Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = liposoluble compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2623 KiB  
Article
Phytyl Phenolipids: Structurally Modified Antioxidants with Superior Lipid Membrane Interaction
by Vânia Costa, Marlene Costa, Rute Rebelo, Francisca Arques, Mariana Ferreira, Paula Gameiro, Tomás Barros, Dulce Geraldo, Luís S. Monteiro and Fátima Paiva-Martins
Molecules 2025, 30(10), 2193; https://doi.org/10.3390/molecules30102193 - 17 May 2025
Viewed by 473
Abstract
A set of procedures was developed for the simple synthesis of phytyl phenolipids, which resulted in high yields (70–95%) of phytyl esters of caffeic, protocatechuic, homoprotocatechuic, and dihydrocaffeic acids. Initial characterization revealed that these new compounds exhibited similar radical scavenging activity and liposolubility [...] Read more.
A set of procedures was developed for the simple synthesis of phytyl phenolipids, which resulted in high yields (70–95%) of phytyl esters of caffeic, protocatechuic, homoprotocatechuic, and dihydrocaffeic acids. Initial characterization revealed that these new compounds exhibited similar radical scavenging activity and liposolubility to α-tocopherol, a key antioxidant present in membranes. Cyclic voltammetry analysis indicated that the phytyl derivatives had lower anodic peak potentials compared to the original phenolic acids, with electron transfer following an adsorption-controlled mechanism. In phosphatidylcholine large unilamellar vesicles (LUVs), phytyl esters demonstrated remarkable efficiency in preventing liposome autoxidation when compared to α-tocopherol. Despite their strong radical scavenging capacity and membrane penetration ability, the antioxidant effectiveness of the phytyl esters in liposomes was influenced by the structure of their polyphenolic moiety. These new compounds are considered promising candidates for future pharmacological applications against oxidative stress in lipoproteins and cells, warranting further evaluation of their antioxidant and anti-inflammatory effects in cellular models and in vivo. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

26 pages, 8018 KiB  
Article
Synthesis and In Silico Evaluation of GABA, Pregabalin and Baclofen N-Heterocyclic Analogues as GABAB Receptor Agonists
by Zuleyma Martínez-Campos, Luis Eduardo Hernandez-Dominguez, Fatima Romero-Rivera, Diana López-López, María Vicky Corona-González, Susana T. López-Cortina, Francisco José Palacios-Can, Rodrigo Said Razo-Hernández and Mario Fernández-Zertuche
Organics 2025, 6(2), 13; https://doi.org/10.3390/org6020013 - 24 Mar 2025
Viewed by 1398
Abstract
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the [...] Read more.
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the activity of the GABAB receptor, which could be associated with the etiology of some central nervous system disorders. The GABA analogs available on the market are Vigabatrin, Gabapentin as well as Pregabalin and Baclofen. In this work, we report on the synthesis of GABA analogs, taking the scaffold of GABA, Pregabalin, and Baclofen as a starting point. The analogs include structural features that could favor the affinity of the molecules for the GABAB receptor, such as heterocyclic rings in the γ-position and alkyl or p-Cl-phenyl substituents (in analogy to Pregabalin and Baclofen, respectively). These analogs were synthesized by a sequence of reactions involving an N-alkylation, a 1,4-conjugated addition of dialkyl and diarylcuprates and a basic hydrolysis. Furthermore, a computational molecular docking over the GABAB receptor was performed to evaluate the interaction of each compound in the Baclofen binding site. With this information, we evaluated our compounds as GABAB agonists through a QSAR analysis. Finally, by means of molecular similarity analysis, and in silico ADME prediction, we support our three best compounds (8ab, 8d) as potential GABAB receptor agonists. Full article
Show Figures

