Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = linear alkylbenzenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 15043 KiB  
Article
Use of Domestic Polymeric Waste for Surfactant Removal from Wastewater
by Thaiara Ramires dos Reis, Donizeti Leonardo Mancini Tolari, Ana Claudia Pedrozo da Silva, Elton Guntendorfer Bonafé, Rafael Block Samulewski and André Luiz Tessaro
Sustain. Chem. 2025, 6(1), 6; https://doi.org/10.3390/suschem6010006 - 14 Feb 2025
Viewed by 1159
Abstract
This study addresses the environmental challenge of surfactant removal from wastewater, focusing on the increased surfactant use during the COVID-19 pandemic. Polymeric waste, specifically polyurethane (PU) and polyamide (PA), was repurposed for surfactant adsorption to mitigate these environmental impacts. Methods included preparing surfactant [...] Read more.
This study addresses the environmental challenge of surfactant removal from wastewater, focusing on the increased surfactant use during the COVID-19 pandemic. Polymeric waste, specifically polyurethane (PU) and polyamide (PA), was repurposed for surfactant adsorption to mitigate these environmental impacts. Methods included preparing surfactant solutions of sodium linear alkylbenzene sulfonate (LAS) and dodecyl pyridinium chloride (DPC) and the mechanical processing of polymeric residues. PU and PA were characterized by FTIR-ATR and by the pH at the point of zero charge, which yielded pH = 8.0 for both polymers. The adsorption efficiency was optimized using a central composite face-centered design, varying pH, temperature, and time. The results indicated that PU and PA effectively adsorbed anionic and cationic surfactants, with specific conditions enhancing performance. From the optimized experimental conditions, four assays were carried out to evaluate the adsorption isotherms and kinetics. Among the fitted models, the SIPS model was the most representative, indicating a heterogeneous surface. Regarding LAS, the maximum adsorption capacity values were ~90 and 15 mg g−1, respectively, for PU and PA. Considering the DPC surfactant, lower values were obtained (~36 mg g−1 for PU and 16 mg g−1 for PA). The results are satisfactory because the adsorbents used in this study were second-generation waste and were used without treatment or complex modifications. The study concluded that using polymeric waste for surfactant removal offers a sustainable solution, transforming waste management while addressing environmental contamination. This approach provides a method for reducing surfactant levels in wastewater and adds value to otherwise discarded materials, promoting a circular economy and sustainable waste reuse. Full article
(This article belongs to the Special Issue Recycling and Upcycling of Plastic Wastes)
Show Figures

Figure 1

28 pages, 5341 KiB  
Review
Aromatics Alkylated with Olefins Utilizing Zeolites as Heterogeneous Catalysts: A Review
by Samaa H. Al-Sultani, Ali Al-Shathr and Bashir Y. Al-Zaidi
Reactions 2024, 5(4), 900-927; https://doi.org/10.3390/reactions5040048 - 13 Nov 2024
Cited by 4 | Viewed by 2172
Abstract
The alkylation reaction of aromatic compounds gains considerable attention because of its wide application in bulk and fine chemical production. Aromatics alkylated with olefins is a well-known process, particularly for linear alkylbenzene, phenyloctanes, and heptyltoluene production. As octane boosters and precursors for various [...] Read more.
The alkylation reaction of aromatic compounds gains considerable attention because of its wide application in bulk and fine chemical production. Aromatics alkylated with olefins is a well-known process, particularly for linear alkylbenzene, phenyloctanes, and heptyltoluene production. As octane boosters and precursors for various petrochemical and bulk chemical products, a wide range of alkylated compounds are in high demand. Numerous unique structures have been proposed in addition to the usual zeolites (Y and beta) utilized in alkylation procedures. The inevitable deactivation of industrial catalysts over time on stream, which is followed by a decrease in catalytic activity and product selectivity, is one of their disadvantages. Therefore, careful consideration of catalyst deactivation regarding the setup and functioning of the process of catalysis is necessary. Although a lot of work has been carried out to date to prevent coke and increase catalyst lifespan, deactivation of the catalyst is still unavoidable. Coke deposition can lead to catalyst deactivation in industrial catalytic processes by obstructing pores and/or covering acid sites. It is very desirable to regenerate inactive catalysts in order to remove the coke and restore catalytic activity at the same time. Depending on the kind of catalyst, the deactivation processes, and the regeneration settings, each regeneration approach has pros and cons. In this comprehensive study, the focus was on discussing the reaction mechanism of 1-octene isomerization and toluene alkylation as an example of isomerization and alkylation reactions that occur simultaneously, shedding light in detail on the catalysts used for this type of complex reaction, taking into account the challenges facing the catalyst deactivation and reactivation procedures. Full article
Show Figures

