weight, significant sag effects, and sensitivity to wind-induced vibrations. This study proposes two super-long-span cable-stayed bridge schemes with a main span length of 1500 m and [...] Read more.
As the span of cable-stayed bridges continues to increase, traditional steel cables face challenges such as excessive self-weight, significant sag effects, and sensitivity to wind-induced vibrations. This study proposes two super-long-span cable-stayed bridge schemes with a main span length of 1500 m and identical girder cross-sections, employing steel cables and CFRP cables, respectively. Based on a discretized finite element model of stay cables, the global dynamic responses, cable vibration characteristics, and fatigue performance of both schemes were systematically evaluated using time-domain buffeting analysis and Miner’s linear fatigue damage accumulation theory. The results demonstrate that CFRP cables, benefiting from their lightweight and high-strength properties, significantly reduce the vertical, lateral, and torsional RMS responses of the main girder under the critical 3° angle of attack, achieving reductions of 31.6%, 28.5%, and 20.6% at mid-span, respectively. Additionally, CFRP cables suppress cable–girder internal resonance through frequency decoupling. Fatigue analysis reveals that the annual fatigue damage of CFRP cables under the design wind speed is far lower than that of steel cables and remains well below the critical threshold, highlighting their superior fatigue resistance. This research confirms that CFRP cables can effectively enhance the aerodynamic stability and long-term durability of super-long-span cable-stayed bridges, providing theoretical support for span breakthroughs. To further ensure long-term service safety, this study recommends implementing damping measures at critical cable locations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 11255 KiB  
Article
The Effect of Girder Profiles on the Probability of Fatigue Damage in Continuous I-Multigirder Steel Bridges
by Graziano Fiorillo and Navid Manouchehri
Infrastructures 2025, 10(4), 92; https://doi.org/10.3390/infrastructures10040092 - 9 Apr 2025
Viewed by 504
Abstract
Fatigue is one of the main sources of mechanical failure in steel bridges. However, a few studies have investigated the relationship between the longitudinal shape of bridge girders and long-term fatigue effects. This paper shows how different girder profiles affect the probability of [...] Read more.
Fatigue is one of the main sources of mechanical failure in steel bridges. However, a few studies have investigated the relationship between the longitudinal shape of bridge girders and long-term fatigue effects. This paper shows how different girder profiles affect the probability of fatigue damage occurring in continuous I-multigirder steel bridges. The analysis was conducted using realistic traffic scenarios defined through truck data collected in USA and Canada. Monte Carlo simulations with 5000 realizations were performed on several continuous bridge configurations with different span lengths and different girder profiles. The results of the analysis showed that the probability of fatigue damage is affected by profile shape and the smoothness of the transition between the maximum and minimum height of the cross section. In particular, the probability of fatigue damage on continuous I-multigirder steel bridges can be reduced by up to 26% for typical fatigue construction details over a bridge service life of 75 years by modifying the geometry of the girders during the design phase of the bridge. Full article
(This article belongs to the Special Issue Bridge Modeling, Monitoring, Management and Beyond)
Show Figures

Figure 1

15 pages, 4977 KiB  
Article
Experimental Study and Numerical Analysis of Hydration Heat Effect on Precast Prestressed Concrete Box Girder
by Tianyu Wang, Jinbiao Cai, Qian Feng, Weizhong Jia and Yongchao He
Buildings 2025, 15(6), 859; https://doi.org/10.3390/buildings15060859 - 10 Mar 2025
Viewed by 636
Abstract
Large-span precast prestressed concrete box girders have been widely used in bridge construction near or across the sea. However, this would easily lead to a hydration heat problem, including large initial tensile stress and concrete cracks during the stage of concrete pouring. A [...] Read more.
Large-span precast prestressed concrete box girders have been widely used in bridge construction near or across the sea. However, this would easily lead to a hydration heat problem, including large initial tensile stress and concrete cracks during the stage of concrete pouring. A 5 m long segment of the prestressed concrete box girder for the Hangzhou Bay Cross-Sea Railway Bridge was continuously monitored to investigate the hydration heat effect on the long-span concrete box girder during the pouring stage of construction. The initial temperature variation and stress distribution of the concrete in the segment were analyzed through finite element analysis based on the experimental data and temperature monitoring results. A suitable concrete pouring and maintenance plan for the box girder was proposed after the comparison of several construction schemes. The results indicate that the primary cause of initial tensile stress is the temperature difference between the inner and outer surfaces of the long-span precast concrete box girder. By adding some ventilation inside the box girder with suitable maintenance measures, the initial tensile stress in the concrete can be effectively reduced, thus mitigating the risk of early cracking. Full article
Show Figures

