Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = ligand-assisted reprecipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2160 KiB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Cited by 1 | Viewed by 667
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

39 pages, 26999 KiB  
Review
Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives
by Nirmal Kumar Shee and Hee-Joon Kim
Molecules 2024, 29(3), 611; https://doi.org/10.3390/molecules29030611 - 26 Jan 2024
Cited by 16 | Viewed by 2671
Abstract
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. [...] Read more.
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. Porphyrin-based nanostructures can be fabricated using several methods, including ionic self-assembly, metal–ligand coordination, reprecipitation, and surfactant-assisted methods. The synthetic utility of porphyrins permits the organization of porphyrin building blocks into nanostructures, which can remarkably improve their light-harvesting properties and photostability. The tunable functionalization and distinctive structures of porphyrin nanomaterials trigger the junction of the charge-transfer mechanism and facilitate the photodegradation of pollutant dyes. Finally, porphyrin nanomaterials or porphyrin/metal nanohybrids are explored to amplify their photocatalytic efficiency. Full article
Show Figures

Figure 1

15 pages, 4313 KiB  
Article
Understanding the Effect of the Synthetic Method and Surface Chemistry on the Properties of CsPbBr3 Nanoparticles
by Mariangela Giancaspro, Annamaria Panniello, Nicoletta Depalo, Roberto Comparelli, Marinella Striccoli, Maria Lucia Curri and Elisabetta Fanizza
Nanomaterials 2024, 14(1), 81; https://doi.org/10.3390/nano14010081 - 27 Dec 2023
Cited by 3 | Viewed by 2040
Abstract
Over the last decade, the attractive properties of CsPbBr3 nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction [...] Read more.
Over the last decade, the attractive properties of CsPbBr3 nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction mixture in combination with the specific synthetic methodology is crucial, both for further elucidating the fundamental characteristics of this class of materials and for their manufacturing towards technological applications. This work aims to shed light on this aspect by synthesizing CsPbBr3 NPs by means of two well-assessed synthetic procedures, namely, hot injection (HI) and ligand-assisted reprecipitation (LARP) in non-polar solvents, using PbBr2 and Cs2CO3 as precursors in the presence of already widely investigated ligands. The overall goal is to study and compare the properties of the NPs to understand how each synthetic method influences the NPs’ size and/or the optical properties. Reaction composition and conditions are purposely tuned towards the production of nanocubes with narrow size distribution, high emission properties, and the highest achievable concentration. As a result, the formation of bulk crystals as precipitate in LARP limits the achievement of a highly concentrated NP solution. The size of the NPs obtained by LARP seems to be poorly affected by the ligands’ nature and the excess bromide, as consequence of bromide-rich solvation agents, effectively results in NPs with excellent emission properties. In contrast, NPs synthesized by HI exhibit high reaction yield, diffusion growth-controlled size, and less striking emission properties, probably ascribed to a bromide-deficient condition. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 2644 KiB  
Article
Synergistic Halide- and Ligand-Exchanges of All-Inorganic Perovskite Nanocrystals for Near-Unity and Spectrally Stable Red Emission
by Kaiwang Chen, Dengliang Zhang, Qing Du, Wei Hong, Yue Liang, Xingxing Duan, Shangwei Feng, Linfeng Lan, Lei Wang, Jiangshan Chen and Dongge Ma
Nanomaterials 2023, 13(16), 2337; https://doi.org/10.3390/nano13162337 - 14 Aug 2023
Cited by 7 | Viewed by 2084
Abstract
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in [...] Read more.
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3−x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3−x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3−x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3−x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 2543 KiB  
Article
Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater
by Yuefeng Gao and Baojiu Chen
J. Mar. Sci. Eng. 2023, 11(5), 1001; https://doi.org/10.3390/jmse11051001 - 8 May 2023
Cited by 8 | Viewed by 2982
Abstract
Seawater pollution caused by heavy metal ions is a growing concern among the public. Perovskite quantum dots (PeQDs) are ideal probes for detecting metal ions due to their exceptional sensing characteristics, including remarkable sensitivity, low detection limit, and good selectivity. However, traditional lead-based [...] Read more.
Seawater pollution caused by heavy metal ions is a growing concern among the public. Perovskite quantum dots (PeQDs) are ideal probes for detecting metal ions due to their exceptional sensing characteristics, including remarkable sensitivity, low detection limit, and good selectivity. However, traditional lead-based PeQDs exhibit drawbacks related to lead toxicity and poor water stability. Herein, lead-free halide PeQDs Cs3Bi2Br9 were synthesized using Bi3+ instead of Pb2+ via the ligand-assisted reprecipitation method. The luminescence performance of the precursor is analyzed with respect to the reaction conditions. The results reveal that the optimal reaction temperature is 80 °C, the ideal octylamine dosage is 35 μL, and the most effective reaction time is 10 min. Photoluminescence spectra of Cs3Bi2Br9 are analyzed at various temperatures and demonstrate that fluorescence intensity decreases as temperature increases. The value of the exciton binding energy (Eb) is determined to be 88.6 meV. Cs3Bi2Br9 PeQDs synthesized under the optimum reaction conditions are utilized as fluorescent probes to detect copper ions in seawater. Results from experiments demonstrate that the presence of copper ions markedly quenched the photoluminescence of Cs3Bi2Br9 owing to the effective transfer of electrons from Cs3Bi2Br9 to Cu2+. A strong linear correlation between the degree of quenching and the contents of Cu2+ is observed. Cs3Bi2Br9 PeQDs demonstrate a sensitivity and detection limit of 1.21 μM−1 and 98.3 nM, respectively. Furthermore, this probe exhibits good photostability, water stability, and selectivity for copper ions, thereby indicating its potential for detecting marine heavy metal contaminants. Full article
Show Figures