Graphical abstract

15 pages, 19434 KiB  
Article
Identification of a Novel NPC1L1 Inhibitor from Danshen and Its Role in Nonalcoholic Fatty Liver Disease
by Donghai Xia, Xuan Jiang, Xiaomin Xie, Han Zhou, Dongping Yu, Gaowa Jin, Xianlong Ye, Shenglong Zhu, Zhimou Guo and Xinmiao Liang
Int. J. Mol. Sci. 2025, 26(6), 2793; https://doi.org/10.3390/ijms26062793 - 20 Mar 2025
Viewed by 708
Abstract
Danshen, a well-known traditional Chinese medicine (TCM), has gained increasing attention for its protective effects on nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms underlying these effects remain to be elucidated. Niemann-Pick C1-like 1 (NPC1L1), a key transporter mediating intestinal cholesterol absorption, [...] Read more.
Danshen, a well-known traditional Chinese medicine (TCM), has gained increasing attention for its protective effects on nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms underlying these effects remain to be elucidated. Niemann-Pick C1-like 1 (NPC1L1), a key transporter mediating intestinal cholesterol absorption, has emerged as a critical target for NAFLD treatment. This study aimed to screen for NPC1L1 inhibitors from Danshen and investigate their therapeutic effects on NAFLD. We established a high-throughput screening platform using stable Caco2 cell lines expressing human NPC1L1 (hL1-Caco2) and discovered that tanshinones (Tans), the liposoluble components of Danshen, inhibited NPC1L1-mediated cholesterol absorption in hL1-Caco2 cells. Additionally, Tans treatment reduced hepatic steatosis in high-fat diet (HFD)-fed mice. To identify the active compounds in Tans, activity-oriented separation was performed by integrating the high-throughput screening platform and two-dimensional chromatographic techniques. Ultimately, cryptotanshinone (CTS) was identified as a novel NPC1L1 inhibitor and significantly decreased hepatic steatosis in HFD-fed mice. Molecular docking and dynamics simulation showed that CTS stably bound with NPC1L1, where TRP383 acted as the key amino acid. Taken together, this study demonstrates, for the first time, that CTS, a liposoluble compound from Danshen, is a novel NPC1L1 inhibitor. Our findings suggest that the inhibitory effect of CTS against NPC1L1-mediated intestinal cholesterol absorption may be a potential mechanism, contributing to its alleviation of NAFLD in mice. Full article
(This article belongs to the Special Issue Chronic Liver Disease: From Pathophysiology to Treatment)
Show Figures

Graphical abstract

21 pages, 819 KiB  
Article
Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility
by Iulia Varzaru, Alexandra Gabriela Oancea, Petru Alexandru Vlaicu, Mihaela Saracila and Arabela Elena Untea
Antioxidants 2023, 12(12), 2125; https://doi.org/10.3390/antiox12122125 - 16 Dec 2023
Cited by 13 | Viewed by 3537
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of [...] Read more.
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•−), while raspberry leaves registered the highest inhibition of hydroxyl radicals (OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health. Full article
Show Figures

Figure 1

16 pages, 2707 KiB  
Article
Enzymatic Modification of Pomace Olive Oil with Natural Antioxidants: Effect on Oxidative Stability
by Renia Fotiadou, Dimitrios Lefas, Despina Vougiouklaki, Aliki Tsakni, Dimitra Houhoula and Haralambos Stamatis
Biomolecules 2023, 13(7), 1034; https://doi.org/10.3390/biom13071034 - 23 Jun 2023
Cited by 8 | Viewed by 2303
Abstract
Enzymatic lipophilization has been proposed as a cost-effective strategy to produce new liposoluble antioxidant compounds. In this study, modified oils rich in structured phenolipids were prepared via one-pot enzymatic acylation of hydroxytyrosol (HTYR), vanillyl alcohol (VA) and homovanillyl alcohol (HVA) with pomace olive [...] Read more.
Enzymatic lipophilization has been proposed as a cost-effective strategy to produce new liposoluble antioxidant compounds. In this study, modified oils rich in structured phenolipids were prepared via one-pot enzymatic acylation of hydroxytyrosol (HTYR), vanillyl alcohol (VA) and homovanillyl alcohol (HVA) with pomace olive oil (POO) in solvent-free conditions using immobilized lipase on biogenic nanoparticles. The effect of temperature (30–70 °C) and enzyme concentration (0.1–1%, w/w) on the efficiency of the bioprocess as well as the reusability of the nanobiocatalyst were thoroughly investigated. The modified oils exhibited increased antioxidant activity compared to the control oil according to DPPH and CUPRAC assays (p < 0.05). The oxidative stability of pomace olive oil was also significantly enhanced after modification, as depicted by the K232 values and TBARS contents under accelerated oxidation at 60 °C (p < 0.05). Moreover, a fortified mayonnaise containing modified oil with HTYR was prepared that was noticeably stable compared to the control mayonnaise at 28 °C for 5 months (p < 0.05). Enzymatically modified oils have great potential for application in the nutraceutical and food industry, encouraging the exploitation of immobilized lipases as effective and green catalytic tools. Full article
(This article belongs to the Topic Antioxidant Activity of Natural Products)
Show Figures