Figure 1

15 pages, 1615 KiB  
Article
Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters
by María Dolores Saquete, Nuria Boluda-Botella, Vicente Cases and Ester Egea
Water 2024, 16(14), 2068; https://doi.org/10.3390/w16142068 - 22 Jul 2024
Viewed by 1497
Abstract
Linear alkylbenzene sulfonate (LAS), a widely used anionic surfactant, is present in wastewater and can be discharged, causing environmental damage. When biodegradation is negligible, adsorption and desorption reactions play an important role, depending on the media characteristics (organic matter and clays) and hydrodynamic [...] Read more.
Linear alkylbenzene sulfonate (LAS), a widely used anionic surfactant, is present in wastewater and can be discharged, causing environmental damage. When biodegradation is negligible, adsorption and desorption reactions play an important role, depending on the media characteristics (organic matter and clays) and hydrodynamic parameters. Previously published laboratory column data are modelled with PHREEQC (version 2.18) in three scenarios of LAS input: spill (LAS pulse), continuous discharge (LAS adsorption step) and remediation (LAS desorption step). The distribution coefficients (0.1–4.9 × 10−3 L/g) in the sand columns are lower than those determined in this paper from batch tests and in columns of 25% and 50% agricultural soil mixtures (1–70 × 10−3 L/g). Considering the Freundlich constant parameters from the modelling, the results are similar to the distribution coefficients, but the linear isotherms are more consistent throughout. The mass transfer coefficient from the sand columns is lower than the agricultural soil columns (20–40 h−1), indicating longer elution times for the heavier homologues and a higher percentage of agricultural soil. For lighter homologues, fast migration could cause contamination of aquifers. The great persistence of LAS in the environment necessitates the development of mitigation strategies using reactive transport models, which predict longer times for the remediation of LAS homologues. Full article
(This article belongs to the Special Issue Physical–Chemical Wastewater Treatment Technologies)
Show Figures

Figure 1

17 pages, 3232 KiB  
Article
Preparation of UiO-66 MOF-Bonded Porous-Layer Open-Tubular Columns Using an In Situ Growth Approach for Gas Chromatography
by Khadejah D. Otaif, Ahmed-Yacine Badjah-Hadj-Ahmed and Zeid Abdullah ALOthman
Molecules 2024, 29(11), 2505; https://doi.org/10.3390/molecules29112505 - 25 May 2024
Cited by 1 | Viewed by 1885
Abstract
The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM–EDX analysis [...] Read more.
The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM–EDX analysis revealed the formation of a thin, continuous, uniform, and compact layer of UiO-66 polycrystals on the functionalized inner wall of the column. The average polarity (ΔIav = 700) and the McReynolds constants reflected the polar nature of the UiO-66 stationary phase. Several mixtures of small organic compounds and real samples were used to evaluate the separation performance of the fabricated columns. Linear alkanes from n-pentane to n-decane were baseline separated within 1.35 min. Also, a series of six n-alkylbenzenes (C3–C8) were separated within 3 min with a minimum resolution of 3.09, whereas monohalobenzene mixtures were separated at 220 °C within 14s. UiO-66 PLOT columns are ideally suited for the isothermal separation of chlorobenzene structural isomers at 210 °C within 45 s with Rs ≥ 1.37. The prepared column featured outstanding thermal stability (up to 450 °C) without any observed bleeding or significant impact on its performance. This feature enabled the analysis of various petroleum-based samples. Full article
(This article belongs to the Topic Advances in Spectroscopic and Chromatographic Techniques)
Show Figures