Figure 1

26 pages, 3857 KiB  
Article
Multi-Objective Optimization Design of PCS Box Girder Bridges with Small and Medium Spans Using Genetic Algorithms
by Zhijie Li, Jianan Qi and Jingquan Wang
Buildings 2025, 15(3), 361; https://doi.org/10.3390/buildings15030361 - 24 Jan 2025
Cited by 1 | Viewed by 1194
Abstract
With the development of algorithms for autonomous decision-making in the field of structural engineering, the design of precast concrete segment (PCS) box girder bridges faces new challenges. This paper proposes using a multi-objective optimization method based on genetic algorithms for the rapid design [...] Read more.
With the development of algorithms for autonomous decision-making in the field of structural engineering, the design of precast concrete segment (PCS) box girder bridges faces new challenges. This paper proposes using a multi-objective optimization method based on genetic algorithms for the rapid design of PCS box girder bridges with small and medium spans. By considering 20 design parameters such as the physical dimensions of the box girder cross-section, material properties, and prestressing parameters, the paper formulates and quantifies three objective functions: cost, safety, and structural performance. The multi-objective optimization was conducted using four optimization algorithms (NSGA-II, NSGA-III, GDE3, and PSO). An optimization evaluation index (φ[F(x)]) was established and weights were assigned to different optimization objectives. A specific design case based on the general diagram of a 3 × 25 m-long continuous PCS box girder bridge was carried out. The results indicate that genetic algorithms performed exceptionally well on this problem, with the NSGA-III algorithm achieving the best φ[F(x)] value of 0.2789 among all algorithms. A performance analysis was conducted on various optimization models using box plots and sensitivity studies. Scatter plots and surface plots of the Pareto front of the optimized solutions were generated, and corresponding cross-sectional design drawings were created based on the two proposed solutions. Compared with the general graph, the design cases provided by the NSGA-III algorithm model have a change rate of 8.03%, −0.29%, and 75.49% in the three optimization objectives, respectively, indicating a significant improvement effect. The research content of this paper provides a reasonable direction for future studies on intelligent bridge design methodologies. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 9337 KiB  
Article
Numerical Analysis on Sliding-Type Transverse Splicing Connection Applied in Widening Continuous Concrete Box-Girder Bridge
by Wenqing Wu, Chong Cao, Yuqin Wu, Jiyang Liu, Dan Liu, Liang Chen and Zheng Liu
Buildings 2025, 15(1), 35; https://doi.org/10.3390/buildings15010035 - 26 Dec 2024
Viewed by 862
Abstract
When traditional joint structures are used to widen multi-span continuous concrete box girder bridges, excessive lateral deformation often occurs at the girder ends, typically leading to the squeezing and cracking of seismic blocks by the girder webs. To address these technical challenges, this [...] Read more.
When traditional joint structures are used to widen multi-span continuous concrete box girder bridges, excessive lateral deformation often occurs at the girder ends, typically leading to the squeezing and cracking of seismic blocks by the girder webs. To address these technical challenges, this paper investigates a new type of slide-rail lateral joint structure that can create a longitudinal sliding effect between two bridge decks of the old and new bridge box girders, thereby effectively reducing the lateral deformation at the girder ends. First, this paper employs the finite element method to conduct a numerical analysis of a real-world bridge widening project, exploring the working mechanism and application feasibility of this novel connection method. The results show that, in the case study, if the traditional joint method is used, the lateral displacement at the girder ends can reach up to 40 mm after three years of widening. However, when the slide-rail joint structure is employed, the lateral displacement at the girder ends is limited to no more than 6 mm. This demonstrates that the new joint method can indeed effectively address the issue of excessive lateral deformation at the ends of the widened structure. Second, given that the slide-rail lateral joint structure is a relatively precise engineering structure, this paper examines the lateral load transfer mechanism under loads such as wheel loads and foundation settlement differences. It discusses the load-bearing characteristics of various components, including square steel pipes, lateral connection rebars, concrete flange plates, and embedded rebars. Finally, through a parameter sensitivity analysis, it is found that the torsional stiffness of the square steel pipes is a critical parameter for ensuring the load-bearing capacity of the structure. Therefore, it is recommended to set the wall thickness of the square steel pipes to 5 mm. Based on these research findings, this paper theoretically demonstrates that the new slide-rail lateral joint structure can effectively solve the technical challenges encountered during the lateral joint widening of multi-span long-span concrete continuous box girder bridges, providing a new solution for this field. Full article
Show Figures

