Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = leptonic models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1462 KiB  
Article
From Gamma Rays to Cosmic Rays: Lepto-Hadronic Modeling of Blazar Sources as Candidates for Ultra-High-Energy Cosmic Rays
by Luiz Augusto Stuani Pereira and Samuel Victor Bernardo da Silva
Universe 2025, 11(8), 266; https://doi.org/10.3390/universe11080266 - 14 Aug 2025
Abstract
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR acceleration and high-energy neutrino production. In this work, we investigate three blazar sources, AP Librae, 1H 1914–194, and PKS 0735+178, using multiwavelength spectral energy distribution (SED) modeling. These sources span a range of synchrotron peak classes and redshifts, providing a diverse context to explore the physical conditions in relativistic jets. We employ both leptonic and lepto-hadronic models to describe their broadband emission from radio to TeV energies, aiming to constrain key jet parameters such as magnetic field strength, emission region size, and particle energy distributions. Particular attention is given to evaluating their potential as sources of UHECRs and high-energy neutrinos. Our results shed light on the complex interplay between particle acceleration mechanisms, radiative processes, and multi-messenger signatures in extreme astrophysical environments. Full article
(This article belongs to the Special Issue Ultra-High Energy Cosmic Rays: Past, Present and Future)
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 158
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

12 pages, 690 KiB  
Article
An Overview of the MUSES Calculation Engine and How It Can Be Used to Describe Neutron Stars
by Mateus Reinke Pelicer, Veronica Dexheimer and Joaquin Grefa
Universe 2025, 11(7), 200; https://doi.org/10.3390/universe11070200 - 20 Jun 2025
Cited by 1 | Viewed by 247
Abstract
For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management [...] Read more.
For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management system, which allows users to calculate the EoSs of dense and hot matter that can be used, e.g., to describe neutron stars. For this work, we make use of two MUSES EoS modules, i.e., Crust Density Functional Theory and Chiral Mean Field model, with beta-equilibrium with leptons enforced in the Lepton module, then connected by the Synthesis module using different functions: hyperbolic tangent, generalized Gaussian, bump, and smoothstep. We then calculate stellar structure using the QLIMR module and discuss how the different interpolating functions affect our results. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

11 pages, 432 KiB  
Article
Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model
by Martin V. Ivanov and Anton N. Antonov
Universe 2025, 11(4), 119; https://doi.org/10.3390/universe11040119 - 4 Apr 2025
Viewed by 388
Abstract
We investigate quasielastic (anti)neutrino scattering on the 12C nucleus utilizing a novel scaling variable, ψ*. This variable is derived from the interacting relativistic Fermi gas model, which incorporates both scalar and vector interactions, leading to a relativistic effective mass for [...] Read more.
We investigate quasielastic (anti)neutrino scattering on the 12C nucleus utilizing a novel scaling variable, ψ*. This variable is derived from the interacting relativistic Fermi gas model, which incorporates both scalar and vector interactions, leading to a relativistic effective mass for the interacting nucleons. For inclusive lepton scattering from nuclei, we develop a new scaling function, denoted as fQE(ψ*), based on the coherent density fluctuation model (CDFM). This model serves as a natural extension of the relativistic Fermi gas (RFG) model applicable to finite nuclei. In this study, we compute theoretical predictions and compare them with experimental data from Minerνa and T2K for inclusive (anti)neutrino cross-sections. The scaling function is derived within the CDFM framework, employing a relativistic effective mass of mN*=0.8mN. The findings demonstrate a high degree of consistency with experimental data across all (anti)neutrino energy ranges. Full article
(This article belongs to the Special Issue Neutrino Insights: Peering into the Subatomic Universe)
Show Figures

Figure 1

9 pages, 1080 KiB  
Review
Lepton Flavour Universality Tests Using Semileptonic b-Hadron Decays at the LHCb Detector
by Bogdan Kutsenko
Particles 2025, 8(1), 5; https://doi.org/10.3390/particles8010005 - 14 Jan 2025
Viewed by 825
Abstract
This review highlights advancements in testing Lepton Flavour Universality (LFU) through semileptonic b-hadron decays at the LHCb detector. Measurements of the LFU R(D) and R(D*) provide evidence of deviations from Standard Model (SM) predictions, suggesting [...] Read more.
This review highlights advancements in testing Lepton Flavour Universality (LFU) through semileptonic b-hadron decays at the LHCb detector. Measurements of the LFU R(D) and R(D*) provide evidence of deviations from Standard Model (SM) predictions, suggesting the presence of possible New Physics (NP). However, the D longitudinal polarisation results are in good agreement with SM expectations, placing constraints on potential NP theories, such as the leptoquarks or charged Higgs models. Further improvements in the measurements’ precision are expected with the new data from LHCb Run 3, collected with higher instantaneous luminosity and improved trigger. Full article
Show Figures

