Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = leukocyte trafficking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 240 KB  
Review
Inflammatory Mechanisms in Myocarditis—Recent Therapeutic Strategies
by Stergios Soulaidopoulos, Dimitris Tousoulis, Marios Sagris, Svetlana Aghayan, Konstantinos Platanias, Alexios Giannakodimos, Emilia Lazarou, Konstantinos Tsioufis and George Lazaros
Biomolecules 2025, 15(10), 1475; https://doi.org/10.3390/biom15101475 - 20 Oct 2025
Viewed by 1206
Abstract
Myocarditis is an inflammatory disease of the heart characterized by a complex interplay between innate and adaptive immune responses. The innate immune system provides first-line defense and includes soluble molecules, including macrophages, neutrophils, dendritic cells, and molecular mediators, but lacks immunological memory. In [...] Read more.
Myocarditis is an inflammatory disease of the heart characterized by a complex interplay between innate and adaptive immune responses. The innate immune system provides first-line defense and includes soluble molecules, including macrophages, neutrophils, dendritic cells, and molecular mediators, but lacks immunological memory. In contrast, the adaptive immune system, via T and B lymphocytes, offers high specificity and long-term memory, which can sometimes target myocardial tissue, causing autoimmune injury. Particularly, acute myocarditis is characterized by dysregulated immune signaling, with cytokines (IL-2, IFN-γ, IL-12, IL-4, IL-10) and chemokines (MCP-1, CXCL4, CXCL10) driving disease progression, while adhesion molecules (ICAM-1, VCAM-1, VAP-1) promote leukocyte trafficking and cardiac inflammation. The balance between pro-inflammatory and regulatory responses determines disease outcomes, ranging from resolution with recovery to fulminant myocarditis or progression to dilated cardiomyopathy. Emerging therapeutic approaches targeting cytokines, chemokines, and adhesion molecules, along with established immunosuppressive treatments, underline the potential for modulating immune responses in myocarditis and, thereby, improving patient outcomes. Full article
Show Figures

Graphical abstract

32 pages, 3209 KB  
Review
CD99: A Key Regulator in Immune Response and Tumor Microenvironment
by Maria Cristina Manara, Valentina Fiori, Angelo Sparti and Katia Scotlandi
Biomolecules 2025, 15(5), 632; https://doi.org/10.3390/biom15050632 - 28 Apr 2025
Cited by 6 | Viewed by 3630
Abstract
CD99 is a membrane protein critical for various immunological functions, including T-cell activation, protein trafficking, cell apoptosis, and leukocyte movement. It is also highly expressed in certain malignant tumors, contributing to the development, invasion, immune evasion, and adaptation of tumor cells to stress [...] Read more.
CD99 is a membrane protein critical for various immunological functions, including T-cell activation, protein trafficking, cell apoptosis, and leukocyte movement. It is also highly expressed in certain malignant tumors, contributing to the development, invasion, immune evasion, and adaptation of tumor cells to stress stimuli, including drug resistance. CD99 is crucial at the intersection of normal biological processes and pathological conditions like cancer. While research indicates that CD99 may interact homotypically, there is evidence of some heterotypic ligands that align with its roles. The development of multiple anti-CD99 antibodies has shed light on its functions, particularly regarding interactions between tumor cells that overexpress CD99 and immune cells expressing the same protein within the microenvironment. Anti-CD99 antibodies effectively eliminate tumors and attract immune cells to the tumor area. Additionally, CD99 influences the expression of specific immune checkpoint molecules, such as CD47, paving the way for potential combinations of anti-CD99 with immune checkpoint inhibitors. This review explores CD99’s role in normal physiology and cancer biology, focusing on how monoclonal antibodies affect CD99 expression and activity, thereby influencing cancer cells’ interactions with their microenvironment. It summarizes key findings about how these changes impact cancer cell behavior and the effectiveness of treatments. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

20 pages, 4053 KB  
Review
Pericytes in Glioblastoma: Hidden Regulators of Tumor Vasculature and Therapy Resistance
by Irene Salazar-Saura, María Pinilla-Sala, Javier Megías, Lara Navarro, Esther Roselló-Sastre and Teresa San-Miguel
Cancers 2025, 17(1), 15; https://doi.org/10.3390/cancers17010015 - 24 Dec 2024
Cited by 4 | Viewed by 3587
Abstract
Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) [...] Read more.
Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) in GB is highly specialized, supporting the tumor’s aggressive behavior and its ability to evade conventional treatments. One critical component is the aberrant vascular network that complicates the delivery of chemotherapy across the blood–brain barrier. Antiangiogenic therapies emerged as a promising option but have shown limited efficacy in extending the survival of these patients. Comprehension of the complex vascular network of GB may be a key to overcoming the limitations of current therapies. Pericytes are gaining recognition within the context of the TME. These mural cells are essential for vascular integrity and may contribute to tumor progression and therapeutic resistance. Although their role has been evidenced in other tumors, they remain underexplored in GB. Pericytes are known to respond to tumor hypoxia and interact with vascular endothelia, influencing responses to DNA damage and antiangiogenic treatments. They actively regulate not only angiogenesis but also the different vasculogenic strategies for tumor neovascularization. Additionally, they affect leukocyte trafficking and tumor-associated macrophages. This review aims to integrate the various functions controlled by pericytes to favor deeper investigation into their actionable potential. Pericytes may represent a promising target for novel therapeutic strategies in order to improve patient outcomes. Full article
(This article belongs to the Special Issue Combination Therapies for Brain Tumors)
Show Figures