Figure 1

13 pages, 5777 KiB  
Article
Bridge Alignment Prediction Based on Combination of Grey Model and BP Neural Network
by Qingfu Li and Jinghui Xie
Appl. Sci. 2024, 14(17), 7955; https://doi.org/10.3390/app14177955 - 6 Sep 2024
Cited by 5 | Viewed by 1125
Abstract
The continuous improvement of bridge construction technology has resulted in an ongoing expansion of bridge spans, which has concomitantly increased the difficulty of controlling the alignment of long-span bridges during construction. In order to address the issue of the grey prediction model exhibiting [...] Read more.
The continuous improvement of bridge construction technology has resulted in an ongoing expansion of bridge spans, which has concomitantly increased the difficulty of controlling the alignment of long-span bridges during construction. In order to address the issue of the grey prediction model exhibiting a significant discrepancy in its alignment predictions for long-span continuous girder bridges, a pre-camber prediction method for bridges based on a combination of the grey model (GM) and BP neural network (GM-BP) is proposed. Firstly, the parameters are identified according to their influence on the pre-camber, and the appropriate parameters are selected as the original data to improve the efficiency of prediction. Subsequently, the original data are preliminarily fitted by the GM(1,1) model, and the predicted values are used as inputs for training the neural network. Finally, the new predicted values are output using the nonlinear fitting ability of the BP neural network. To assess the efficacy of the model, it is applied to the prediction of the pre-camber of the girder segments of a bridge under cantilever construction. The pre-camber prediction for 11#–13# girder sections was based on 10 sets of monitoring data from constructed girder sections. The results demonstrated that the average relative error of the GM-BP combined prediction model was 3.01%, which was 5.68% less than that of the GM(1,1) model, and the overall prediction exhibited a closer alignment with the original data. The GM-BP combined prediction model is an effective method for ensuring the alignment control of bridge construction and is able to achieve high accuracy and stability in its predictions in the case of limited and irregular data. Full article
Show Figures

Figure 1

28 pages, 17917 KiB  
Review
Research Progress on Shear Characteristics and Rapid Post-Disaster Construction of Narrow-Width Steel Box–UHPC Composite Beams
by Yunteng Chen, Jiawei Xu, Peilong Yuan, Qiang Wang, Guanhua Cui and Xulin Su
Buildings 2024, 14(7), 1930; https://doi.org/10.3390/buildings14071930 - 25 Jun 2024
Cited by 1 | Viewed by 1285
Abstract
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel [...] Read more.
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel box girders, augmented by partially filled concrete, embodies the synthesis of steel and concrete elements, fostering structural efficiency. Moreover, its attributes, including reduced structural weight, diminished vertical profile, enhanced load-bearing capacity, and augmented stiffness, have prompted its gradual integration into bridge engineering applications. In this study, the calculated values of shear strength under three current design codes were reviewed, and the shear failure phenomena and its determinants of narrow-width steel box–ultra-high-performance concrete (UHPC) composite beams under negative bending moment conditions were investigated, which were mainly determined by shear span ratio, concrete wing plate, UHPC steel fiber content, UHPC plate thickness, and transverse partition inside the box. Concurrently, this paper evaluates two innovative structural designs, including a double-narrow steel box girder and a three-narrow steel box girder. In addition, strategies to reduce crack formation under the negative bending moment of long-span continuous narrow and wide box girder abutments are discussed, and we show that this measure can effectively control the formation of cracks to support the negative bending moment zone. At the same time, the scope of the application of a narrow-width steel box girder composite bridge is reviewed, and the conclusion is that a narrow-width steel box girder is mainly used in small-radius flat-curved bridges or widened-ramp bridges with a span of 30 m or more in interworking areas and in the main line with a 60–100 m span in mountainous or urban areas. Finally, the research direction of the shear resistance of the UHPC–narrow steel box girder under negative bending moments is proposed. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