Graphical abstract

17 pages, 6932 KiB  
Article
In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
by Julian Cremer, Sinan Kiremit, Heinz Jürgen Klarhorst, Alix Gaspard, Karsten Rasim, Thomas Kordisch, Andreas Hütten and Dario Anselmetti
Corros. Mater. Degrad. 2024, 5(2), 224-240; https://doi.org/10.3390/cmd5020009 - 7 Apr 2024
Cited by 1 | Viewed by 2491
Abstract
Corrosion inhibitors are one of the best practices to prevent the far-reaching negative impacts of corrosion on ferrous alloys. A thorough understanding of their corrosion-inhibiting effects is essential for a sustainable economy and environment. Anionic surfactants are known to act efficiently as corrosion [...] Read more.
Corrosion inhibitors are one of the best practices to prevent the far-reaching negative impacts of corrosion on ferrous alloys. A thorough understanding of their corrosion-inhibiting effects is essential for a sustainable economy and environment. Anionic surfactants are known to act efficiently as corrosion inhibitors. Here, we present that in-situ atomic force microscopy (AFM) measurements can provide deep insights into the adsorption and inhibition mechanism of surfactants on stainless steel surfaces during local corrosion. These include the configuration of surfactant molecules on the surface and how the microstructure of the stainless steel surface influences the inhibition process. Three different anionic surfactants, namely palm kernel oil (PKO), linear alkylbenzene sulfonate (LAS), and fatty alcohol ether sulfate (FAES), were investigated on a titanium-stabilized ferritic stainless steel (1.4510) in NaCl solution. For PKO, the results show random adsorption of bi- and multilayer whereas LAS and FAES adsorb only as local corrosion occurs. Thereby, LAS accumulates only locally and especially at the titanium precipitates of the 1.4510 and FAES forms a densely packed monolayer on the surface. This leads to better corrosion inhibiting properties for LAS and FAES compared to PKO. Full article
Show Figures

Graphical abstract

14 pages, 1797 KiB  
Article
Assessment of Sewage Molecular Markers: Linear Alkylbenzenes in Sediments of an Industrialized Region in Peninsular Malaysia
by Sadeq A. A. Alkhadher, Hussein E. Al-Hazmi, Suhaimi Suratman, Mohamad P. Zakaria, Najat Masood, Bartosz Szeląg, Sami M. Magam, Ebrahim H. H. Al-Qadami, Joanna Majtacz, Przemysław Kowal, Tonni A. Kurniawan, Sameer A. M. Abdulrahman and Saeed S. Albaseer
Water 2023, 15(18), 3301; https://doi.org/10.3390/w15183301 - 19 Sep 2023
Cited by 5 | Viewed by 2075
Abstract
In this study, the use of linear alkylbenzenes (LABs) was employed to pinpoint the sources of human activity that cause detrimental impacts on the coastal environment and river ecosystems. LABs were detected using GC–MS in sediment samples assembled from Kim Kim River (KKR) [...] Read more.
In this study, the use of linear alkylbenzenes (LABs) was employed to pinpoint the sources of human activity that cause detrimental impacts on the coastal environment and river ecosystems. LABs were detected using GC–MS in sediment samples assembled from Kim Kim River (KKR) and the Port Dickson coast (PDC). To assess the significance of variations in the distribution and concentrations of LABs across the sampling sites, this study utilized several statistical techniques such as post hoc tests, LSD techniques, analysis of variance (ANOVA), and the Pearson correlation coefficient using a significance level of p < 0.05. The degradation levels of LABs and wastewater treatment were assessed in the study using internal congeners (I/E), homologs of C13 and C12, and long-to-short-chain (L/S) ratios. The results revealed that the LAB concentrations varied between 88.3 and 112 ng/g dw in KKR and 119 to 256 ng/g dw in the PDC. Most of the surveyed areas exhibited a substantial count of C13–LABs homologs that displayed a significant difference (p < 0.05). The I/E ratios ranged from 1.7 to 2.0 in KKR and from 2.0 to 4.1 in the PDC, suggesting that the effluents originated from sources associated with the physical phase and biological phase in wastewater treatment systems (WWTSs). The results revealed that the degradation of LABs varied between 34% and 38% in KKR and between 40% and 64% in the PDC. This study underscores the importance of ongoing improvements to WWTSs and emphasizes the potential of LABs as indicators for monitoring wastewater contamination. Full article
(This article belongs to the Special Issue Water Quality, Water Security and Risk Assessment)
Show Figures