Figure 1

10 pages, 333 KiB  
Review
Hunting for Bileptons at Hadron Colliders
by Gennaro Corcella
Entropy 2024, 26(10), 850; https://doi.org/10.3390/e26100850 - 8 Oct 2024
Cited by 1 | Viewed by 728
Abstract
I review possible signals at hadron colliders of bileptons, namely doubly charged vectors or scalars with lepton number L=±2, as predicted by a 331 model, based on a [...] Read more.
I review possible signals at hadron colliders of bileptons, namely doubly charged vectors or scalars with lepton number L=±2, as predicted by a 331 model, based on a SU(3)c×SU(3)L×U(1)X symmetry. In particular, I account for a version of the 331 model wherein the embedding of the hypercharge is obtained with the addition of three exotic quarks and vector bileptons. Furthermore, a sextet of SU(3)L, necessary to provide masses to leptons, yields an extra scalar sector, including a doubly charged Higgs, i.e., scalar bileptons. As bileptons are mostly produced in pairs at hadron colliders, their main signal is provided by two same-sign lepton pairs at high invariant mass. Nevertheless, they can also decay according to non-leptonic modes, such as a TeV-scale heavy quark, charged 4/3 or 5/3, plus a Standard Model quark. I explore both leptonic and non-leptonic decays and the sensitivity to the processes of the present and future hadron colliders. Full article
Show Figures

Figure 1

16 pages, 11726 KiB  
Article
Future Circular Lepton Collider Vibrational Crosstalk
by Purinut Lersnimitthum, Audrey Piccini, Federico Carra, Tirawat Boonyatee, Niphon Wansophark and Nopdanai Ajavakom
Vibration 2024, 7(4), 912-927; https://doi.org/10.3390/vibration7040048 - 4 Oct 2024
Cited by 1 | Viewed by 2093
Abstract
CERN, the European Organisation for Nuclear Research is studying the feasibility of the Future Circular Collider, considering both financial and technical aspects. One of the challenges is that the performance of particle accelerators relies on the dynamic stability of structures, affected by multiple [...] Read more.
CERN, the European Organisation for Nuclear Research is studying the feasibility of the Future Circular Collider, considering both financial and technical aspects. One of the challenges is that the performance of particle accelerators relies on the dynamic stability of structures, affected by multiple sources of vibrations, including crosstalk vibration between two particle accelerators, the Booster and Collider, in the Future Circular Lepton Collider. This research aims to find a methodology for determining transfer functions, specifically crosstalk transfer functions, between the Collider and Booster within an underground tunnel. Also, it aims to determine how significant crosstalk is compared to the vibration from other sources, such as ground vibrations. The transfer functions of the tunnel were independently determined from internal structures using the Finite Element Method, employing 2D plane strain and the standard absorbing boundary to model the underground tunnel. It was found that the overall gain of crosstalk was less than 10% of that of ground-to-magnetic axis of either the Collider or Booster. This method may be used to optimize the tunnel layout from a vibration point of view. It appears that vibrations from crosstalk are far lower compared to vibrations from ground vibrations. Full article
Show Figures

Figure 1

18 pages, 1023 KiB  
Review
Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future
by Jirina R. Stone
Symmetry 2024, 16(8), 1038; https://doi.org/10.3390/sym16081038 - 13 Aug 2024
Cited by 2 | Viewed by 2071
Abstract
The concept of symmetry under various transformations of quantities describing basic natural phenomena is one of the fundamental principles in the mathematical formulation of physical laws. Starting with Noether’s theorems, we highlight some well–known examples of global symmetries and symmetry breaking on the [...] Read more.
The concept of symmetry under various transformations of quantities describing basic natural phenomena is one of the fundamental principles in the mathematical formulation of physical laws. Starting with Noether’s theorems, we highlight some well–known examples of global symmetries and symmetry breaking on the particle level, such as the separation of strong and electroweak interactions and the Higgs mechanism, which gives mass to leptons and quarks. The relation between symmetry energy and charge symmetry breaking at both the nuclear level (under the interchange of protons and neutrons) and the particle level (under the interchange of u and d quarks) forms the main subject of this work. We trace the concept of symmetry energy from its introduction in the simple semi-empirical mass formula and liquid drop models to the most sophisticated non-relativistic, relativistic, and ab initio models. Methods used to extract symmetry energy attributes, utilizing the most significant combined terrestrial and astrophysical data and theoretical predictions, are reviewed. This includes properties of finite nuclei, heavy-ion collisions, neutron stars, gravitational waves, and parity–violating electron scattering experiments such as CREX and PREX, for which selected examples are provided. Finally, future approaches to investigation of the symmetry energy and its properties are discussed. Full article
Show Figures