19 pages, 16246 KiB  
Article
Multi-Span Box Girder Bridge Sensitivity Analysis in Response to Damage Scenarios
by Marame Brinissat, Richard Paul Ray and Rajmund Kuti
Buildings 2024, 14(3), 667; https://doi.org/10.3390/buildings14030667 - 2 Mar 2024
Cited by 1 | Viewed by 1661
Abstract
Due to their distinct features, including structural simplicity and exceptional load-carrying capacity, steel box girder bridges play a critical role in transportation networks. However, they are categorized as fracture-critical structures and face significant challenges. These challenges stem from the overloading and the relentless [...] Read more.
Due to their distinct features, including structural simplicity and exceptional load-carrying capacity, steel box girder bridges play a critical role in transportation networks. However, they are categorized as fracture-critical structures and face significant challenges. These challenges stem from the overloading and the relentless effects of corrosion and aging on critical structural components. As a result, these bridges require thorough inspections to ensure their safety and integrity. This paper introduces generalized approaches based on vibration-based structural health monitoring in response to this need. This approach assesses the condition of critical members in a steel girder bridge and evaluates their sensitivity to damage. A rigorous analytical evaluation demonstrated the effectiveness of the proposed approach in evaluating the Szapáry multi-span continuous highway bridge under various damage scenarios. This evaluation necessitates extensive vibration measurements, with piezoelectric sensors capturing ambient vibrations and developing detailed finite element models of the bridge to simulate the structural behavior accurately. The results obtained from this study showed that bridge frequencies are sufficiently sensitive for identifying significant fractures in long bridges. However, the mode shape results show a better resolution when compared to the frequency changes. The findings are usually sensitive enough to identify damage at the affected locations. Amplitude changes in the mode shape help determine the location of damage. The modal assurance criterion (MAC) served to identify damage as well. Finally, the results show a distinct pattern of frequency and mode shape variations for every damage scenario, which helps to identify the damage type, severity, and location along the bridge. The analysis results reported in this study serve as a reference benchmark for the Szapáry Bridge health monitoring. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring and Damage Identification)
Show Figures

Figure 1

21 pages, 7942 KiB  
Article
Long-Term Deflection Analysis of Large-Span Continuous Prestressed Concrete Rigid-Frame Bridges Based on a Refined Modeling Approach
by Xu Han, Wanheng Li and Pengfei Li
Appl. Sci. 2023, 13(17), 9727; https://doi.org/10.3390/app13179727 - 28 Aug 2023
Cited by 4 | Viewed by 3140
Abstract
Numerical modeling approaches are favored for performing long-term analyses of continuous prestressed concrete rigid-frame (CPCR) bridges due to the complexity and high cost of experimental testing on such structures. In this study, a refined numerical modeling approach is first presented and validated by [...] Read more.
Numerical modeling approaches are favored for performing long-term analyses of continuous prestressed concrete rigid-frame (CPCR) bridges due to the complexity and high cost of experimental testing on such structures. In this study, a refined numerical modeling approach is first presented and validated by comparing the field monitor data of an existing long-span CPCR bridge in China. Then, long-term deflection analysis—considering box girder cracks, concrete creep, joint damage behavior and prestress—is conducted based on the proposed refined modeling approach. It is found that the time-dependent loss of longitudinal prestress has the most significant influence on the long-term structural stiffness, while joint damage between different segments has limited impact on overall structural performance, especially for large-span bridge cases. The local stress distribution is significantly influenced by typical damage, albeit with a different scope of impact. Therefore, targeted reinforcement has to be performed to achieve satisfactory repair results under different damage conditions. Full article
(This article belongs to the Special Issue Bridge Structural Analysis)
Show Figures