Figure 1

13 pages, 1246 KB  
Systematic Review
Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects
by Loïc Van Dieren, Tom Quisenaerts, Mackenzie Licata, Arnaud Beddok, Alexandre G. Lellouch, Dirk Ysebaert, Vera Saldien, Marc Peeters and Ivana Gorbaslieva
Cancers 2024, 16(21), 3656; https://doi.org/10.3390/cancers16213656 - 30 Oct 2024
Cited by 7 | Viewed by 4184
Abstract
Introduction: The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase [...] Read more.
Introduction: The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. Methods: This review is created in accordance with the PRISMA guidelines. Results and Conclusion: HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system. Full article
(This article belongs to the Topic Anti-Tumor Immune Responses 2.0)
Show Figures

Figure 1

55 pages, 3101 KB  
Review
Immune Cell Migration to Cancer
by Allison T. Ryan, Minsoo Kim and Kihong Lim
Cells 2024, 13(10), 844; https://doi.org/10.3390/cells13100844 - 16 May 2024
Cited by 16 | Viewed by 7168
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration [...] Read more.
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell’s ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors. Full article
(This article belongs to the Special Issue Advances in Leukocyte Migration and Location in Health and Disease)
Show Figures

Figure 1

13 pages, 5732 KB  
Review
A Pocket Guide to CCR5—Neurotropic Flavivirus Edition
by Amit Garg and Jean K. Lim
Viruses 2024, 16(1), 28; https://doi.org/10.3390/v16010028 - 23 Dec 2023
Cited by 1 | Viewed by 3512
Abstract
CCR5 is among the most studied chemokine receptors due to its profound significance in human health and disease. The notion that CCR5 is a functionally redundant receptor was challenged through the demonstration of its unique protective role in the context of West Nile [...] Read more.
CCR5 is among the most studied chemokine receptors due to its profound significance in human health and disease. The notion that CCR5 is a functionally redundant receptor was challenged through the demonstration of its unique protective role in the context of West Nile virus in both mice and humans. In the nearly two decades since this initial discovery, numerous studies have investigated the role of CCR5 in the context of other medically important neurotropic flaviviruses, most of which appear to support a broad neuroprotective role for this receptor, although how CCR5 exerts its protective effect has been remarkably varied. In this review, we summarize the mechanisms by which CCR5 controls neurotropic flaviviruses, as well as results from human studies evaluating a genetic link to CCR5, and propose unexplored areas of research that are needed to unveil even more exciting roles for this important receptor. Full article
(This article belongs to the Special Issue Neurotropic Viral Pathogens)
Show Figures

Figure 1

14 pages, 12490 KB  
Review
Molecular Pathogenesis of Central and Peripheral Nervous System Complications in Anderson–Fabry Disease
by Antonino Tuttolomondo, Irene Baglio, Renata Riolo, Federica Todaro, Gaspare Parrinello, Salvatore Miceli and Irene Simonetta
Int. J. Mol. Sci. 2024, 25(1), 61; https://doi.org/10.3390/ijms25010061 - 20 Dec 2023
Cited by 7 | Viewed by 4409
Abstract
Fabry disease (FD) is a recessive monogenic disease linked to chromosome X due to more than two hundred mutations in the alfa-galactosidase A (GLA) gene. Modifications of the GLA gene may cause the progressive accumulation of globotriaosylceramide (Gb3) and its deacylated form, globotriasylsphingosine [...] Read more.
Fabry disease (FD) is a recessive monogenic disease linked to chromosome X due to more than two hundred mutations in the alfa-galactosidase A (GLA) gene. Modifications of the GLA gene may cause the progressive accumulation of globotriaosylceramide (Gb3) and its deacylated form, globotriasylsphingosine (lyso-Gb3), in lysosomes of several types of cells of the heart, kidneys, skin, eyes, peripheral and central nervous system (not clearly and fully demonstrated), and gut with different and pleiotropic clinical symptoms. Among the main symptoms are acroparesthesias and pain crisis (involving the peripheral nervous system), hypohidrosis, abdominal pain, gut motility abnormalities (involving the autonomic system), and finally, cerebrovascular ischemic events due to macrovascular involvement (TIA and stroke) and lacunar strokes and white matter abnormalities due to a small vessel disease (SVS). Gb3 lysosomal accumulation causes cytoplasmatic disruption and subsequent cell death. Additional consequences of Gb3 deposits are inflammatory processes, abnormalities of leukocyte function, and impaired trafficking of some types of immune cells, including lymphocytes, monocytes, CD8+ cells, B cells, and dendritic cells. The involvement of inflammation in AFD pathogenesis conflicts with the reported poor correlation between CRP levels as an inflammation marker and clinical scores such as the Mainz Severity Score Index (MSSI). Also, some authors have suggested an autoimmune reaction is involved in the disease’s pathogenetic mechanism after the α-galactosidase A deficiency. Some studies have reported a high degree of neuronal apoptosis inhibiting protein as a critical anti-apoptotic mediator in children with Fabry disease compared to healthy controls. Notably, this apoptotic upregulation did not change after treatment with enzymatic replacement therapy (ERT), with a further upregulation of the apoptosis-inducing factor after ERT started. Gb3-accumulation has been reported to increase the degree of oxidative stress indexes and the production of reactive oxygen species (ROS). Lipids and proteins have been reported as oxidized and not functioning. Thus, neurological complications are linked to different pathogenetic molecular mechanisms. Progressive accumulation of Gb3 represents a possible pathogenetic event of peripheral nerve involvement. In contrast, central nervous system participation in the clinical setting of cerebrovascular ischemic events seems to be due to the epitheliopathy of Anderson–Fabry disease with lacunar lesions and white matter hyperintensities (WMHs). In this review manuscript, we revised molecular mechanisms of peripheral and central neurological complications of Anderson–Fabry Disease. The management of Fabry disease may be improved by the identification of biomarkers that reflect the clinical course, severity, and progression of the disease. Intensive research on biomarkers has been conducted over the years to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. Recent proteomic or metabolomic studies are in progress, investigating plasma proteome profiles in Fabry patients: these assessments may be useful to characterize the molecular pathology of the disease, improve the diagnostic process, and monitor the response to treatment. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 11287 KB  
Article
PEPITEM Treatment Ameliorates EAE in Mice by Reducing CNS Inflammation, Leukocyte Infiltration, Demyelination, and Proinflammatory Cytokine Production
by Mohammed Alassiri, Fahd Al Sufiani, Mohammed Aljohi, Asma Alanazi, Aiman Saud Alhazmi, Bahauddeen M. Alrfaei, Hasan Alnakhli, Yasser A. Alshawakir, Saleh M. Alharby, Abdullah Y. Almubarak, Mohammed Alasseiri, Nora Alorf and Mashan L. Abdullah
Int. J. Mol. Sci. 2023, 24(24), 17243; https://doi.org/10.3390/ijms242417243 - 8 Dec 2023
Cited by 3 | Viewed by 2781
Abstract
To investigate the effect of the therapeutic treatment of the immunopeptide, peptide inhibitor of trans-endothelial migration (PEPITEM) on the severity of disease in a mouse model of experimental autoimmune encephalomyelitis (EAE) as a model for human multiple sclerosis (MS), a series of experiments [...] Read more.
To investigate the effect of the therapeutic treatment of the immunopeptide, peptide inhibitor of trans-endothelial migration (PEPITEM) on the severity of disease in a mouse model of experimental autoimmune encephalomyelitis (EAE) as a model for human multiple sclerosis (MS), a series of experiments were conducted. Using C57BL/6 female mice, we dosed the PEPITEM in the EAE model via IP after observing the first sign of inflammation. The disease was induced using MOG35-55 and complete Freund’s adjuvants augmented with pertussis toxin. The EAE score was recorded daily until the end of the experiment (21 days). The histological and immunohistochemistry analysis was conducted on the spinal cord sections. A Western blot analysis was performed to measure the protein concentration of MBP, MAP-2, and N-Cadherin, and ELISA kits were used to measure IL-17 and FOXP3 in the serum and spinal cord lysate. The therapeutic treatment with PEPITEM reduced the CNS infiltration of T cells, and decreased levels of the protein concertations of MBP, MAP-2, and N-Cadherin were observed, in addition to reduced concertations of IL-17 and FOXP3. Using PEPITEM alleviated the severity of the symptoms in the EAE model. Our study revealed the potential of PEPITEM to control inflammation in MS patients and to reduce the harmful effects of synthetic drugs. Full article
Show Figures

