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Abstract: In order to improve the seismic performance of long-span double deck steel truss continuous
girder bridge, taking Dao Qing Chau Bridge in Fuzhou as an engineering background, the isolation
scheme of friction pendulum bearing (FPB) and friction pendulum bearing combined with viscous
dampers is applied to study seismic performance. A three-dimensional dynamic model of the bridge
is established using SAP2000. Taking three artificial seismic waves as seismic excitation, the seismic
response of the seismic structure is calculated by nonlinear time history integration, and is then
compared with the seismic response of the seismic reduction and isolation structure. The results show
that the friction pendulum bearing (FPB) scheme and combined seismic dissipation and isolation
(CSDI) scheme show a good seismic dissipation and isolation effect and ensure the safety of the bridge
structure. However, for whole-bridge isolation, friction pendulum bearing (FPB) will produce certain
residual deformations and additional stress of the bearing under the conditions of temperature and
external load. For the purpose of protecting the bearing, it is recommended to use the combined
seismic dissipation and isolation (CSDI) scheme.

Keywords: double deck steel truss; continuous girder bridge; friction pendulum bearing; viscous
damper; combined seismic dissipation and isolation

1. Introduction

Earthquakes are a kind of natural disaster with sudden and strong damages. Under
the actions of rare earthquakes, even a building’s structure can collapse, which threatens
the safety of human beings [1–3]. The emergence of double deck bridges in recent years
has eased urban traffic to a certain extent, but consequent seismic problems that follow
are thought-provoking. During the Loma Prieta earthquake in 1989 [4–6], the double
deck viaduct structure in San Francisco, USA, the upper supporting column of the bridge
broke and fell onto the lower deck, and the lower deck had excessive lateral displacement
under the earthquake action, which caused it to collide with the supporting column and it
suffered shear failure. Therefore, in the process of double-layer bridge design, the following
problems need to kept in mind: (1) the vertical support columns of upper and lower
deck should be able to cope with large deformation, which means to design using ductile
components; (2) paying attention to the relative displacement of the upper and lower deck
joints to avoid shear failure; and (3) the upper and lower deck beams and joints should be
designed according to the capacity protection.

It was found that, when the damping of a structure is stable and the natural vibration
period of the structure exceeds a certain limit, the seismic response of a structure will
decrease with an extension in the natural vibration period. When a natural vibration period
is stable, the seismic response decreases with the increase in damping. Therefore, in the
design of structural seismic dissipation and isolation, we can design according to these
two basic rules: (1) by prolonging the natural vibration period and (2) structural damping
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increases. Taking a long-span cable-stayed bridge as the engineering background, Li et al.
established two seismic isolation systems: friction pendulum bearing (FPB) of fixed pier
and damping spherical bearing of fixed pier [7]. Calvi et al. analyzed the change in the
axial force of a bridge structure after using friction pendulum bearing (FPB) compared to
seismic structure [8]. Rabiei et al. applied friction pendulum bearing (FPB) to structural
seismic isolation design, analyzed the vertical seismic action of the structure, and deduced
the motion equation of the bearing using the Newmark-βmethod [9]. In addition, there are
many scholars and experts who have explored and discovered facts about the performance
of viscous dampers. Agrawal et al. introduced the characteristics of viscous damper [10].
Through theoretical analysis, it has been pointed out that the main factors affecting the
performance of dampers are the damping coefficient and damping index. Ahmadizadeh
studied the optimization of the layout position of a damper, and the influence of the
damping coefficient and damping index [11]. Wong and Kevin studied a nonlinear damper
and optimized the parameters of the damper [12].

Seismic control of engineering structure is to change and adjust the dynamic character-
istics of the structure by installing some isolation devices (such as isolation bearings), some
energy dissipation mechanisms (such as dampers), some additional substructure (such as
tuned mass dampers [13–17]), or to exert external forces, so as to limit the dynamic response
of an engineering structure under the action of an earthquake within an allowable range, in
order to ensure the safety, serviceability, and durability of the engineering structure [18–22].

Based on the characteristics of a double deck steel truss continuous girder bridge, to
ensure that the structure is in a safe state under the action of an earthquake, this paper
studies the scheme of friction pendulum bearing (FPB) and the scheme of a combined use
of friction pendulum bearing and viscous dampers, which are a kind of combined seismic
dissipation and isolation (CSDI) bearing.