Figure 1

12 pages, 3662 KiB  
Article
Inhibited Degradation of Organic–Inorganic Perovskite-Based Quantum Dot Films via Rapid Annealing Temperatures
by Pao-Hsun Huang, Pin-Jia Lai, Wen-Ray Chen, Chuan-Hsi Liu, Po-Wen Sze, Shui-Yang Lien and Chien-Jung Huang
Crystals 2023, 13(3), 452; https://doi.org/10.3390/cryst13030452 - 4 Mar 2023
Viewed by 2146
Abstract
General hot-plate heating is used to form a crystal structure of films; however, how to achieve a homogeneous and regulated crystal formation will be a crucial challenge in the future. In this study, based on perovskite-series materials, organic methylamine lead trioxide (MAPbI3 [...] Read more.
General hot-plate heating is used to form a crystal structure of films; however, how to achieve a homogeneous and regulated crystal formation will be a crucial challenge in the future. In this study, based on perovskite-series materials, organic methylamine lead trioxide (MAPbI3) films doped with inorganic lead iodide (CsPbI3) quantum dots (QDs) are treated using the rapid thermal annealing (RTA) process in argon gas to break the crystallization barrier. These RTA-treated perovskite quantum dot (PQD) films at various temperatures of 100–160 °C are detected using X-ray diffraction, X-ray spectroscopy, and absorbance measurements to investigate their structural and optical properties as well as their binding states. The experimental results demonstrate that the PQD film annealed at 120 °C has optimized characteristics, revealing better crystallinity and the lowest content of oxygen atoms (31.4%) and C-O-C bonding (20.1%). A too-high RTA temperature, more than 140 °C, causes severe degradation with the existence of PbI2. A proper RTA process, an alternative to normal heating and annealing, can effectively inhibit the occurrence of degradation and even usefully improve the performance of PQD films. Full article
(This article belongs to the Special Issue Solution-Based Processes in Semiconductors and Electronic Devices)
Show Figures

Figure 1

14 pages, 15273 KiB  
Article
Hybrid Organic–Inorganic Perovskite Superstructures for Ultrapure Green Emissions
by Wen Kiat Chan, Jiawei Chen, Donglei Zhou, Junzhi Ye, Ricardo Javier Vázquez, Cheng Zhou, Guillermo Carlos Bazan, Akshay Rao, Zhongzheng Yu and Timothy Thatt Yang Tan
Nanomaterials 2023, 13(5), 815; https://doi.org/10.3390/nano13050815 - 22 Feb 2023
Cited by 9 | Viewed by 2870
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic [...] Read more.
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic–inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic–inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications. Full article
Show Figures