Figure 1

20 pages, 3370 KiB  
Article
Hydrogen-Free Deoxygenation of Oleic Acid and Industrial Vegetable Oil Waste on CuNiAl Catalysts for Biofuel Production
by Jose Sabino, Denisson O. Liborio, Santiago Arias, Juan F. Gonzalez, Celmy M. B. M. Barbosa, Florival R. Carvalho, Roger Frety, Ivoneide C. L. Barros and Jose Geraldo A. Pacheco
Energies 2023, 16(17), 6131; https://doi.org/10.3390/en16176131 - 23 Aug 2023
Cited by 14 | Viewed by 2096
Abstract
The pyrolysis of vegetable oil waste is an alternative way to convert biomass into high-quality second-generation biofuels, with social, economic and environmental sustainability. The present work deals with the pyrolysis of oleic acid as a model compound and an industrial vegetable oil residue [...] Read more.
The pyrolysis of vegetable oil waste is an alternative way to convert biomass into high-quality second-generation biofuels, with social, economic and environmental sustainability. The present work deals with the pyrolysis of oleic acid as a model compound and an industrial vegetable oil residue on CuNiAl mixed oxide catalysts, derived from layered double hydroxides. Reactions of the oils pre-adsorbed on the catalysts (catalyst:oil mass ratio of 5:1) were performed at 550 °C on a micro-pyrolysis system and the analyses of volatile products were carried out online using GC/MS. Copper addition to NiAl catalysts increased the cracking of oleic acid. Increasing copper content also decreased the formation of aromatics and coke precursors, as well as oxygenated compounds. The CuNiAl catalyst with a Cu/Ni ratio of 0.4 showed strong catalytic activity in the conversion of an industrial vegetable oil residue with a high volume of free fatty acids produced. Compared to the non-catalytic reaction, the catalyst reduced the content of oxygenates and increased the content of hydrocarbons, particularly in the gasoline range (C5–C9). The CuNiAl oxide catalyst was able to convert vegetable oil residues into hydrocarbons in the range of gasoline, kerosene and diesel, and also linear alkylbenzenes as chemical precursors for surfactant production. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy)
Show Figures

Figure 1

15 pages, 2624 KiB  
Article
Unlocking the Secrets of River Pollution: Analyzing Organic Pollutants in Sediments—Experimental Study
by Sadeq Abdullah Abdo Alkhadher, Suhaimi Suratman, Hussein E. Al-Hazmi, Mohamad Pauzi Zakaria, Bartosz Szeląg, Joanna Majtacz and Jakub Drewnowski
Water 2023, 15(12), 2216; https://doi.org/10.3390/w15122216 - 13 Jun 2023
Cited by 13 | Viewed by 3916
Abstract
Untreated wastewater released into rivers can result in water pollution, the spread of waterborne diseases, harm to ecosystems, contamination of soil and groundwater, as well as air pollution and respiratory problems for nearby humans and animals due to the release of greenhouse gases. [...] Read more.
Untreated wastewater released into rivers can result in water pollution, the spread of waterborne diseases, harm to ecosystems, contamination of soil and groundwater, as well as air pollution and respiratory problems for nearby humans and animals due to the release of greenhouse gases. The current study aims to investigate the recent input of anthropogenic loads into the rivers using linear alkylbenzene (LAB), which is one of the molecular chemical markers with application of sophisticated model statistical analyses. In order to determine the compositions of LABs, which act as wastewater pollution molecular indicators, surface sediment samples from the Muar and Kim Kim rivers were collected. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify LABs and investigate their sources and degradation. ANOVA and the Pearson correlation coefficient were employed to determine the significance of differences between sampling locations, with a threshold of p < 0.05. To assess the degradation degree and efficacy of wastewater treatment plants (WWTPs), LABs were identified based on chains ranging from long to short (L/S), C13/C12 homolog, and internal to external (I/E) congeners. The results indicated that LAB concentrations in the studied areas of the Muar River ranged from 87.4 to 188.1 ng g−1dw. There were significant differences in LAB homology at p < 0.05, and a significant percentage of sampling stations contained C13-LAB homology. Based on the LAB ratios (I/E) determined, which ranged from 1.7 to 2.2 in the studied areas, it was concluded that effluents from primary and secondary sources are being discharged into the marine ecosystem in those areas. The degradation of LABs was up to 43% in the interrogated locations. It can be inferred that there is a requirement for enhancing the WWTPs, while also acknowledging the efficacy of LAB molecular markers in identifying anthropogenic wastewater contamination. Full article
(This article belongs to the Special Issue Water Governance Solutions towards Future Environmental Challenges)
Show Figures