Figure 1

17 pages, 7091 KiB  
Article
Seismic Vulnerability Analysis of Long-Span Prestressed Concrete Composite Box Girder Bridge with Corrugated Steel Webs under Construction
by Rubao Wang, Zhangliang Hu, Zhiming Hao, Liang Chen, Guigang Shi, Ruini Hou and Rui Zuo
Buildings 2023, 13(7), 1598; https://doi.org/10.3390/buildings13071598 - 24 Jun 2023
Cited by 3 | Viewed by 1818
Abstract
In order to address the difficulty in determining the seismic damage probability of continuous girder bridges under construction, the seismic vulnerability analysis method of the construction state is proposed in this study. Firstly, taking a long-span prestressed concrete composite box girder bridge with [...] Read more.
In order to address the difficulty in determining the seismic damage probability of continuous girder bridges under construction, the seismic vulnerability analysis method of the construction state is proposed in this study. Firstly, taking a long-span prestressed concrete composite box girder bridge with corrugated steel webs (OSW) as an example, the finite element models (FEMs) of dynamic calculation in different phases of cantilever construction are simulated by OpenSEES. Secondly, by selecting reasonable seismic waves and seismic intensity measures, the non-linear time-history analysis is carried out, followed by the demand parameters and damage indexes suitable for the construction state proposed. Finally, the probabilistic seismic demand model (PSDA) of the continuous box girder bridge during the construction stage is constructed by using the “cloud method”, and the seismic vulnerability curves of the piers and temporary bearings are established to evaluate the seismic performance during the construction stage. The results indicate that the damage probability of piers and temporary bearings increases with the progress of construction. The initial formation of the cantilever structure and the sudden change in the size of the construction segmental girder correspond to a high probability of damage, and seismic protection measures should be strengthened during this construction state. Moreover, significantly higher damage probability of the components under construction compared to the completed bridge after it is built. Full article
(This article belongs to the Special Issue Recent Research Progress of UHPC in Structural Engineering)
Show Figures

Figure 1

19 pages, 7674 KiB  
Article
The Multi-Scale Model Method for U-Ribs Temperature-Induced Stress Analysis in Long-Span Cable-Stayed Bridges through Monitoring Data
by Fengqi Zhu, Yinquan Yu, Panjie Li and Jian Zhang
Sustainability 2023, 15(12), 9149; https://doi.org/10.3390/su15129149 - 6 Jun 2023
Cited by 2 | Viewed by 1657
Abstract
Temperature is one of the important factors that affect the fatigue failure of the welds in orthotropic steel desks (OSD) between U-ribs and bridge decks. In this study, a new analysis method for temperature-induced stress in U-ribs is proposed based on multi-scale finite [...] Read more.
Temperature is one of the important factors that affect the fatigue failure of the welds in orthotropic steel desks (OSD) between U-ribs and bridge decks. In this study, a new analysis method for temperature-induced stress in U-ribs is proposed based on multi-scale finite element (FE) models and monitoring data First, the long-term temperature data of a long-span cable-stayed bridge is processed. This research reveals that a vertical temperature gradient is observed rather than a transverse temperature gradient on the long-span steel box girder bridge with tuyere components. There is a linear relationship between temperature and temperature-induced displacement, taking into account the time delay effect (approximately one hour). Then, a multi-scale FE model is established using the substructure method to condense each segment of the steel girder into a super-element, and the overall bridge temperature-induced displacement and temperature-induced stress of the local U-rib on the OSD are analyzed. The agreement between the calculated temperature-induced stresses and measured values demonstrates the effectiveness of the multi-scale modeling strategy. This approach provides a valuable reference for the evaluation and management of bridge safety. Finally, based on the multi-scale FE model, the temperature-induced strain distribution of components on the OSD is studied. This research reveals that the deflection of the girder continually changes with the temperature variation, and the temperature-induced strain of the girder exhibits a variation range of approximately 100 με. Full article
(This article belongs to the Special Issue Sustainable Structures and Construction in Civil Engineering)
Show Figures