2. Structural Finite Element Model
2.1. Double Deck Steel Truss Bridge

The main bridge of the Dao Qing Chau Bridge, which crosses a river adopts, the scheme
is a double-deck steel truss continuous girder bridge with a span of 121 + 276 + 121 meters.
The standard section of the main bridge adopts a two-way six-lane road with a width of
31 m; the distance between the rail transit lines is 4.2 m, which means that there is two-way
traffic. The layout of main span is shown in Figure 1. A cross section of the main bridge is
shown in Figures 2–4. A dynamic analysis model of the bridge is established by using the
finite element software, SAP2000. We replace the first pier with “0# pier”, and second pier
with “1# pier” and so on, as shown in Figure 5. The steel truss structure, piers, beams, and
piles are simulated using the beam elements; the concrete bridge deck is simulated using
plate elements; and the bearing system is simulated using the elastic elements. The Finite
element model of piers can be seen in Figure 6.
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After the finite element model has been established, modal analysis is carried out and
the obtained modes of each order are shown in Figure 7. The natural frequency value of
each order can also be seen in Table 1.
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Table 1. The natural frequency value of each order.

Order Frequency Value Vibration Characteristics

1 0.455 First-order vertical bending
2 0.635 First-order transverse bending
3 0.704 Second-order vertical bending
4 0.944 Third-order vertical bending
5 1.006 First-order torsional deformation
6 1.052 Second-order transverse bending
7 1.308 Fourth-order vertical bending
8 1.344 Second-order torsional deformation
9 1.405 Fifth-order vertical bending

10 1.521 Third-order transverse bending

2.2. Seismic Dissipation and Isolation Device

A bridge bearing is the connection and transmission component between the upper
beam structure and the lower pier structure. If a bearing system is damaged in an earth-
quake, the reliability of the beam and pier structure will be directly affected [23–25]. The
friction pendulum bearing and viscous damper are used to study the parameters of seismic
dissipation and isolation device, and the optimal parameters are obtained to give full details
of the performance of the seismic dissipation and isolation device.

2.2.1. Friction Pendulum Bearing (FPB)

A friction pendulum bearing (FPB) is composed of an upper base plate, base, ball
pendulum, and ball crown lining plate. The upper base plate of the friction pendulum
bearing is connected with the upper beam structure of the bridge, and the lower base is
directly connected to the pier top. The sliding surface is a curved surface made of stainless
steel, and the curvature radius of the stainless-steel curved surface is equal to that of the
ball pendulum. Under a vertical force, the compressive stress of the curved surface is
uniform. Isolation performance of the friction pendulum bearing (FPB) is related to the
curvature radius and the friction coefficient of the sliding surface.

Under an general external force, the friction pendulum bearing (FPB) does not produce
an isolation performance. When a horizontal shear force is too large, the limit device of
the bearing will be cut off, and the isolation performance of the friction pendulum bearing
(FPB) will play out. After an earthquake, the friction pendulum bearing (FPB) can be reset
automatically under a dead weight.

The bilinear calculation model of friction pendulum bearing (FPB) is shown in Figure 8.
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In Figure 8, Dy is the yield displacement; Dd is the ultimate displacement; K1 is the
initial stiffness of FPB; K2 is the swing stiffness of FPB.

The equivalent stiffness and equivalent period of the system can be obtained by
studying the nonlinear model of the FPB.

Ke f f = W/R + µ ∗ W/D (1)

Te f f = 2π
√

R ∗ d/(dg + Rgµ) (2)

βe f f =
2
π

µ

D/R + µ
(3)

where R is the curvature radius and u is the friction coefficient.

2.2.2. Viscous Damper

The mechanical model of the damper element is the Maxwell model, and the property
analysis of the element mainly includes linear properties and nonlinear properties. For
nonlinear properties, dampers are connected with the spring element in parallel; for linear
properties, dampers are connected with the spring element in series, and the damping
output force is F = CVα. The performance of a damper is related to damping exponent α
and damping coefficient C. Parameters should be optimized while taking into account the
process and production requirements. The output force of the damper is reduced as much
as possible to facilitate joint construction.

2.3. Selection of Ground Motion

Ground motion has a strong randomness. According to previous studies, the seismic
response of structures is very different, when different seismic waves are input. Therefore,
in order to ensure the accuracy of the nonlinear time history analysis results, reasonable
seismic waves must be selected [26–30]. When selecting seismic waves, we should first
consider three important factors of ground motion: peak ground acceleration (PGA),
spectral characteristics, and seismic duration.

Guidelines for Seismic Design of Highway Bridges (JTG/T b02-01-2008) stipulates that three
seismic waves conforming to site conditions shall be selected for input. The type of bridge
site is class II, and the seismic intensity is a VII degree. In this paper, we consider the degree
of an E2 earthquake, which is an earthquake action at the project site with long a recurrence
period, defined in Guidelines for Seismic Design of Highway Bridges (JTG/T b02-01-2008). The
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peak ground acceleration (PGA) of the horizontal ground motion under an E2 earthquake
is 0.2375 g.

In this paper, Fourier transform and continuous iterative fitting are used to generate
artificial seismic waves. The specific methods are as follows:

(1) Referring to Guidelines for Seismic Design of Highway Bridges (JTG/T b02-01-2008), the
design response spectrum (expected response spectrum) is determined according to
the design parameters, such as the seismic intensity and site classification;

(2) The power spectrum of the artificial seismic wave is approximately calculated accord-
ing to the expected response spectrum;

(3) The Fourier amplitude spectrum obtained from the power spectrum, plus the random
phase, is used to obtain the approximate artificial seismic wave using the inverse fast
Fourier transform (IFFT) and the intensity envelope;

(4) The response spectrum of the artificially fitted seismic wave is calculated. The Fourier
amplitude spectrum is modified by the ratio of the expected response spectrum to the
calculated response spectrum. The artificial seismic wave is regenerated and iterated
continuously until the error in the response spectrum at the control frequency point is
within the allowable error range.

The three fitting acceleration time history curves under an E2 earthquake can be seen
in Figure 9.
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3. Seismic Response of Structures
3.1. Seismic Structure

Through nonlinear time history calculation of the seismic structure, the seismic re-
sponse of the seismic structure is obtained. The N-M-ϕ curve of the piers was calculated,
and the most unfavorable bending moment of each pier, under the most unfavorable axial
force, was calculated, as shown in Table 2.

Table 2. Calculation of seismic capacity of pier.

Key Section

Bending Moment of Longitudinal Bridge Direction
(kN·m)

Bending Moment of Transverse Bridge Direction
(kN·m)

Force Resistance U Force Resistance U

0# pier bottom 4.86 × 105 4.37 × 105 0.90 6.02 × 105 1.92 × 106 3.19
1# pier bottom 1.35 × 106 8.37 × 105 0.62 1.16 × 106 2.85 × 106 2.46
2# pier bottom 2.16 × 105 8.36 × 105 3.87 1.25 × 106 2.85 × 106 2.28
3# pier bottom 5.33 × 105 4.46 × 105 0.84 6.68 × 105 1.92 × 106 2.87

Note: u = resistance/force, representing the ability to resist earthquake.

When the basin seismic bearing is used in a double-deck steel truss structure, the
strength-checking calculation of bridge substructure cannot meet the requirements under
a longitudinal seismic action, especially for 1# pier and 3# pier. Resistance/force is less
than 1, which cannot meet the bending moment demand of the pier and has a large safety
reserve under the action of transverse earthquakes.

3.2. Isolation Structure

The whole bridge is isolated, that is, 0#~3# piers are all equipped with FPBs. Parame-
ters R and µ of the FPBs are optimized, respectively.

The design of radius R of the FPB needs to be calculated according to the natural
vibration period of the non-seismic isolation structure. Generally, the isolation period is
more than two times that of the natural vibration period to determine the radius. Based on
the nonlinear time history analysis of the isolation structure, the moment at the bottom of
the pier and the relative displacement between piers and beams were obtained under an
earthquake action in the longitudinal bridge direction (see Figure 10).
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Under the action of an E2 earthquake, the bending moment at the bottom of the 1#
pier and 2# pier decreases with an increase in R, but it does not change much for the 0#
pier and 3# pier. When R = 3 m, the bending moment at the bottom of the 1# pier reaches
6.32E + 5KN·m, so it is necessary to increase the radius to reduce the bending moment at
the bottom of pier; the relative displacement between the piers and beams increases with
the increase in R, but the seismic response is relatively similar.

This section studies the isolation effect of the friction coefficient of FPB on the structure.
When the R remains unchanged, friction coefficient µ is taken as 0.01–0.05, to calculate the
stiffness of FPB, respectively; results are shown in Figure 11.
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When the friction coefficient changes from 0.01 to 0.05, the relative displacement
between piers and beams decreases significantly, and the bending moment at the bottom
of pier increases gradually. Although the enlargement of the friction coefficient increases
the energy dissipation capacity of the bearing and can effectively “grasp” the main beam,
the excessive friction force cannot effectively block the transmission of the inertial force
between the pier and beam. At that time, the seismic energy is transferred from the main
beam to the pier column, resulting in the pier suffering too much internal force, which
cannot give full play to the energy dissipation function of the isolation bearing.

Based on research on the variation of the parameters above, R can be taken as
7.0–10.0 m, and µ as 0.02–0.03, which can effectively utilize the isolation performance
of FPB. In the study of combined seismic dissipation and isolation (CSDI), the parameters
within this range are used to analyze the FPB. The whole bridge isolation scheme can
effectively reduce the seismic response. Due to the characteristics of FPB, there will be
some residual deformation, which will cause additional stress of the bearing.

3.3. Combined Seismic Dissipation and Isolation (CSDI) Structure

Combined seismic dissipation and isolation (CSDI) is adopted, that is, the 0#, 2# and
3# piers are equipped with viscous dampers, and the 1# pier has an installed FPB with the
abovementioned optimized parameters. When the E2 earthquake occurs, the anti-seismic
bolt of the fixed pier is cut off, so the FPB and viscous dampers can play a role in CSDI.
Now assuming that the damping exponent is 0.5, and the damping coefficient ranges from
1000 to 10,000, the influence of damping coefficient C on the performance of the damper
can be studied. The seismic response of the structure is shown in Figure 12.
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It can be seen from Figure 12 that, in the change process of C from 1000 to 10,000,
compared with the seismic structure, the relative displacement between the piers and beams
can be effectively reduced; however, with an increase in C, the output of the damping force
will be larger, which will limit the displacement of the upper structure, but is not conducive
to dissipating the seismic inertia force; the upper inertia force is transmitted to the lower
structure, which increases the bending moment at the pier bottom.

It is proposed to set damping coefficient C as 6000, and the damping exponent as 0.3,
0.4, 0.6, 0.8, and 1.0. When the damping exponent is 1.0, the damper is a linear damper. The
specific results are shown in Figure 13.
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With the increase in the damping exponent, the bending moment at the bottom of the
pier first decreases and then increases; however the bending moment of the pier bottom of
the 2# pier decreases gradually; for the relative displacement between the piers and beams,
with an increase in the damping exponent, the displacement response gradually increases.
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Based on the above research rules, the following parameters can be selected: C = 4000–6000,
α = 0.3.

3.4. Comparative Analysis of Seismic Response

It is found that the seismic responses of the pier bottom are within the resistance range
of the pier after the isolation scheme is adopted. Figure 14 shows the seismic response time
history curve of the pier bottom of the seismic and isolation structure.
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Figure 14. Seismic and isolation structure of time history curve of the 1# pier bottom. (a) Shear time
history curve of the 1# pier bottom. (b) Moment time history curve of the 1# pier bottom.

The isolation response time history curve of the 1# pier bottom changes obviously
when compared with the seismic structure. After using FPB, the time history curve of
the pier bottom of the structure is apparently enveloped in the seismic response of the
structure. The shape of the time history curve is basically consistent, and the peak point of
the isolation structure is evidently smaller than the seismic structure.

It can be seen from Table 3 that the bending moment and the shear force of the 1# pier
are reduced by 65.33% and 62.67% compared with the seismic structure after using the
isolation scheme, and by 66.22% and 63.76% for the CSDI scheme. At the same time, the
bending moment and shear force at the bottom of the 2# pier increased by 174.54% and
67.88% compared with the seismic structure when FPB was used. However, the increase in
amplitude was small, which is 56.02% and 15.87% when CSDI was adopted; this is more
conducive to the safety of the pier.

Table 3. Seismic response comparison of substructure.

Pier
Number

Seismic Structure Isolation Structure CSDI Structure

Bending Moment
in Pier Bottom

(kN·m)

Shear in Pier
Bottom (kN)

Moment
Isolation Ratio

Shear Isolation
Ratio

Moment
Isolation Ratio

Shear Isolation
Ratio

0# 4.86 × 105 2.33 × 104 −21.40% −16.65% −15.23% −20.32%
1# 1.35 × 106 7.55 × 104 −65.33% −62.67% −66.22% −63.76%
2# 2.16 × 105 1.92 × 104 174.54% 67.88% 56.02% 15.87%
3# 5.33 × 105 2.15 × 104 −20.45% −16.97% −23.64% −30.58%

It can be seen from Table 4 that the relative displacement between the upper and lower
joints decreases after the seismic isolation schemes are adopted, which is conducive to
protecting the upper steel truss structure. In the seismic structure, the relative displacement
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reaches 121.41 mm. After using FPB, the relative displacement is reduced to 91.11 mm,
which is 24.96%; when CSDI is adopted, the relative displacement is reduced by 42.05%.

Table 4. Seismic response comparison of superstructure.

Node
Number

Seismic Structure Isolation Structure CSDI Structure

Relative
Displacement (mm)

Relative
Displacement (mm) Isolation Rate Relative

Displacement (mm) Isolation Rate

1 63.13 51.44 −18.52% 48.63 −22.97%
2 67.25 55.56 −17.38% 50.36 −25.12%
3 73.16 60.53 −17.26% 55.21 −24.54%
4 83.94 68.09 −18.88% 60.33 −28.13%
5 99.65 77.78 −21.95% 68.33 −31.43%
6 121.41 91.11 −24.96% 70.36 −42.05%

It can be seen from Figure 15 that the hysteresis curve of the 1# pier using FPB is close
to that of a parallelogram with a large area of hysteresis loop, which effectively exerts its
isolation energy dissipation performance. For the hysteresis curve of the 2# pier using
dampers, it is found that the hysteresis loop area is also full. This indicates that the CSDI
scheme can effectively exert the isolation performance of FPB and the characteristics of the
dampers.
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4. Conclusions

Taking a double-deck steel truss continuous girder bridge as the research object, the
nonlinear time history analysis method is used to analyze the seismic performance, seismic
dissipation, and isolation performance of the bridge structure. The parameters of the FPBs
and viscous dampers are analyzed. We can draw the following conclusions:

(1) When isolation is not carried out, the seismic response of the longitudinal bridge
direction is mainly borne by the 1# pier (fixed pier). The superstructure of the bridge is a
double-deck steel truss structure, and the continuous beam is not conducive to the safety
of the bridge structure.

(2) When FPBs are used in the seismic isolation design of the whole bridge and R and
µ are optimized, the results show that, with the increase in R, the seismic response of the
pier bottom decreases, but the displacement of the main beam increases; with an increase of
µ, the seismic response of the pier bottom increases, but the displacement of the main beam



Appl. Sci. 2022, 12, 2567 13 of 14

decreases. The weight of the superstructure is relatively large, while the layout requires
that the R of FPBs be as close as possible, so R can be used at 7–10 m, and µ is taken as 0.03,
which can be used as the FPB parameters of the bridge.

(3) In the design of CSDI, FPB is used for the 1# pier and ordinary bearings and viscous
dampers are used for other piers. The results show that with the increase of C, the seismic
response of the pier bottom increases, but the displacement of the main beam decreases;
with an increase in α, the seismic response of pier bottom decreases, but the displacement
of main beam increases. When C is 4000–6000 and α is 0.3, the effect of CSDI can be brought
into play.

(4) It is found that the time history curves of the shear force and the bending moment
at the bottom of the 1# pier are significantly reduced when FPBs are used for isolation
research. When the CSDI design is adopted, the hysteresis loop of the FPBs and dampers
is regular and the area is full, which can give full play to the effect of the CSDI device.
From the point of view of bearing additional stress, the effect of CSDI is better, which can
effectively control the displacement of the bridge superstructure and reduce the relative
displacement between piers and beams.
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