Figure 1

13 pages, 2608 KiB  
Article
Occurrence and Assessment of Organic Pollutants Residues in the Aquatic Environment of the Coastal Sediments
by Sadeq Abdullah Abdo Alkhadher, Suhaimi Suratman and Mohamad Pauzi Zakaria
Sustainability 2023, 15(10), 8365; https://doi.org/10.3390/su15108365 - 22 May 2023
Cited by 11 | Viewed by 2594
Abstract
The current study aimed to monitor organic pollution on island and coastal environments using linear alkylbenzene (LAB). The aquatic environment is affected by the hazardous chemicals discharged through domestic and industrial waste. The distribution, composition, and sources of LABs in the sediments of [...] Read more.
The current study aimed to monitor organic pollution on island and coastal environments using linear alkylbenzene (LAB). The aquatic environment is affected by the hazardous chemicals discharged through domestic and industrial waste. The distribution, composition, and sources of LABs in the sediments of Port Dickson coast and Pulau Merambong were identified using gas chromatography–mass spectrometry (GC–MS). Chains ranging from long to short (L/S), C13/C12 homologs, and internal to external (I/E) congeners were used to define the degradation rate of LABs and the efficacy of wastewater treatment plants. The results of this study revealed that the concentration of LABs in the sites under investigation varied from 67.4 in Pulau Merambong to 255.8 ng g−1dw, in Port Dickson. The LAB homologs had a significant difference and a significant percentage of sampling stations had C13-LAB homologs. According to the determined LAB ratios (I/E), which ranged from 1.6 in Pulau Merambong to 4.1 in Port Dickson, treated effluents from primary and secondary inputs are being introduced into the aquatic ecosystem of these areas. The degradation of LABs was up to 64% in the interrogated locations. The conclusion is that the wastewater treatment system needs to be improved, and that LAB molecular markers are highly effective in tracing anthropogenic sewage contamination. Full article
Show Figures

Figure 1

20 pages, 2338 KiB  
Article
Toxic Effect of Anionic Surfactants on Freshwater Sponge Lubomirskia baikalensis and Its Endosymbiotic Microalgae Chlorella sp.
by Alyona Alexandrovna Nikonova, Igor Borisovich Mizandrontsev, Boris Nikolaevich Bazhenov, Igor Veniaminovich Khanaev, Olesya Viktorovna Shabalina, Alexandra Alexandrovna Afanasyeva, Tatiana Nikolaevna Avezova, Anna Nikolaevna Chindyavskaya, Alexander Nikolaevich Bityutsky, Andrey Yurievich Kan, Leonid Gennadievich Karikh, Kristina Sergeevna Dubrova, Svetlana Semyonovna Vorobyeva and Olga Yurievna Glyzina
Diversity 2023, 15(1), 77; https://doi.org/10.3390/d15010077 - 6 Jan 2023
Cited by 8 | Viewed by 2746
Abstract
A number of reports on sponge diseases, including from Lake Baikal, have increased dramatically all over the world in recent years. Herewith, there are various hypotheses for sponge mortality. Lubomirskia baikalensis (phylum Porifera, order Spongillida) is a unique endemic freshwater sponge of Lake Baikal [...] Read more.
A number of reports on sponge diseases, including from Lake Baikal, have increased dramatically all over the world in recent years. Herewith, there are various hypotheses for sponge mortality. Lubomirskia baikalensis (phylum Porifera, order Spongillida) is a unique endemic freshwater sponge of Lake Baikal that contains a complex community of eukaryotic and prokaryotic endosymbiotic microorganisms. In this work, we present the first results for the effect of anionic surfactants viz. linear alkylbenzene sulphonates (LAS) at low 10 and 20 µg L−1 concentrations on Baikal sponge species and their symbiotic community as an experimental model. A new toxicity test protocol under conditions close to natural is proposed. It uses the sponge amoebocytes called as SA1-cells, which contain eukaryotic green microalgae Chlorella sp. These SA1-cells are shown to be representative indicator in assessing the impact of anionic surfactants. The acute toxic effect resulted in 97–100% sponge cell death in less than 48 h, as well as 100% symbiotic microalgae Chlorella sp. death over 72 h was noted under LAS solution (20 μg L−1) exposure during in vivo experiments. This includes the cell membrane fatty acid changes, change in the cell sizes, cell swelling, and lysis. Long term exposure to LAS solution (10 μg L−1) reflected in cellular stress (oxidative stress) and accompanied by malondialdehyde formation (0.16–2.0 μg g−1 of dry weight) during 14-day exposure was noted. Oxidative stress and mortality of L. baikalensis are associated with their low antioxidant activity. Trolox-equivalent antioxidant capacity (TEAC) found in the range from 0.00031 to 0.00077 Trolox equivalents for these freshwater sponges. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Lake Microbial Communities)
Show Figures

Figure 1

12 pages, 1624 KiB  
Article
Binding of Ca2+ Ions to Alkylbenzene Sulfonates: Micelle Formation, Second Critical Concentration and Precipitation
by Adél Anna Ádám, Szilveszter Ziegenheim, László Janovák, Márton Szabados, Csaba Bús, Ákos Kukovecz, Zoltán Kónya, Imre Dékány, Pál Sipos and Bence Kutus
Materials 2023, 16(2), 494; https://doi.org/10.3390/ma16020494 - 4 Jan 2023
Cited by 2 | Viewed by 2759
Abstract
Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in various fields, including industry, household, and agriculture. The efficiency of their use in aqueous environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as [...] Read more.
Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in various fields, including industry, household, and agriculture. The efficiency of their use in aqueous environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as they can decrease the concentration of the surfactant due to precipitation. To understand cation–sulfonate interactions better, we study both NaLAS colloidal solutions in the presence of CaCl2 and precipitates forming at higher salt concentrations. Upon addition of CaCl2, we find the surface tension and critical micelle concentration of NaLAS to decrease significantly, in line with earlier findings for alkylbenzylsulfonates in the presence of divalent cations. Strikingly, an increase in the surface tension is discernible above 0.6 g L–1 NaLAS, accompanied by the decrease of apparent micelle sizes, which in turn gives rise to transparent systems. Thus, there appears to be a second critical concentration indicating another micellar equilibrium. Furthermore, the maximum salt tolerance of the surfactant is 0.1 g L–1 Ca2+, above which rapid precipitation occurs yielding sparingly soluble CaLAS2∙2H2O. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

20 pages, 1715 KiB  
Article
Fatty Acid Changes in Nearshore Phytoplankton under Anthropogenic Impact as a Biodiversity Risk Factor for the World’s Deepest Lake Baikal
by Alyona Alexandrovna Nikonova, Sergey Mikhailovich Shishlyannikov, Nadezhda Antonovna Volokitina, Yuri Pavlovich Galachyants, Yuri Sergeevich Bukin, Vadim Vasil’evich Blinov, Ruslan Yur’evich Gnatovsky and Svetlana Semyonovna Vorobyeva
Diversity 2022, 14(1), 55; https://doi.org/10.3390/d14010055 - 14 Jan 2022
Cited by 8 | Viewed by 3060
Abstract
In this study, we present results on fatty acid analysis of phytoplankton of Lake Baikal, the world’s deepest lake, which differs from other lakes by its oceanic features. Since we used a large-mesh net, the net sample phytoplankton were primarily represented by the [...] Read more.
In this study, we present results on fatty acid analysis of phytoplankton of Lake Baikal, the world’s deepest lake, which differs from other lakes by its oceanic features. Since we used a large-mesh net, the net sample phytoplankton were primarily represented by the large elongated diatom Synedra acus. subsp. radians (Kützing) Skabichevskij. The similar algae composition of net samples of spring season phytoplankton collected at different sites of the lake allows us to compare results of the fatty acid analysis of these samples. The phytoplankton diversity of the sedimentation samples was contrary represented by 32 algae species. There are clear changes in the fatty acid composition of net phytoplankton exposed to anthropogenic impacts of varying intensity. The content of polyunsaturated fatty acids in phytoplankton collected from central stations (pelagic stations at a distance of ~10–30 km from the shoreline) without anthropogenic impact was higher by up to 15% than phytoplankton collected from nearshore stations (littoral stations at a distance of ~0.01–0.05 km from the shoreline) and offshore stations (pelagic stations at a distance of ~3 km from the shoreline). The interlaboratory precision of fatty acid determination of phytoplankton is estimated as ≤10%. We found high content of the lipid peroxidation marker (80–340 μg g−1 of dry weight) in phytoplankton from nearshore and offshore stations with intensive anthropogenic impact. In phytoplankton from central stations, we did not find any lipid peroxidation. Determination of unsaturated fatty acids, coupled with analysis of fatty acid peroxidation products, can be used to evaluate the level of anthropogenic impact in terms of ecological health and biodiversity conservation. Full article
(This article belongs to the Special Issue Aquatic Restoration Ecology and Monitoring)
Show Figures

Figure 1

11 pages, 833 KiB  
Article
Occurrence of Linear Alkylbenzene Sulfonates, Nonylphenol Ethoxylates and Di(2-ethylhexyl)phthalate in Composting Processes: Environmental Risks
by Julia Martín, Carmen Mejías, Marina Arenas, Juan Luis Santos, Irene Aparicio and Esteban Alonso
Sustainability 2022, 14(1), 186; https://doi.org/10.3390/su14010186 - 24 Dec 2021
Cited by 4 | Viewed by 3112
Abstract
Composting is an important waste management strategy, providing an economical and environment-friendly approach to sanitizing and stabilizing biosolids for land soil amendment. However, the resulting product can contain a large number of organic pollutants that may have adverse effects on the ecosystem. This [...] Read more.
Composting is an important waste management strategy, providing an economical and environment-friendly approach to sanitizing and stabilizing biosolids for land soil amendment. However, the resulting product can contain a large number of organic pollutants that may have adverse effects on the ecosystem. This paper presents the occurrence of eight widely used organic pollutants (four linear alkylbenzene sulfonates (LAS C10-C13), nonylphenol and its mono- and di-ethoxylates (NPE) and a di(2-ethylhexyl)phthalate (DEHP)) in full-scale composting processes. LAS homologues were detected at the highest concentrations (range of ∑LAS: 2068–9375 mg kg−1 dm), exceeding the limit fixed in the EU Directive draft. The concentration levels of the NPE and DEHP were significantly lower (up to 27.5 and 156.8 mg kg−1 dm, respectively) and did not exceed their fixed limits in the EU Directive draft. Ecotoxicological risk assessment for when compost is amended onto soils has also been evaluated. The concentrations measured represented a medium-low risk for most compounds, although it was not enough in the case of LAS C11 and C13 and NP. Full article
Show Figures