Figure 1

11 pages, 3405 KiB  
Article
Spectrally Stable Blue Light-Emitting Diodes Based on All-Inorganic Halide Perovskite Films
by Huidan Zhang, Ying Su, Xulan Xue, Qinghui Zeng, Yifang Sun, Kai Zhu, Weiguang Ye, Wenyu Ji and Xiangyang Leng
Nanomaterials 2022, 12(17), 2906; https://doi.org/10.3390/nano12172906 - 24 Aug 2022
Cited by 7 | Viewed by 2923
Abstract
Substantial progress has been made in perovskite light-emitting diodes (PeLEDs), but the fabrication of high-performance blue PeLEDs still remains a challenge due to its low efficiency, spectral instability and short operational lifetime. How to produce an efficient and stable blue PeLED is the [...] Read more.
Substantial progress has been made in perovskite light-emitting diodes (PeLEDs), but the fabrication of high-performance blue PeLEDs still remains a challenge due to its low efficiency, spectral instability and short operational lifetime. How to produce an efficient and stable blue PeLED is the key to realizing the application of PeLEDs in full-color displays. We herein report a blue PeLED usint the ligand-assisted reprecipitation method, in which phenylethylammonium bromide (PEABr) was used as ligands, and chloroform was used as anti-solvent to prepare blue perovskite nanocrystal films. By increasing the PEABr content from 40% to 100% (The ratio of x% PEABr refers to the molar ratio between PEABr and PbBr2), the film quality is highly improved, and the emission exhibits a blue shift. Introducing a poly(9-vinylcarbazole) (PVK) hole transport layer into the device, the PVK layer can not only achieve efficient hole injection, but can also isolate the PEDOT: PSS layer to inhibit the non-radiative recombination of metal halide luminescence layer, reduce surface ion defects and successfully inhibit halide atom migration. Finally, the PeLED presents a stable electroluminescence under different driving voltages without any red shift. Full article
Show Figures

Figure 1

12 pages, 2820 KiB  
Article
Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer
by Lufeng Hu, Zhixiang Ye, Dan Wu, Zhaojin Wang, Weigao Wang, Kai Wang, Xiangqian Cui, Ning Wang, Hongyu An, Bobo Li, Bingxi Xiang and Mingxia Qiu
Nanomaterials 2022, 12(9), 1454; https://doi.org/10.3390/nano12091454 - 25 Apr 2022
Cited by 8 | Viewed by 3013
Abstract
Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable [...] Read more.
Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable luminescent layer for perovskite light-emitting diodes (PeLEDs). Electrical tests indicate that the double hole-transport layers (HTLs) played an important role in improving the electrical-to-optical conversion efficiency of PeLEDs due to their cascade-like level alignment. The PeLED based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))-diphenylamine)] (TFB)/poly(9-vinylcarbazole) (PVK) double HTLs produced a high external quantum efficiency (EQE) of 9%, which was improved by approximately 10.9 and 5.14 times when compared with single HTL PVK or the TFB device, respectively. The enhancement of the hole transmission capacity by TFB/PVK double HTLs was confirmed by the hole-only device and was responsible for the dramatic EQE improvement. Full article
Show Figures

Graphical abstract

10 pages, 3218 KiB  
Article
The Annealing Effect at Different Temperatures for Organic-Inorganic Perovskite Quantum Dots
by Shui-Yang Lien, Pin-Jia Lai, Wen-Ray Chen, Chuan-Hsi Liu, Po-Wen Sze and Chien-Jung Huang
Crystals 2022, 12(2), 204; https://doi.org/10.3390/cryst12020204 - 29 Jan 2022
Cited by 4 | Viewed by 3254
Abstract
After the preparation of inorganic perovskite cesium lead iodide quantum dots (CsPbI3 QD) by ligand-assisted reprecipitation (LARP), CsPbI3 QD was added to the organic perovskite methylamine lead triiodide (CH3NH3PbI3; MAPbI3) to successfully form [...] Read more.
After the preparation of inorganic perovskite cesium lead iodide quantum dots (CsPbI3 QD) by ligand-assisted reprecipitation (LARP), CsPbI3 QD was added to the organic perovskite methylamine lead triiodide (CH3NH3PbI3; MAPbI3) to successfully form composite perovskite film. To obtain better perovskite quantum dot (PQD) crystal characteristics, this research used different annealing temperatures to discuss the crystallinity changes of perovskite quantum dots (PQD). Through X-ray diffraction (XRD) analysis, it was found that the preferred peak (110) of MAPbI3 had maximum peak intensity when the annealing temperature increased to 120 °C. Based on the measurement results of PQD’s Ultraviolet-Visible spectrum, it was shown that the maximum absorption area was obtained at the wavelength of 350 nm~750 nm at the annealing temperature 120 °C. From the scanning electron microscope (SEM) measurement, it was found that the grain size was the largest at the annealing temperature 120 °C, and the grain size was 60.2 nm. The best crystallization characteristics of PQD were obtained at the annealing temperature 120 °C. Full article
Show Figures