Figure 1

16 pages, 4670 KiB  
Article
A Parallel Scheme of Friction Dampers and Viscous Dampers for Girder-End Longitudinal Displacement Control of a Long-Span Suspension Bridge under Operational and Seismic Conditions
by Longteng Liang, Zhouquan Feng, Yuanqing Xu, Zhengqing Chen and Linong Liang
Buildings 2023, 13(2), 412; https://doi.org/10.3390/buildings13020412 - 2 Feb 2023
Cited by 23 | Viewed by 2959
Abstract
Benefitting from economic development and technological progress, long-span suspension bridges, with their superior span capacity and good economy, have been built in large numbers in recent decades. However, the excessive cumulative longitudinal displacement at the girder ends in the process of bridge operation [...] Read more.
Benefitting from economic development and technological progress, long-span suspension bridges, with their superior span capacity and good economy, have been built in large numbers in recent decades. However, the excessive cumulative longitudinal displacement at the girder ends in the process of bridge operation leads to the degradation of, and fatigue damage to, the connecting components. This study aims to solve the problem with an effective parallel damping scheme of friction dampers and viscous dampers. Firstly, the phenomenon that quasi-static longitudinal displacement accounts for the majority of cumulative displacement is confirmed by the decomposition of measured displacement data at the girder end, which is caused by the asymmetric geometric deformation of the main cable induced by the moving vertical loads of a long-span suspension bridge. An efficient control performance analysis method is proposed based on the formation mechanism of the quasi-static longitudinal displacement. Secondly, the friction damper with a continuous damping model is employed to achieve an effective control performance with respect to the quasi-static longitudinal displacement. Thirdly, in order to realize the target of operational and seismic dual control, a parallel scheme of friction dampers and viscous dampers is proposed, aiming to reduce the cumulative value in the operational state, and maximum value in the seismic state, for longitudinal displacement at the girder ends of a long-span suspension bridge. Full article
Show Figures

Figure 1

15 pages, 3379 KiB  
Article
The Train-Bridge Coupled Vibration Analysis of a Long-Span Prestressed Concrete Continuous Beam Bridge under Creep Deformation Effect
by Hao Luo, Chuyi Xu, Xianbei Gan, Mougang Liu, Xiangrong Guo and Hui Guo
Appl. Sci. 2022, 12(22), 11838; https://doi.org/10.3390/app122211838 - 21 Nov 2022
Cited by 7 | Viewed by 2213
Abstract
The track smoothness of high-speed railroads is severely limited to ensure train performance. The concrete continuous girder bridge is deformed to influence the smoothness of the bridge decks and track caused by creep bulge. There is a need to research the impact of [...] Read more.
The track smoothness of high-speed railroads is severely limited to ensure train performance. The concrete continuous girder bridge is deformed to influence the smoothness of the bridge decks and track caused by creep bulge. There is a need to research the impact of beam creep on the dynamical response of bridge and train operation safety. This paper used Midas software to calculate the long-term deformation of large-span prestressed concrete continuous beam bridges under concrete creep and shrinkage. The train-bridge coupled system was established by adopting self-programming software. Thereafter, the large-term deformation results of the main girder are considered as track irregularity input into the vibration equation of the train-bridge system. The safety of the train operation was evaluated by calculating the dynamic response of the bridge and analyzing the criteria of train running safety. It was shown that the indicators of the large-span bridge are within the allowable code values under all working conditions. The bridge deformation under creep has an impact on the displacement and acceleration response of the bridge when a high-speed train passes through. There is no noticeable impact of creep deformation on the operational performance of trains. Nevertheless, the criteria for assessing the safety of trains’ operation, such as derailment factor, wheel load differences, lateral wheel forces, and vehicle acceleration, have been increased. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5046 KiB  
Article
Numerical Analysis on Transverse Splicing Structure for the Widening of a Long Multi-Span Highway Concrete Continuous Box Girder Bridge
by Wenqing Wu, Hui Zhang, Zheng Liu and Yunpeng Wang
Materials 2022, 15(19), 6805; https://doi.org/10.3390/ma15196805 - 30 Sep 2022
Cited by 5 | Viewed by 2213
Abstract
For the bridge widening of long multi-span highway concrete continuous box girder with a conventional splicing structure, due to the large longitudinal difference deformation by concrete shrinkage and creep between the existing and new ones, the widened structure will have an overlarge bending [...] Read more.
For the bridge widening of long multi-span highway concrete continuous box girder with a conventional splicing structure, due to the large longitudinal difference deformation by concrete shrinkage and creep between the existing and new ones, the widened structure will have an overlarge bending deformation after widening, especially an obvious transverse deformation at the end of girder, which will lead to structural damage to the newly widened structure. To effectively absorb the difference deformation mentioned above, this study proposes a novel transverse splicing structure based on the folding effect of a corrugated steel plate (CSP) (hereinafter referred to as “the CSP splicing structure”). Then, a finite element structural analysis was performed on the mechanical properties of the widened structure with the CSP splicing structure, and compared to those of a widened structure adopting the conventional concrete splicing mode, to clarify the transverse load transferring mechanism of the structure. Finally, by conducting a sensitivity analysis on CSP thickness, corrugation length, splicing stitch width, and other structural parameters, a sound parameter combination scheme was put forward. According to the research results, to ensure effective utilization of the CSP folding effect, the corrugation pattern direction of CSP should be set as horizontal, and the wave angle as the degree of 90°. In addition, it mitigated the transverse tensile stress to effectively avoid concrete cracking feasibility on the top flange of the box girder at the end of the girder. This study offers a feasible way of avoiding the structural damage produced by an excess transverse deformation at the end of the girder after bridge widening of a long multi-span concrete continuous box girder. Full article
(This article belongs to the Special Issue Repair and Strengthening of Existing Reinforced Concrete Structures)
Show Figures

Figure 1

14 pages, 6309 KiB  
Article
Study on Seismic Isolation of Long Span Double Deck Steel Truss Continuous Girder Bridge
by Yongjian Chen, Honglie Sun and Zhenfa Feng
Appl. Sci. 2022, 12(5), 2567; https://doi.org/10.3390/app12052567 - 1 Mar 2022
Cited by 14 | Viewed by 2539
Abstract
In order to improve the seismic performance of long-span double deck steel truss continuous girder bridge, taking Dao Qing Chau Bridge in Fuzhou as an engineering background, the isolation scheme of friction pendulum bearing (FPB) and friction pendulum bearing combined with viscous dampers [...] Read more.
In order to improve the seismic performance of long-span double deck steel truss continuous girder bridge, taking Dao Qing Chau Bridge in Fuzhou as an engineering background, the isolation scheme of friction pendulum bearing (FPB) and friction pendulum bearing combined with viscous dampers is applied to study seismic performance. A three-dimensional dynamic model of the bridge is established using SAP2000. Taking three artificial seismic waves as seismic excitation, the seismic response of the seismic structure is calculated by nonlinear time history integration, and is then compared with the seismic response of the seismic reduction and isolation structure. The results show that the friction pendulum bearing (FPB) scheme and combined seismic dissipation and isolation (CSDI) scheme show a good seismic dissipation and isolation effect and ensure the safety of the bridge structure. However, for whole-bridge isolation, friction pendulum bearing (FPB) will produce certain residual deformations and additional stress of the bearing under the conditions of temperature and external load. For the purpose of protecting the bearing, it is recommended to use the combined seismic dissipation and isolation (CSDI) scheme. Full article
(This article belongs to the Special Issue Seismic Design, Assessment and Retrofit of Steel Buildings)
Show Figures

Figure 1

Back to TopTop