Figure 1

18 pages, 5313 KiB  
Article
Microscopic Diffusion Characteristics of Linear Alkylbenzene Sulfonates on the Surface of Anthracite: The Influence of Different Attachment Sites of Benzene Ring in the Backbone
by Xuanlai Chen, Guochao Yan, Xianglin Yang, Guang Xu and Shuai Wei
Minerals 2021, 11(10), 1045; https://doi.org/10.3390/min11101045 - 27 Sep 2021
Cited by 10 | Viewed by 3219
Abstract
In order to explore the effect of the attachment site of the benzene ring in the backbone of the surfactant on its diffusion characteristics on the surface of anthracite, the molecular dynamics simulation method was used, and the four isomers (m-C16, m = [...] Read more.
In order to explore the effect of the attachment site of the benzene ring in the backbone of the surfactant on its diffusion characteristics on the surface of anthracite, the molecular dynamics simulation method was used, and the four isomers (m-C16, m = 2,4,6,8; m represents the attachment site of the benzene ring in the backbone) of sodium hexadecyl benzene sulfonate (SHS) were selected. Binary models of surfactant/anthracite, surfactant/graphene modified by oxygen-containing functional groups, and a ternary model of water/surfactant/anthracite were constructed. By analyzing a series of properties such as interaction energy, contact surface area, relative concentration distribution, radial distribution function, hydrophobic tail chain order parameter, etc., it is concluded that the adsorption strength of 4-C16 on the surface of anthracite is the highest; the reason is that 4-C16 has the highest degree of aggregation near the oxygen-containing functional groups on the surface of anthracite. Further investigations find that 4-C16 can be densely covered on the ketone group, and the longer branch chain of 4-C16 has the highest degree of order in the Z-axis direction. Full article
Show Figures

Figure 1

15 pages, 4425 KiB  
Article
Microbial Ecotoxicity of Biochars in Agricultural Soil and Interactions with Linear Alkylbenzene Sulfonates
by Rasmus Nissen, Gunadhish Khanal and Lars Elsgaard
Agronomy 2021, 11(5), 828; https://doi.org/10.3390/agronomy11050828 - 23 Apr 2021
Cited by 6 | Viewed by 3161
Abstract
Large-scale application of biochar on agricultural land offers the prospect of soil improvement and carbon sequestration for climate-change mitigation. However, negative side-effects on the soil microbial ecosystem are poorly understood, notably in relation to the functions of native microbiomes under realistic routes of [...] Read more.
Large-scale application of biochar on agricultural land offers the prospect of soil improvement and carbon sequestration for climate-change mitigation. However, negative side-effects on the soil microbial ecosystem are poorly understood, notably in relation to the functions of native microbiomes under realistic routes of biochar exposure. Due to divergent properties, different biochars might interact with soil in complex ways. This might result in decreased or increased ecotoxicity from biochar contaminants, such as heavy metals and polycyclic aromatic hydrocarbons (PAHs). Using five biochars produced from straw and wood under contrasting pyrolysis conditions, we traced their ecotoxicological dose-effect using a bioassay for potential ammonia oxidation (PAO), through microorganisms that are sensitive stress indicators. Assays were made after soil/biochar interaction for up to 3 weeks, where straw biochar with the lowest PAH content (<0.5 mg kg−1) showed the most pronounced dose-effects to PAO, corresponding to a 10% effect concentration (EC10) of 4.6% (dry weight biochar/dry weight soil). In comparison, straw biochar with the highest PAH content was least ecotoxic (EC10, 15.2% after 3 weeks) and wood biochars pyrolysed at high temperature (700–725 °C) showed no ecotoxicity to PAO. Interactions between biochars and anionic surfactants, i.e., linear alkylbenzene sulfonates, which are common soil pollutants, resulted in varying effects on PAO, but the effects were small and of limited ecological importance for soil-amended biochars. In conclusion, the results showed that short-term microbial side-effects of biochar in the soil ecosystem were minor at relevant field application rates (such as <30 Mg ha−1 mixed into a plough layer of 20 cm), and that inherent PAHs in biochar were not a likely source of short-term ecotoxicity. However, there were notable differences in the effects eventually observed at very high biochar rates, stressing that individual biochars need specific ecotoxicological assessment before their safe application at large scale in agricultural soils. Full article
Show Figures

Figure 1

Back to TopTop