Figure 1

16 pages, 5480 KiB  
Article
Design, Synthesis, and Anticancer Activity of Novel 3,6-Diunsaturated 2,5-Diketopiperazines
by Xiaolin Li, Tianrong Xun, Huayan Xu, Xiaoyan Pang, Bin Yang, Junfeng Wang, Xuefeng Zhou, Xiuping Lin, Suiyi Tan, Yonghong Liu and Shengrong Liao
Mar. Drugs 2023, 21(6), 325; https://doi.org/10.3390/md21060325 - 26 May 2023
Cited by 4 | Viewed by 2535
Abstract
Based on the marine natural products piperafizine B, XR334, and our previously reported compound 4m, fourteen novel 3,6-diunsaturated 2,5-diketopiperazine (2,5-DKP) derivatives (1, 2, 46, 816), together with two known ones (3 and [...] Read more.
Based on the marine natural products piperafizine B, XR334, and our previously reported compound 4m, fourteen novel 3,6-diunsaturated 2,5-diketopiperazine (2,5-DKP) derivatives (1, 2, 46, 816), together with two known ones (3 and 7), were designed and synthesized as anticancer agents against the A549 and Hela cell lines. The MTT assay results showed that the derivatives 6, 812, and 14 had moderate to good anticancer capacities, with IC50 values ranging from 0.7 to 8.9 μM. Among them, compound 11, with naphthalen-1-ylmethylene and 2-methoxybenzylidene functions at the 3 and 6 positions of 2,5-DKP ring, respectively, displayed good inhibitory activities toward both A549 (IC50 = 1.2 μM) and Hela (IC50 = 0.7 μM) cancer cells. It could also induce apoptosis and obviously block cell cycle progression in the G2/M phases in both cells at 1.0 μM. The electron-withdrawing functions might not be favorable for the derivatives with high anticancer activities. Additionally, compared to piperafizine B and XR334, these semi-N-alkylated derivatives have high liposolubilities (>1.0 mg mL−1). Compound 11 can be further developed, aiming at the discovery of a novel anticancer candidate. Full article
Show Figures

Graphical abstract

19 pages, 5266 KiB  
Article
Design of Innovative Biocompatible Cellulose Nanostructures for the Delivery and Sustained Release of Curcumin
by Francisca Casanova, Carla F. Pereira, Alessandra B. Ribeiro, Eduardo M. Costa, Ricardo Freixo, Pedro M. Castro, João C. Fernandes, Manuela Pintado and Óscar L. Ramos
Pharmaceutics 2023, 15(3), 981; https://doi.org/10.3390/pharmaceutics15030981 - 18 Mar 2023
Cited by 9 | Viewed by 2952
Abstract
Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) [...] Read more.
Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems. Full article
(This article belongs to the Special Issue Frontiers in the Application of Nanomaterials in Drug Delivery)
Show Figures

Graphical abstract

21 pages, 1840 KiB  
Review
Effects of Boron-Containing Compounds on Liposoluble Hormone Functions
by Elizabeth Estevez-Fregoso, Ahmet Kilic, Diana Rodríguez-Vera, Luis E. Nicanor-Juárez, C. Elena M. Romero-Rizo, Eunice D. Farfán-García and Marvin A. Soriano-Ursúa
Inorganics 2023, 11(2), 84; https://doi.org/10.3390/inorganics11020084 - 17 Feb 2023
Cited by 18 | Viewed by 15815
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. [...] Read more.
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field. Full article
Show Figures