Figure 1

11 pages, 4431 KiB  
Article
Wavelength-Tunable and Water-Stable Cesium–Lead-Based All-Bromide Nanocrystal–Polymer Composite Films Using Ultraviolet-Curable Prepolymer as an Anti-Solvent
by Wook Hyun Kim, Jungyoun Bae, Kang-Pil Kim and Sungho Woo
Polymers 2022, 14(3), 381; https://doi.org/10.3390/polym14030381 - 19 Jan 2022
Cited by 4 | Viewed by 2918
Abstract
All-inorganic metal halide perovskite nanocrystals (IPeNCs) have become one of the most promising luminescent materials for next-generation display and lighting technology owing to their excellent color expression ability. However, research on IPeNCs with stable blue emission is limited. In this paper, we report [...] Read more.
All-inorganic metal halide perovskite nanocrystals (IPeNCs) have become one of the most promising luminescent materials for next-generation display and lighting technology owing to their excellent color expression ability. However, research on IPeNCs with stable blue emission is limited. In this paper, we report stable blue emissive all-bromide IPeNCs obtained through a modified ligand-assisted reprecipitation method using an ultraviolet (UV)-curable prepolymer as the anti-solvent at a low temperature. We found that the blue emission originates from quantum-confined CsPbBr3 nanoparticles formed together with the colorless wide-bandgap Cs4PbBr6 nanocrystals. When the temperature of the prepolymer was increased from 0 to 50 °C, CsPbBr3 nanoparticles became larger and more crystalline, thereby altering their emission color from blue to green. The synthesized all-bromide blue-emitting IPeNC solution remained stable for over 1 h. It also remained stable when it was mixed with the green-emitting IPeNC solution. By simply exposing the as-synthesized IPeNC–prepolymer solutions to UV light, we formed water-stable composite films that emitted red, green, blue, and white colors. We believe that this synthetic method can be used to develop color-emitting composite materials that are highly suitable for application as the color conversion films of full-color liquid crystal display backlight systems and lighting applications. Full article
Show Figures

Figure 1

8 pages, 6443 KiB  
Article
Enhanced Air Stability of Perovskite Quantum Dots by Manganese Passivation
by Ryota Sato, Kazuki Umemoto, Satoshi Asakura and Akito Masuhara
Technologies 2022, 10(1), 10; https://doi.org/10.3390/technologies10010010 - 16 Jan 2022
Cited by 3 | Viewed by 3499
Abstract
Organic-inorganic perovskite quantum dots (PeQDs) have attracted attention due to their excellent optical properties, e.g., high photoluminescence quantum yields (PLQYs; >70%), a narrow full width at half maximum (FWHM; 25 nm or less), and color tunability adjusted by the halide components in an [...] Read more.
Organic-inorganic perovskite quantum dots (PeQDs) have attracted attention due to their excellent optical properties, e.g., high photoluminescence quantum yields (PLQYs; >70%), a narrow full width at half maximum (FWHM; 25 nm or less), and color tunability adjusted by the halide components in an entire tunability (from 450 nm to 730 nm). On the other hand, PeQD stability against air, humidity, and thermal conditions has still not been enough, which disturbs their application. To overcome these issues, with just a focus on the air stability, Mn2+ ion passivated perovskite quantum dots (Mn/MAPbBr3 QDs) were prepared. Mn2+ could be expected to contract the passivating layer against the air condition because the Mn2+ ion was changed to the oxidized Mn on PeQDs under the air conditions. In this research, Mn/MAPbBr3 QDs were successfully prepared by ligand-assisted reprecipitation (LARP) methods. Surprisingly, Mn/MAPbBr3 QD films showed more than double PLQY stability over 4 months compared with pure MAPbBr3 ones against the air, which suggested that oxidized Mn worked as a passivating layer. Improving the PeQD stability is significantly critical for their application. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2021))
Show Figures