Figure 1

23 pages, 1500 KB  
Review
Heterodimers Are an Integral Component of Chemokine Signaling Repertoire
by Kimia Kaffashi, Didier Dréau and Irina V. Nesmelova
Int. J. Mol. Sci. 2023, 24(14), 11639; https://doi.org/10.3390/ijms241411639 - 19 Jul 2023
Viewed by 2798
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell–cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines [...] Read more.
Chemokines are a family of signaling proteins that play a crucial role in cell–cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network. Full article
(This article belongs to the Special Issue Protein-Protein Interactions in Cellular Function)
Show Figures

Figure 1

38 pages, 8855 KB  
Review
Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond
by Peter M. Benz, Timo Frömel, Hebatullah Laban, Joana Zink, Lea Ulrich, Dieter Groneberg, Reinier A. Boon, Philip Poley, Thomas Renne, Cor de Wit and Ingrid Fleming
Cells 2023, 12(13), 1740; https://doi.org/10.3390/cells12131740 - 28 Jun 2023
Cited by 3 | Viewed by 4518
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the [...] Read more.
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms. Full article
(This article belongs to the Special Issue Exclusive Review Papers in "Cell Signaling")
Show Figures

Graphical abstract

19 pages, 5067 KB  
Article
An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential
by Matthew Gibb and Christie M. Sayes
Int. J. Mol. Sci. 2023, 24(12), 10104; https://doi.org/10.3390/ijms241210104 - 14 Jun 2023
Cited by 4 | Viewed by 2712
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be [...] Read more.
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization. Full article
Show Figures

Figure 1

22 pages, 7255 KB  
Review
Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome
by Melvin R. Hayden
Medicina 2023, 59(6), 1124; https://doi.org/10.3390/medicina59061124 - 11 Jun 2023
Cited by 10 | Viewed by 4614
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain’s sentinel [...] Read more.
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain’s sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs’ toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

18 pages, 1715 KB  
Review
The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression
by Kwang-Min Lee, Eun-Chan Seo, Jeong-Hyung Lee, Hyo-Jin Kim and Cheol Hwangbo
Int. J. Mol. Sci. 2023, 24(11), 9418; https://doi.org/10.3390/ijms24119418 - 29 May 2023
Cited by 28 | Viewed by 7135
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 [...] Read more.
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1’s role in regulating exosome trafficking and its associated cellular signaling pathways. Full article
(This article belongs to the Special Issue Cellular Signalling Transduction)
Show Figures

Figure 1

11 pages, 2119 KB  
Article
Towards Non-Invasive Intravital Microscopy: Advantages of Using the Ear Lobe Instead of the Cremaster Muscle
by Iara Mota-Silva, Miguel A. R. B. Castanho and Ana Santos Silva-Herdade
Life 2023, 13(4), 887; https://doi.org/10.3390/life13040887 - 27 Mar 2023
Cited by 1 | Viewed by 2298
Abstract
Inflammation is essential in the protection of the organism and wound repair, but in cases of chronic inflammation can also cause microvasculature deterioration. Thus, inflammation monitorization studies are important to test potential therapeutics. The intravital microscopy (IVM) technique monitors leukocyte trafficking in vivo, [...] Read more.
Inflammation is essential in the protection of the organism and wound repair, but in cases of chronic inflammation can also cause microvasculature deterioration. Thus, inflammation monitorization studies are important to test potential therapeutics. The intravital microscopy (IVM) technique monitors leukocyte trafficking in vivo, being a commonly used procedure to report systemic conditions. Although the cremaster muscle, an established protocol for IVM, may affect the hemodynamics because of its surgical preparation, only male animals are used, and longitudinal studies over time are not feasible. Thinking how this impacts future studies, our aim is to understand if the IVM technique can be successfully performed using the ear lobe instead of the cremaster muscle. Elevated IL-1β plasmatic concentrations confirmed the systemic inflammation developed in a diabetic animal model, while the elevated number of adherent and rolling leukocytes in the ear lobe allowed for the same conclusion. Thus, this study demonstrates that albeit its thickness, the ear lobe protocol for IVM is efficient, non-invasive, more reliable, cost-effective and timesaving. Full article
Show Figures

Figure 1

18 pages, 1278 KB  
Review
The Role of Pericytes in Regulation of Innate and Adaptive Immunity
by Siarhei A. Dabravolski, Elena R. Andreeva, Ilya I. Eremin, Alexander M. Markin, Irina I. Nadelyaeva, Alexander N. Orekhov and Alexandra A. Melnichenko
Biomedicines 2023, 11(2), 600; https://doi.org/10.3390/biomedicines11020600 - 17 Feb 2023
Cited by 25 | Viewed by 4704
Abstract
Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise [...] Read more.
Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes’ response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders. Full article
(This article belongs to the Special Issue State-of-the-Art Immunology and Immunotherapy in Europe)
Show Figures

Figure 1

Back to TopTop