Figure 1

51 pages, 3550 KiB  
Review
Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives
by Chuan-He Tang, Huan-Le Chen and Jin-Ru Dong
Appl. Sci. 2023, 13(3), 1726; https://doi.org/10.3390/app13031726 - 29 Jan 2023
Cited by 65 | Viewed by 9266
Abstract
Although solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been successfully used as drug delivery systems for about 30 years, the usage of these nanoparticles as food-grade nanovehicles for nutraceuticals or bioactive compounds has been, relatively speaking, scarcely investigated. With fast-increasing [...] Read more.
Although solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been successfully used as drug delivery systems for about 30 years, the usage of these nanoparticles as food-grade nanovehicles for nutraceuticals or bioactive compounds has been, relatively speaking, scarcely investigated. With fast-increasing interest in the incorporation of a wide range of bioactives in food formulations, as well as health awareness of consumers, there has been a renewed urge for the development of food-compatible SLNs and/or NLCs as nanovehicles for improving water dispersibility, stability, bioavailability, and bioactivities of many lipophilic nutraceuticals or poorly soluble bioactives. In this review, the development of food-grade SLNs and NLCs, as well as their utilization as nanosized delivery systems for lipophilic or hydrophobic nutraceuticals, was comprehensively reviewed. First, the structural composition and preparation methods of food-grade SLNs and NLCs were simply summarized. Next, some key issues about the usage of such nanoparticles as oral nanovehicles, e.g., incorporation and release of bioactives, oxidative stability, lipid digestion and absorption, and intestinal transport, were critically discussed. Then, recent advances in the utilization of SLNs and NLCs as nanovehicles for encapsulation and delivery of different liposoluble or poorly soluble nutraceuticals or bioactives were comprehensively reviewed. The performance of such nanoparticles as nanovehicles for improving stability, bioavailability, and bioactivities of curcuminoids (and curcumin in particular) was also highlighted. Lastly, some strategies to improve the oral bioavailability and delivery of loaded nutraceuticals in such nanoparticles were presented. The review will be relevant, providing state-of-the-art knowledge about the development of food-grade lipid-based nanovehicles for improving the stability and bioavailability of many nutraceuticals. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Functional Foods)
Show Figures

Graphical abstract

13 pages, 2343 KiB  
Article
Characterization of Hypolipidemic Phenol Analogues from Fermented Tea by Eurotium cristatum
by Fuhang Song, Wei Dai, Honghua Li, Xinwan Zhang, Xiuli Xu, Linlin Ma and Long Wang
Foods 2023, 12(1), 49; https://doi.org/10.3390/foods12010049 - 22 Dec 2022
Cited by 2 | Viewed by 2444
Abstract
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the [...] Read more.
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the molecular level are still elusive and the key compounds responsible for the health benefits are unidentified. Previous studies have mainly focused on functional studies of the water extract. However, FBT is typically cooked with butter or milk. Therefore, we hypothesized that some lipophilic components in FBT, which can be absorbed through the co-consumption of butter or milk, may play an important role in the health benefits. The present study aimed to investigate whether the liposoluble extract of FBT alleviates symptoms related to metabolic diseases and to identify the active compounds involved. By comparing the high-performance liquid chromatography (HPLC) profiles of water, milk and hexane extract, some low polarity peaks were observed in the milk and hexane extracts. Furthermore, the hexane extract treatment alleviated body weight gain, serum total cholesterol and triglyceride levels, and inhibited the accumulation of hepatic fat granules in a high-fat diet (HFD)-induced C57BL/6N mouse model. In order to identify the key functional lipophilic compounds in FBT, the hexane extract of FBT was subjected to chemical characterization. Four phenol analogs were characterized, namely, isodihydroauroglaucin (1), dihydroauroglaucin (2), tetrahydroauroglaucin (3), and flavoglaucin (4). Compounds 1 and 4 reduced the levels of total cholesterol and triglyceride in vivo. Both compounds also inhibited the high-fat diet-induced body weight gain and accumulation of fat granules in the liver of C57BL/6N mice. Isodihydroauroglaucin and flavoglaucin have therefore been identified as bioactive ingredients that contribute to the health benefits of FBT. Full article
Show Figures