Figure 1

9 pages, 2945 KiB  
Article
Investigation of the Stability of Methylammonium Lead Iodide (MAPbI3) Film Doped with Lead Cesium Triiodide (CsPbI3) Quantum Dots under an Oxygen Plasma Atmosphere
by Pao-Hsun Huang, Chi-Wei Wang, Shui-Yang Lien, Kuan-Wei Lee, Na-Fu Wang and Chien-Jung Huang
Molecules 2021, 26(9), 2678; https://doi.org/10.3390/molecules26092678 - 3 May 2021
Cited by 9 | Viewed by 3179
Abstract
In this study, we describe composited perovskite films based on the doping of lead cesium triiodide (CsPbI3) quantum dots (QDs) into methylammonium lead iodide (MAPbI3). CsPbI3 QDs and MAPbI3 were prepared by ligand-assisted re-precipitation and solution mixing, [...] Read more.
In this study, we describe composited perovskite films based on the doping of lead cesium triiodide (CsPbI3) quantum dots (QDs) into methylammonium lead iodide (MAPbI3). CsPbI3 QDs and MAPbI3 were prepared by ligand-assisted re-precipitation and solution mixing, respectively. These films were optimized by oxygen plasma treatment, and the effect of powers from 0 to 80 W on the structural properties of the composited perovskite films is discussed. The experimental results showed that the light-harvesting ability of the films was enhanced at 20 W. The formation of the metastable state (lead(II) oxide and lead tetroxide) was demonstrated by peak differentiation-imitating. A low power enhanced the quality of the films due to the removal of organic impurities, whereas a high power caused surface damage in the films owing to the severe degradation of MAPbI3. Full article
Show Figures

Figure 1

10 pages, 1636 KiB  
Communication
Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr3 Perovskite Quantum Dots by Trivalent Doping
by Sujeong Jung, Jae Ho Kim, Jin Woo Choi, Jae-Wook Kang, Sung-Ho Jin, Youngho Kang and Myungkwan Song
Nanomaterials 2020, 10(4), 710; https://doi.org/10.3390/nano10040710 - 9 Apr 2020
Cited by 27 | Viewed by 6805
Abstract
We determine the influence of substitutional defects on perovskite quantum dots through experimental and theoretical investigations. Substitutional defects were introduced by trivalent dopants (In, Sb, and Bi) in CsPbBr3 by ligand-assisted reprecipitation. We show that the photoluminescence (PL) emission peak shifts toward [...] Read more.
We determine the influence of substitutional defects on perovskite quantum dots through experimental and theoretical investigations. Substitutional defects were introduced by trivalent dopants (In, Sb, and Bi) in CsPbBr3 by ligand-assisted reprecipitation. We show that the photoluminescence (PL) emission peak shifts toward shorter wavelengths when doping concentrations are increased. Trivalent metal-doped CsPbBr3 enhanced the PL quantum yield (~10%) and air stability (over 10 days). Our findings provide new insights into the influence of substitutional defects on substituted CsPbBr3 that underpin their physical properties. Full article
(This article belongs to the Special Issue Hybrid Perovskite Thin Film)
Show Figures

Graphical abstract

6 pages, 1368 KiB  
Communication
Facile Synthesis of FAPbI3 Nanorods
by He Huang, Linzhong Wu, Yiou Wang, Alexander F. Richter, Markus Döblinger and Jochen Feldmann
Nanomaterials 2020, 10(1), 72; https://doi.org/10.3390/nano10010072 - 29 Dec 2019
Cited by 7 | Viewed by 6744
Abstract
Metal halide perovskites are promising materials for a range of applications. The synthesis of light-emitting perovskite nanorods has become popular recently. Thus far, the facile synthesis of perovskite nanorods remains elusive. In this work, we have developed a facile synthesis to fabricate FAPbI [...] Read more.
Metal halide perovskites are promising materials for a range of applications. The synthesis of light-emitting perovskite nanorods has become popular recently. Thus far, the facile synthesis of perovskite nanorods remains elusive. In this work, we have developed a facile synthesis to fabricate FAPbI3 nanorods for the first time, demonstrating a high photoluminescence quantum yield of 35–42%. The fabrication of the nanorods has been made possible by carefully tuning the concentration of formamidine-oleate as well as the amount of oleic acid with pre-dissolved PbI2 in toluene with oleic acid/oleylamine. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanomaterials Based on Perovskites)
Show Figures

Figure 1

Back to TopTop