Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (254)

Search Parameters:
Keywords = local obstacle avoidance path planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1323 KB  
Article
A Hybrid Ant Colony Optimization and Dynamic Window Method for Real-Time Navigation of USVs
by Yuquan Xue, Liming Wang, Bi He, Shuo Yang, Yonghui Zhao, Xing Xu, Jiaxin Hou and Longmei Li
Sensors 2025, 25(19), 6181; https://doi.org/10.3390/s25196181 - 6 Oct 2025
Abstract
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness [...] Read more.
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness in cluttered waters, while the dynamic window approach (DWA) without global guidance can become trapped in local obstacle configurations. This paper presents a sensor-oriented hybrid method that couples an improved ACO for global route planning with an enhanced DWA for local, real-time obstacle avoidance. In the global stage, the ACO state–transition rule integrates path length, obstacle clearance, and trajectory smoothness heuristics, while a cosine-annealed schedule adaptively balances exploration and exploitation. Pheromone updating combines local and global mechanisms under bounded limits, with a stagnation detector to restore diversity. In the local stage, the DWA cost function is redesigned under USV kinematics to integrate velocity adaptability, trajectory smoothness, and goal-deviation, using obstacle data that would typically originate from onboard sensors. Simulation studies, where obstacle maps emulate sensor-detected environments, show that the proposed method achieves shorter paths, faster convergence, smoother trajectories, larger safety margins, and higher success rates against dynamic obstacles compared with standalone ACO or DWA. These results demonstrate the method’s potential for sensor-based, real-time USV navigation and collision avoidance in complex maritime scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 74841 KB  
Article
Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors
by Seola Yang, Daeik Jang, Jonghyeok Kim and Haemin Jeon
Sensors 2025, 25(19), 6121; https://doi.org/10.3390/s25196121 - 3 Oct 2025
Abstract
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF [...] Read more.
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF motorized manipulator providing linear and rotational motions, with a stereo vision sensor mounted on the end effector, was deployed. In combination with a manual rotation plate, this configuration enhances accessibility and expands the field of view for crack monitoring. Another stereo vision sensor, mounted at the front of the robot, was used to acquire point cloud data of the surrounding environment, enabling tasks such as SLAM (simultaneous localization and mapping), path planning and following, and obstacle avoidance. Cracks are detected and segmented using the deep learning algorithms YOLO (You Only Look Once) v6-s and SFNet (Semantic Flow Network), respectively. To enhance the performance of crack segmentation, synthetic image generation and preprocessing techniques, including cropping and scaling, were applied. The dimensions of cracks are calculated using point clouds filtered with the median absolute deviation method. To validate the performance of the proposed crack-monitoring and mapping method with the robot system, indoor experimental tests were performed. The experimental results confirmed that, in cases of divided imaging, the crack propagation direction was predicted, enabling robotic manipulation and division-point calculation. Subsequently, total crack length and width were calculated by combining reconstructed 3D point clouds from multiple frames, with a maximum relative error of 1%. Full article
Show Figures

Figure 1

23 pages, 7554 KB  
Article
A*-TEB: An Improved A* Algorithm Based on the TEB Strategy for Multi-Robot Motion Planning
by Xu Li, Tuanjie Li, Yan Zhang, Yulin Zhang, Ziang Li, Lixiang Ban and Kecheng Sun
Sensors 2025, 25(19), 6117; https://doi.org/10.3390/s25196117 - 3 Oct 2025
Abstract
Multi-robot motion planning (MRMP) requires each robot to possess strong local planning capabilities while maintaining global consistency. However, existing research often fails to address both global and local planning simultaneously, resulting in conflicts in real-time path execution. The A* algorithm is widely used [...] Read more.
Multi-robot motion planning (MRMP) requires each robot to possess strong local planning capabilities while maintaining global consistency. However, existing research often fails to address both global and local planning simultaneously, resulting in conflicts in real-time path execution. The A* algorithm is widely used for global path planning due to its adaptability and search efficiency, while the Timed Elastic Band (TEB) algorithm excels in local trajectory optimization and real-time dynamic obstacle avoidance. This paper presents a novel motion planning framework integrating an improved A* algorithm with an enhanced TEB strategy to address both levels of planning collaboratively. The proposed improvements include the introduction of steering costs and dynamic weights into the A* algorithm to enhance path smoothness and efficiency, and a hierarchical obstacle treatment in TEB for improved local avoidance. Simulation and real-world experiments conducted with ROS confirmed the feasibility and effectiveness of the method. Compared to the traditional A* algorithm, the proposed framework reduces the average path length by 5.2%, shortens completion time by 11.5%, and decreases inflection points by 66.7%, demonstrating superior performance for multi-robot systems in dynamic environments. Full article
Show Figures

Figure 1

22 pages, 5743 KB  
Article
Lightweight Road Adaptive Path Tracking Based on Soft Actor–Critic RL Method
by Yubo Weng and Jinhong Sun
Sensors 2025, 25(19), 6079; https://doi.org/10.3390/s25196079 - 2 Oct 2025
Abstract
We propose a speed-adaptive robot accurate path-tracking framework based on the soft actor–critic (SAC) and Stanley methods (STANLY_ASAC). First, the Lidar–Inertial Odometry Simultaneous Localization and Mapping (LIO-SLAM) method is used to map the environment and the LIO-localization framework is adopted to achieve real-time [...] Read more.
We propose a speed-adaptive robot accurate path-tracking framework based on the soft actor–critic (SAC) and Stanley methods (STANLY_ASAC). First, the Lidar–Inertial Odometry Simultaneous Localization and Mapping (LIO-SLAM) method is used to map the environment and the LIO-localization framework is adopted to achieve real-time positioning and output the robot pose at 100 Hz. Next, the Rapidly exploring Random Tree (RRT) algorithm is employed for global path planning. On this basis, we integrate an improved A* algorithm for local obstacle avoidance and apply a gradient descent smoothing algorithm to generate a reference path that satisfies the robot’s kinematic constraints. Secondly, a network classification model based on U-Net is used to classify common road surfaces and generate classification results that significantly compensate for tracking accuracy errors caused by incorrect road surface coefficients. Next, we leverage the powerful learning capability of adaptive SAC (ASAC) to adaptively adjust the vehicle’s acceleration and lateral deviation gain according to the road and vehicle states. Vehicle acceleration is used to generate the real-time tracking speed, and the lateral deviation gain is used to calculate the front wheel angle via the Stanley tracking algorithm. Finally, we deploy the algorithm on a mobile robot and test its path-tracking performance in different scenarios. The results show that the proposed path-tracking algorithm can accurately follow the generated path. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

43 pages, 16029 KB  
Article
Research on Trajectory Planning for a Limited Number of Logistics Drones (≤3) Based on Double-Layer Fusion GWOP
by Jian Deng, Honghai Zhang, Yuetan Zhang and Yaru Sun
Drones 2025, 9(10), 671; https://doi.org/10.3390/drones9100671 - 24 Sep 2025
Viewed by 22
Abstract
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. [...] Read more.
Trajectory planning for logistics UAVs in complex environments faces a key challenge: balancing global search breadth with fine constraint accuracy. Traditional algorithms struggle to simultaneously manage large-scale exploration and complex constraints, and lack sufficient modeling capabilities for multi-UAV systems, limiting cluster logistics efficiency. To address these issues, we propose a GWOP algorithm based on dual-layer fusion of GWO and GRPO and incorporate a graph attention network (GAT). First, CEC2017 benchmark functions evaluate GWOP convergence accuracy and balanced exploration in multi-peak, high-dimensional environments. A hierarchical collaborative architecture, “GWO global coarse-grained search + GRPO local fine-tuning”, is used to overcome the limitations of single-algorithm frameworks. The GAT model constructs a dynamic “environment–UAV–task” association network, enabling environmental feature quantification and multi-constraint adaptation. A multi-factor objective function and constraints are integrated with multi-task cascading decoupling optimization to form a closed-loop collaborative optimization framework. Experimental results show that in single UAV scenarios, GWOP reduces flight cost (FV) by over 15.85% on average. In multi-UAV collaborative scenarios, average path length (APL), optimal path length (OPL), and FV are reduced by 4.08%, 14.08%, and 24.73%, respectively. In conclusion, the proposed method outperforms traditional approaches in path length, obstacle avoidance, and trajectory smoothness, offering a more efficient planning solution for smart logistics. Full article
Show Figures

Figure 1

29 pages, 21882 KB  
Article
UAV Path Planning in Threat Environment: A*-APF Algorithm for Spatio-Temporal Grid Optimization
by Longhao Liu, Le Ru, Wenfei Wang, Hailong Xi, Rui Zhu, Shiliang Li and Zhenghao Zhang
Drones 2025, 9(9), 661; https://doi.org/10.3390/drones9090661 - 22 Sep 2025
Viewed by 247
Abstract
To address low threat avoidance efficiency and poor global path adaptability in UAV path planning under threatening environments, this paper proposes a hybrid A*-Artificial Potential Field (APF) path planning method based on spatio-temporal grid optimization. First, a new global fine-grained spatio-temporal grid system [...] Read more.
To address low threat avoidance efficiency and poor global path adaptability in UAV path planning under threatening environments, this paper proposes a hybrid A*-Artificial Potential Field (APF) path planning method based on spatio-temporal grid optimization. First, a new global fine-grained spatio-temporal grid system is developed by integrating advantages of GeoSOT binary encoding and BeiDou grid location code subdivision rules, enabling unified modeling of complex spatio-temporal environments. Ground threat and maze scenarios are constructed for verification. Second, traditional A* and APF algorithms are improved: the A* algorithm is enhanced with threat costs, dynamic neighborhood search, and local backtrack mechanisms to address low efficiency and incompatibility with threat avoidance; the APF algorithm is optimized with a dual gravitational field collaboration mechanism and distance-parameter-based repulsive field model to overcome local minima and unreachable goals. Finally, a sliding window-driven path association model achieves seamless collaboration between global and local planning. Experimental results show the proposed method outperforms traditional algorithms in comprehensive performance, with the improved A* algorithm excelling in path length, computation time, threat value, and search nodes, and the improved APF algorithm achieving complete safe obstacle avoidance in dynamic environments. The collaborative mechanism effectively handles complex scenarios. Full article
Show Figures

Figure 1

19 pages, 6310 KB  
Article
Enhanced A*–Fuzzy DWA Hybrid Algorithm for AGV Path Planning in Confined Spaces
by Yang Xu and Wei Liu
World Electr. Veh. J. 2025, 16(9), 538; https://doi.org/10.3390/wevj16090538 - 22 Sep 2025
Viewed by 300
Abstract
Addressing the challenges of inefficient prolonged trajectory resolution and unreliable dynamic obstacle avoidance for intelligent vehicles in complex confined environments, this study proposes an innovative hybrid path planning method. Its core novelty is the deep integration of an enhanced A* algorithm for smooth [...] Read more.
Addressing the challenges of inefficient prolonged trajectory resolution and unreliable dynamic obstacle avoidance for intelligent vehicles in complex confined environments, this study proposes an innovative hybrid path planning method. Its core novelty is the deep integration of an enhanced A* algorithm for smooth global planning with a fuzzy logic-controlled Dynamic Window Approach (DWA). The enhanced A* generates efficient and smooth global paths, while fuzzy control significantly improves DWA’s robustness in dynamic, uncertain scenarios. This hybrid strategy achieves efficient synergy between global optimality and local reactive obstacle avoidance. Simulations demonstrate its superiority over conventional A* or DWA in path length, planning efficiency, and obstacle avoidance success rate. Experimental validation on a physical platform in simulated complex scenarios shows an average trajectory deviation ≤ 7.14%. The work provides an effective theoretical and methodological framework for navigation in constrained spaces, offering significant value for practical applications like logistics and automated parking. Full article
(This article belongs to the Section Automated and Connected Vehicles)
Show Figures

Figure 1

21 pages, 2422 KB  
Article
Adaptive A*–Q-Learning–DWA Fusion with Dynamic Heuristic Adjustment for Safe Path Planning in Spraying Robots
by Chang Su, Liangliang Zhao and Dongbing Xiang
Appl. Sci. 2025, 15(17), 9340; https://doi.org/10.3390/app15179340 - 26 Aug 2025
Viewed by 854
Abstract
In underground coal mines, narrow and irregular tunnels, dust, and gas hazards pose significant challenges to robotic path planning, particularly for shotcrete operations. The traditional A* algorithm has the limitations of limited safety, excessive node expansion, and insufficient dynamic obstacle avoidance capabilities. To [...] Read more.
In underground coal mines, narrow and irregular tunnels, dust, and gas hazards pose significant challenges to robotic path planning, particularly for shotcrete operations. The traditional A* algorithm has the limitations of limited safety, excessive node expansion, and insufficient dynamic obstacle avoidance capabilities. To address these, a hybrid algorithm integrating adaptive A*, Q-learning, and the Dynamic Window Approach (DWA) is proposed. The A* component is enhanced through improvements to its evaluation function and node selection strategy, incorporating dynamically adjustable neighborhood sampling to improve search efficiency. Q-learning re-plans unsafe trajectories in complex environments using a redesigned reward mechanism and an adaptive exploration strategy. The DWA module facilitates real-time obstacle avoidance in dynamic scenarios by optimizing both the velocity space and the trajectory evaluation process. The simulation results indicate that the proposed algorithm reduces the number of path nodes by approximately 30%, reduces the computational time by approximately 20% on 200 × 200 grids, and increases the path length by only 10%. These results demonstrate that the proposed approach effectively balances global path optimality with local adaptability, significantly improving the safety and real-time performance in complex underground environments. Full article
Show Figures

Figure 1

17 pages, 1877 KB  
Article
Obstacle Avoidance Tracking Control of Underactuated Surface Vehicles Based on Improved MPC
by Chunyu Song, Qi Qiao and Jianghua Sui
J. Mar. Sci. Eng. 2025, 13(9), 1603; https://doi.org/10.3390/jmse13091603 - 22 Aug 2025
Viewed by 374
Abstract
This paper addresses the issue of the poor collision avoidance effect of underactuated surface vehicles (USVs) during local path tracking. A virtual ship group control method is suggested by using Freiner coordinates and a model predictive control (MPC) algorithm. We track the planned [...] Read more.
This paper addresses the issue of the poor collision avoidance effect of underactuated surface vehicles (USVs) during local path tracking. A virtual ship group control method is suggested by using Freiner coordinates and a model predictive control (MPC) algorithm. We track the planned path using the MPC algorithm according to the known vessel state and build a hierarchical weighted cost function to handle the state of the virtual vessel, to ensure that the vessel avoids obstacles while tracking the path. In addition, the control system incorporates an Extended Kalman Filter (EKF) algorithm to minimize the state estimation error by continuously updating the ship state and providing more accurate state estimation for the system in a timely manner. In order to validate the anti-interference and robustness of the control system, the simulation experiment is carried out with the “Yukun” as the research object by adding the interference of wind and wave of level 6. The outcome shows that the algorithm suggested in this paper can accurately perform the trajectory-tracking task and make collision avoidance decisions under six levels of external interference. Compared with the original MPC algorithm, the improved MPC algorithm reduces the maximum rudder angle output value by 58%, the integral absolute error by 46%, and the root mean square error value by 46%. The control method provides a new technical choice for trajectory tracking and collision avoidance of USVs in complex marine environments, with a reliable theoretical basis and practical application value. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

33 pages, 10397 KB  
Article
Multi-AUV Dynamic Cooperative Path Planning with Hybrid Particle Swarm and Dynamic Window Algorithm in Three-Dimensional Terrain and Ocean Current Environment
by Bing Sun and Ziang Lv
Biomimetics 2025, 10(8), 536; https://doi.org/10.3390/biomimetics10080536 - 15 Aug 2025
Viewed by 697
Abstract
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization [...] Read more.
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization algorithm is prone to falling into local optimization in high-dimensional and complex marine environments. It is difficult to meet multiple constraint conditions, the particle distribution is uneven, and the adaptability to dynamic environments is poor. In response to these problems, a hybrid initialization method based on Chebyshev chaotic mapping, pre-iterative elimination, and boundary particle injection (CPB) is proposed, and the particle swarm optimization algorithm is improved by combining dynamic parameter adjustment and a hybrid perturbation mechanism. On this basis, the Dynamic Window Method (DWA) is introduced as the local path optimization module to achieve real-time avoidance of dynamic obstacles and rolling path correction, thereby constructing a globally and locally coupled hybrid path-planning framework. Finally, cubic spline interpolation is used to smooth the planned path. Considering factors such as path length, smoothness, deflection Angle, and ocean current kinetic energy loss, the dynamic penalty function is adopted to optimize the multi-AUV cooperative collision avoidance and terrain constraints. The simulation results show that the proposed algorithm can effectively plan the dynamic safe path planning of multiple AUVs. By comparing it with other algorithms, the efficiency and security of the proposed algorithm are verified, meeting the navigation requirements in the current environment. Experiments show that the IMOPSO–DWA hybrid algorithm reduces the path length by 15.5%, the threat penalty by 8.3%, and the total fitness by 3.2% compared with the traditional PSO algorithm. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

18 pages, 4827 KB  
Article
Path Planning for Mobile Robots Based on a Hybrid-Improved JPS and DWA Algorithm
by Rui Guo, Xuewei Ren and Changchun Bao
Electronics 2025, 14(16), 3221; https://doi.org/10.3390/electronics14163221 - 13 Aug 2025
Viewed by 549
Abstract
To improve path planning performance for mobile robots in complex environments, this study proposes a hybrid method combining an improved jump point search (JPS) algorithm with the dynamic window approach (DWA). In global planning, a quadrant pruning strategy guided by the target direction [...] Read more.
To improve path planning performance for mobile robots in complex environments, this study proposes a hybrid method combining an improved jump point search (JPS) algorithm with the dynamic window approach (DWA). In global planning, a quadrant pruning strategy guided by the target direction and a sine-enhanced heuristic function reduces the search space and accelerates planning. Natural jump points are retained for path continuity, and the path is smoothed using cubic B-spline curves. In local planning, DWA is enhanced by incorporating a target orientation factor, a safety distance penalty, and a normalization mechanism into the cost function. An adaptive weighting strategy dynamically balances goal-directed motion and obstacle avoidance. Simulation experiments in static and complex environments with unknown and dynamic obstacles demonstrate the method’s effectiveness. Compared to the standard approach, the improved JPS reduces search time by 36.7% and node expansions by 60.9%, with similar path lengths. When integrated with DWA, the robot adapts effectively to changing obstacles, ensuring safe and efficient navigation. The proposed method significantly enhances the real-time performance and safety of path planning in dynamic and uncertain environments. Full article
Show Figures

Figure 1

26 pages, 6084 KB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Viewed by 481
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 1737 KB  
Article
Trajectory Optimization for Autonomous Highway Driving Using Quintic Splines
by Wael A. Farag and Morsi M. Mahmoud
World Electr. Veh. J. 2025, 16(8), 434; https://doi.org/10.3390/wevj16080434 - 3 Aug 2025
Viewed by 1238
Abstract
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using [...] Read more.
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using quintic spline functions and a dynamic speed profile. Leveraging real-time data from the vehicle’s sensor fusion module, the LSPP algorithm accurately interprets the positions of surrounding vehicles and obstacles, creating a safe, dynamically feasible path that is relayed to the Model Predictive Control (MPC) track-following module for precise execution. The theoretical distinction of LSPP lies in its modular integration of: (1) a finite state machine (FSM)-based decision-making layer that selects maneuver-specific goal states (e.g., keep lane, change lane left/right); (2) quintic spline optimization to generate smooth, jerk-minimized, and kinematically consistent trajectories; (3) a multi-objective cost evaluation framework that ranks competing paths according to safety, comfort, and efficiency; and (4) a closed-loop MPC controller to ensure real-time trajectory execution with robustness. Extensive simulations conducted in diverse highway scenarios and traffic conditions demonstrate LSPP’s effectiveness in delivering smooth, safe, and computationally efficient trajectories. Results show consistent improvements in lane-keeping accuracy, collision avoidance, enhanced materials wear performance, and planning responsiveness compared to traditional path-planning methods. These findings confirm LSPP’s potential as a practical and high-performance solution for autonomous highway driving. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

32 pages, 6588 KB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 777
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

26 pages, 4289 KB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 653
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

Back to TopTop