Figure 1

11 pages, 2704 KiB  
Article
Vapor–Liquid Equilibria of Quaternary Systems of Interest for the Supercritical Antisolvent Process
by Roberta Campardelli, Stefania Mottola and Iolanda De Marco
Processes 2022, 10(12), 2544; https://doi.org/10.3390/pr10122544 - 30 Nov 2022
Cited by 2 | Viewed by 1723
Abstract
In the Supercritical Antisolvent process (SAS), the thermodynamic behavior of complex multicomponent systems can influence the particles’ morphology. However, due to the limited thermodynamic data for multicomponent systems, the effect of solutes is often neglected, and the system is considered as pseudo-binary. It [...] Read more.
In the Supercritical Antisolvent process (SAS), the thermodynamic behavior of complex multicomponent systems can influence the particles’ morphology. However, due to the limited thermodynamic data for multicomponent systems, the effect of solutes is often neglected, and the system is considered as pseudo-binary. It has been demonstrated that the presence of a solute can significantly influence the thermodynamic behavior of the system. In particular, when the SAS process is adopted for the production of drug/polymer coprecipitated microparticles, the effect of both the drug and the polymer in the solvent/CO2 mixture should be considered. In this work, the effect of polyvinylpyrrolidone (PVP), used as the carrier, and of the liposoluble vitamins menadione (MEN) and α-tocopherol (TOC), as model drugs, was investigated as a deviation from the fundamental thermodynamic behavior of the DMSO/CO2 binary system. Vapor–liquid equilibria (VLE) were evaluated at 313 K, with a PVP concentration in the organic solution equal to 20 mg/mL. The effect of the presence of PVP, MEN, and TOC on DMSO/CO2 VLE at 313 K was studied; furthermore, the effect of PVP/MEN and PVP/TOC, at a polymer/drug ratio of 5/1 and 3/1, was determined. Moreover, SAS precipitation experiments were performed at the same polymer/drug ratios using a pressure of 90 bar. Thermodynamic studies revealed significant changes in phase behavior for DMSO/CO2/PVP/TOC and DMSO/CO2/PVP/MEN systems compared to the binary DMSO/CO2 system. From the analysis of the effect of the presence of a single compound on the binary system VLE, it was noted that PVP slightly affected the thermodynamic behavior of the system. In contrast, these effects were more evident for the DMSO/CO2/TOC and DMSO/CO2/MEN systems. SAS precipitation experiments produced PVP/MEN and PVP/TOC microparticles, and the obtained morphology was justified considering the quaternary systems VLE. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability)
Show Figures