Figure 1

23 pages, 940 KiB  
Review
Overview of BK(∗)ℓℓ Theoretical Calculations and Uncertainties
by Farvah Mahmoudi and Yann Monceaux
Symmetry 2024, 16(8), 1006; https://doi.org/10.3390/sym16081006 - 7 Aug 2024
Cited by 6 | Viewed by 1240
Abstract
The search for New Physics (NP) beyond the Standard Model (SM) has been a central focus of particle physics, including in the context of B-meson decays involving bs transitions. These transitions, mediated by flavour-changing neutral currents, are highly [...] Read more.
The search for New Physics (NP) beyond the Standard Model (SM) has been a central focus of particle physics, including in the context of B-meson decays involving bs transitions. These transitions, mediated by flavour-changing neutral currents, are highly sensitive to small NP effects due to their suppression in the SM. While direct searches at colliders have not yet led to NP discoveries, indirect probes through semi-leptonic decays have revealed anomalies in observables such as the branching fraction B(BKμμ) and the angular observable P5(BKμμ). In order to assess the observed tensions, it is essential to ensure an accurate SM prediction. In this review, we examine the theoretical basis of the BK() decays, addressing in particular key uncertainties arising from local and non-local form factors. We also discuss the impact of QED corrections to the Wilson coefficients, as well as the effect of CKM matrix elements on the predictions and the tension with the experimental measurements. We discuss the most recent results, highlighting ongoing efforts to refine predictions and to constrain potential signs of NP in these critical decay processes. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

26 pages, 1071 KiB  
Review
Lepton Flavor Universality Tests in Semileptonic bc Decays
by Suzanne Klaver and Marcello Rotondo
Symmetry 2024, 16(8), 964; https://doi.org/10.3390/sym16080964 - 29 Jul 2024
Viewed by 1491
Abstract
Semileptonic decays of b- to c-hadrons provide an exciting environment to probe new physics and currently present some of the most compelling anomalies in the field of flavor physics. Measurements of the lepton flavor universality ratios R(D*), comparing [...] Read more.
Semileptonic decays of b- to c-hadrons provide an exciting environment to probe new physics and currently present some of the most compelling anomalies in the field of flavor physics. Measurements of the lepton flavor universality ratios R(D*), comparing branching fractions with τ and μ leptons, show a discrepancy of over 3σ with respect to the Standard Model, and suggest that the coupling to τ leptons is stronger than predicted. Measurements of angular distributions as well as polarization in b- to c-hadron decays provide additional sensitivity to new physics. This review article offers an overview of the theory of semileptonic b- to c-hadron decays, presents the experiments and experimental techniques used to perform measurements of these decays, and summarizes the latest experimental results with their implications. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

13 pages, 1812 KiB  
Review
Short-Distance Physics with Rare Kaon Decays
by Siavash Neshatpour
Symmetry 2024, 16(8), 946; https://doi.org/10.3390/sym16080946 - 24 Jul 2024
Cited by 1 | Viewed by 1708
Abstract
In this write-up, we provide an overview of the existing theoretical framework concerning rare kaon decays, with a particular emphasis on flavour-changing neutral current processes. These decays offer crucial indirect pathways for investigating short-distance new physics. Our discussion will encompass standard model predictions [...] Read more.
In this write-up, we provide an overview of the existing theoretical framework concerning rare kaon decays, with a particular emphasis on flavour-changing neutral current processes. These decays offer crucial indirect pathways for investigating short-distance new physics. Our discussion will encompass standard model predictions for relevant observables, alongside an assessment of their capacity to probe new physics through a comparison with experimental data. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

15 pages, 3695 KiB  
Article
Lepton Flavour Universality in Rare B Decays
by Paula Álvarez Cartelle and Richard Morgan Williams
Symmetry 2024, 16(7), 822; https://doi.org/10.3390/sym16070822 - 30 Jun 2024
Viewed by 1806
Abstract
Tests of lepton flavour universality in rare decays of b hadrons mediated by flavour-changing neutral-current transitions constitute sensitive probes for physics beyond the standard model. In recent years, such tests have become increasingly precise and have attracted significant theoretical and experimental attention. In [...] Read more.
Tests of lepton flavour universality in rare decays of b hadrons mediated by flavour-changing neutral-current transitions constitute sensitive probes for physics beyond the standard model. In recent years, such tests have become increasingly precise and have attracted significant theoretical and experimental attention. In this article, we review the status of searches for lepton flavour universality violations in these processes and discuss prospects for future measurements at various facilities. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

9 pages, 243 KiB  
Article
Flipped Quartification: Product Group Unification with Leptoquarks
by James B. Dent, Thomas W. Kephart, Heinrich Päs and Thomas J. Weiler
Entropy 2024, 26(7), 533; https://doi.org/10.3390/e26070533 - 21 Jun 2024
Viewed by 968
Abstract
The quartification model is an SU(3)4 extension with a bi-fundamental fermion sector of the well-known SU(3)3 bi-fundamentalfication model. An alternative “flipped” version of the quartification model is obtained by rearrangement of the particle [...] Read more.
The quartification model is an SU(3)4 extension with a bi-fundamental fermion sector of the well-known SU(3)3 bi-fundamentalfication model. An alternative “flipped” version of the quartification model is obtained by rearrangement of the particle assignments. The flipped model has two standard (bi-fundamentalfication) families and one flipped quartification family. In contrast to traditional product group unification models, flipped quartification stands out by featuring leptoquarks and thus allows for new mechanisms to explain the generation of neutrino masses and possible hints of lepton-flavor non-universality. Full article
12 pages, 577 KiB  
Communication
Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders
by Xunye Cai, Jingshu Li, Ran Ding, Meng Lu, Zhengyun You and Qiang Li
Universe 2024, 10(6), 243; https://doi.org/10.3390/universe10060243 - 31 May 2024
Cited by 3 | Viewed by 1177
Abstract
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the [...] Read more.
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the search for CLFV will reach an unprecedented level of precision. Many BSM models allow CLFV processes at the tree level, such as the R-parity-violating (RPV) Minimal Supersymmetric Standard Model (MSSM), which is a good choice for benchmarking. In this paper, we perform a detailed fast Monte Carlo simulation study on RPV-induced CLFV processes at future lepton colliders, including a 240 GeV circular electron positron collider (CEPC) and a 6 or 14 TeV Muon Collider. As a result, we found that the upper limits on the τ-related RPV couplings will be significantly improved, while several new limits on RPV couplings can be set, which are inaccessible by low-energy experiments. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

14 pages, 2601 KiB  
Article
Sedenion Algebra Model as an Extension of the Standard Model and Its Link to SU(5)
by Qiang Tang and Jau Tang
Symmetry 2024, 16(5), 626; https://doi.org/10.3390/sym16050626 - 17 May 2024
Viewed by 1629
Abstract
In the Standard Model, ad hoc hypotheses assume the existence of three generations of point-like leptons and quarks, which possess a point-like structure and follow the Dirac equation involving four anti-commutative matrices. In this work, we consider the sedenion hypercomplex algebra as an [...] Read more.
In the Standard Model, ad hoc hypotheses assume the existence of three generations of point-like leptons and quarks, which possess a point-like structure and follow the Dirac equation involving four anti-commutative matrices. In this work, we consider the sedenion hypercomplex algebra as an extension of the Standard Model and show its close link to SU(5), which is the underlying symmetry group for the grand unification theory (GUT). We first consider the direct-product quaternion model and the eight-element octonion algebra model. We show that neither the associative quaternion model nor the non-associative octonion model could generate three fermion generations. Instead, we show that the sedenion model, which contains three octonion sub-algebras, leads naturally to precisely three fermion generations. Moreover, we demonstrate the use of basis sedenion operators to construct twenty-four 5 × 5 generalized lambda matrices representing SU(5) generators, in analogy to the use of octonion basis operators to generate Gell-Mann’s eight 3 × 3 lambda-matrix generators for SU(3). Thus, we provide a link between the sedenion algebra and Georgi and Glashow’s SU(5) GUT model that unifies the electroweak and strong interactions for the Standard Model’s elementary particles, which obey SU(3)SU(2)U(1) symmetry. Full article
(This article belongs to the Special Issue Symmetry in Geometric Mechanics and Mathematical Physics)
Show Figures

Figure 1

Back to TopTop