Figure 1

25 pages, 986 KiB  
Review
Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms?
by Anna Zasowska-Nowak, Piotr Jan Nowak and Aleksandra Cialkowska-Rysz
Nutrients 2022, 14(15), 3183; https://doi.org/10.3390/nu14153183 - 3 Aug 2022
Cited by 3 | Viewed by 2942
Abstract
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through [...] Read more.
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through appropriate treatment of symptoms accompanying the disease. Palliative care patients with burdensome symptoms related to advanced-stage cancers are especially interested in the use of natural dietary supplements and herbal remedies to reduce symptoms’ intensity and ameliorate the quality of life. Carotenoids seem to be a group of natural compounds with particularly promising properties in relieving symptoms, mainly due to their strong antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, carotenoids have been used in folk medicine to treat various diseases and alleviate the accompanying symptoms. In this narrative review, the authors decided to determine whether there is any scientific evidence supporting the rationale for carotenoid supplementation in advanced-stage cancer patients, with particular emphasis on the adjuvant treatment of cancer-related symptoms, such as neuropathic pain and cancer-related cachexia. Full article
(This article belongs to the Special Issue Carotene and Carotenoids and Human Health)
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects
by Khaled Ahmed Mansour, Mona El-Neketi, Mohamed-Farid Lahloub and Ahmed Elbermawi
Molecules 2022, 27(11), 3639; https://doi.org/10.3390/molecules27113639 - 6 Jun 2022
Cited by 18 | Viewed by 3599
Abstract
Unprecedented nanoemulsion formulations (NE) of Jasminum humile and Jasminum grandiflorum essential oils (EO) were prepared, and examined for their cytotoxic and antiviral activities. NE characterization and stability examination tests were performed to ensure formula stability. The antiviral activity was determined against hepatitis A [...] Read more.
Unprecedented nanoemulsion formulations (NE) of Jasminum humile and Jasminum grandiflorum essential oils (EO) were prepared, and examined for their cytotoxic and antiviral activities. NE characterization and stability examination tests were performed to ensure formula stability. The antiviral activity was determined against hepatitis A (HAV) and herpes simplex type-1 (HSV-1) viruses using MTT assay, while the cytotoxic potential was determined against liver (HepG-2), breast (MCF-7), leukemia (THP-1) cancer cell lines and normal Vero cells. Statistical significance was determined in comparison with doxorubicin as cytotoxic and acyclovir as antiviral standard drugs. GC-MS analysis indicated twenty four compounds in the EO of J. humile and seventeen compounds in the EO of J. grandiflorum. Biological investigations of pure EOs revealed weak cytotoxic and antiviral effects. Nevertheless, their NE formulations exhibited high biological value as cytotoxic and antiviral agents. NE formulations also showed feasible selectivity index for the viral-infected and cancer cells (especially HepG-2) than normal Vero cells. Both nanoemulsions showed lower IC50 than standard doxorubicin against HepG-2 (26.65 and 22.58 vs. 33.96 μg/mL) and MCF-7 (36.09 and 36.19 vs. 52.73 μg/mL), respectively. The study results showed the dramatic effect of nanoemulsion preparation on the biological activity of EOs and other liposoluble phytopharmaceuticals. Full article
(This article belongs to the Special Issue Natural Products That Might Change Society)
Show Figures

Figure 1

22 pages, 10450 KiB  
Article
Hydrosoluble and Liposoluble Vitamins: New Perspectives through ADMET Analysis
by Mirela Nicolov, Mioara Cocora, Valentina Buda, Corina Danciu, Adina Octavia Duse, Claudia Watz and Florin Borcan
Medicina 2021, 57(11), 1204; https://doi.org/10.3390/medicina57111204 - 4 Nov 2021
Cited by 18 | Viewed by 5754
Abstract
Background and Objectives: The present study demonstrates that apart from the well-known toxicity of liposoluble vitamins, some hydrosoluble vitamins may also exert toxicity; thus, routine supplementation with vitamins or ingestion of fortified foods should not be considered harmless. The study addresses the [...] Read more.
Background and Objectives: The present study demonstrates that apart from the well-known toxicity of liposoluble vitamins, some hydrosoluble vitamins may also exert toxicity; thus, routine supplementation with vitamins or ingestion of fortified foods should not be considered harmless. The study addresses the possible correlations between the physico-chemical properties and the side effects of vitamins when taken in high doses or for a too long a period. Materials and Methods: The FAFDrugs4.0 computational tool was used for computational assessment of the ADMET profile of several hydro- and liposoluble vitamins. Results: ADMET analysis revealed the following major data: vitamin B3 and B13 showed reduced structural complexity; thus, a relative toxicological potential may be exerted. Vitamins B1 and B7 were found to have good oral absorption and thus good bioavailability, while Vitamin B3 was found to have decreased oral absorption. In addition, all of the liposoluble vitamins reflected higher complexity, much greater than most of the potentially therapeutically-proven compounds. Conclusions: The present study emphasizes the importance between the physico-chemical properties of vitamins and their possible toxicological impact. Full article
Show Figures

Figure 1

38 pages, 15262 KiB  
Review
Novel Micro- and Nanocellulose-Based Delivery Systems for Liposoluble Compounds
by Francisca Casanova, Carla F. Pereira, Alessandra B. Ribeiro, Ricardo Freixo, Eduardo Costa, Manuela E. Pintado, João C. Fernandes and Óscar L. Ramos
Nanomaterials 2021, 11(10), 2593; https://doi.org/10.3390/nano11102593 - 1 Oct 2021
Cited by 15 | Viewed by 5951
Abstract
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a [...] Read more.
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications. Full article
(This article belongs to the Special Issue Advances in Food Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop