Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = layered rock salt LiCoO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3216 KiB  
Article
Electrolyte Optimization to Improve the High-Voltage Operation of Single-Crystal LiNi0.83Co0.11Mn0.06O2 in Lithium-Ion Batteries
by Wengao Zhao, Mayan Si, Kuan Wang, Enzo Brack, Ziyan Zhang, Xinming Fan and Corsin Battaglia
Batteries 2023, 9(11), 528; https://doi.org/10.3390/batteries9110528 - 25 Oct 2023
Cited by 4 | Viewed by 3316
Abstract
Single-crystal Ni-rich layered oxide materials LiNi1−x−yCoxMnyO2 (NCM, 1 – x − y ≥ 0.6) are emerging as promising cathode materials that do not show intergranular cracks as a result of the lack of grain boundaries and [...] Read more.
Single-crystal Ni-rich layered oxide materials LiNi1−x−yCoxMnyO2 (NCM, 1 – x − y ≥ 0.6) are emerging as promising cathode materials that do not show intergranular cracks as a result of the lack of grain boundaries and anisotropy of the bulk structure, enabling extended cyclability in lithium-ion batteries (LIBs) operating at high voltage. However, SC-NCM materials still suffer from capacity fading upon extended cycling. This degradation of capacity can be attributed to a reconstruction of the surface. A phase transformation from layered structures to disordered spinel/rock-salt structures was found to be responsible for impedance growth and capacity loss. Film-forming additives are a straightforward approach for the mitigation of surface reconstruction via the formation of a robust protection layer at the cathode’s surface. In this work, we investigate various additives on the electrochemical performance of single-crystal LiNi0.83Co0.11Mn0.06O2 (SC-NCM83). The results demonstrate that the use of 1% lithium difluoroxalate borate (LiDFOB) and 1% lithium difluorophosphate (LiPO2F2) additives substantially enhanced the cycling performance (with a capacity retention of 93.6% after 150 cycles) and rate capability in comparison to the baseline electrolyte (72.7%) as well as electrolytes using 1% LiDFOB (90.5%) or 1% LiPO2F2 (88.3%) individually. The superior cycling stability of the cell using the combination of both additives was attributed to the formation of a conformal cathode/electrolyte interface (CEI) layer, resulting in a stabilized bulk structure and decreased impedance upon long-term cycling, as evidenced via a combination of state-of-the-art analytical techniques. Full article
Show Figures

Graphical abstract

13 pages, 4331 KiB  
Article
Stabilizing the (003) Facet of Micron-Sized LiNi0.6Co0.2Mn0.2O2 Cathode Material Using Tungsten Oxide as an Exemplar
by Yang Li, Liubin Ben, Hailong Yu, Wenwu Zhao, Xinjiang Liu and Xuejie Huang
Inorganics 2022, 10(8), 111; https://doi.org/10.3390/inorganics10080111 - 3 Aug 2022
Cited by 9 | Viewed by 3256
Abstract
The structural stability of layered LiNi1-x-yCoxMnyO2 cathode materials is critical for guaranteeing their excellent electrochemical cycling performance, particularly at elevated temperatures. However, the notorious H2–H3 phase transition along with associated large changes in [...] Read more.
The structural stability of layered LiNi1-x-yCoxMnyO2 cathode materials is critical for guaranteeing their excellent electrochemical cycling performance, particularly at elevated temperatures. However, the notorious H2–H3 phase transition along with associated large changes in the c-axis or (003) facet is the fundamental origin of the anisotropic and abrupt change in the unit cell and the degradation of the cycling performance. In this study, we coat micron-sized LiNi0.6Co0.2Mn0.2O2 (NCM) with tungsten oxide via atomic layer deposition and investigate the atomic-to-microscopic structures in detail via advanced characterization techniques, such as Cs-corrected scanning transmission electron microscopy. The results reveal that coated tungsten oxide is predominately accumulated on the (003) facet of NCM, with the migration of a small amount of W6+ into this facet, resulting in a reduction of Ni3+ to Ni2+ and the formation of a rock-salt-like structure on the surface. The electrochemical cycling performance of tungsten-oxide-coated NCM is significantly improved, showing a capacity retention of 86.8% after 300 cycles at 55 °C, compared to only 69.4% for the bare NCM. Through further structural analysis, it is found that the initial tungsten-oxide-coating-induced (003) facet distortion effectively mitigates the expansion of the c-lattice during charge, as well as oxygen release from the lattice, resulting in a lowered strain in the cathode lattices and a crack in the cathode particles after prolonged cycling. Full article
Show Figures

Figure 1

15 pages, 6559 KiB  
Article
Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries
by Limin Ou, Shengheng Nong, Ruoxi Yang, Yaoying Li, Jinrong Tao, Pan Zhang, Haifu Huang, Xianqing Liang, Zhiqiang Lan, Haizhen Liu, Dan Huang, Jin Guo and Wenzheng Zhou
Nanomaterials 2022, 12(8), 1324; https://doi.org/10.3390/nano12081324 - 12 Apr 2022
Cited by 18 | Viewed by 5775
Abstract
Compared with the polycrystalline system, the single-crystalline ternary cathode material has better cycle stability because the only primary particles without grain boundaries effectively alleviate the formation of micro/nanocracks and retain better structural integrity. Therefore, it has received extensive research attention. There is no [...] Read more.
Compared with the polycrystalline system, the single-crystalline ternary cathode material has better cycle stability because the only primary particles without grain boundaries effectively alleviate the formation of micro/nanocracks and retain better structural integrity. Therefore, it has received extensive research attention. There is no consistent result whether tungsten oxide acts as doping and/or coating from the surface modification of the polycrystalline system. Meanwhile, there is no report on the surface modification of the single-crystalline system by tungsten oxide. In this paper, multirole surface modification of single-crystalline nickel-rich ternary cathode material LiNi0.6Co0.2Mn0.2O2 by WO3 is studied by a simple method of adding WO3 followed by calcination. The results show that with the change in the amount of WO3 added, single-crystalline nickel-rich ternary cathode material can be separately doped, separately coated, and both doped and coated. Either doping or coating effectively enhances the structural stability, reduces the polarization of the material, and improves the lithium-ion diffusion kinetics, thus improving the cycle stability and rate performance of the battery. Interestingly, both doping and coating (for SC-NCM622-0.5%WO3) do not show a more excellent synergistic effect, while the single coating (for SC-NCM622-1.0%WO3) after eliminating the rock-salt phase layer performs the most excellent modification effect. Full article
Show Figures

Graphical abstract

17 pages, 31619 KiB  
Article
Determination of Spinel Content in Cycled Li1.2Ni0.13Mn0.54Co0.13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffraction
by Matthias Quintelier, Tyché Perkisas, Romy Poppe, Maria Batuk, Mylene Hendrickx and Joke Hadermann
Symmetry 2021, 13(11), 1989; https://doi.org/10.3390/sym13111989 - 20 Oct 2021
Cited by 4 | Viewed by 3497
Abstract
Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local [...] Read more.
Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge–discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well. Full article
(This article belongs to the Special Issue Electron Diffraction and Structural Imaging)
Show Figures

Figure 1

10 pages, 1769 KiB  
Article
Thin Film Fabrication and Characterization of Layered Rock Salt LiCoO2 on Quartz Glass Spray-Coated with an Aqueous Ammonia Solution Involving Metal Acetates
by Philipus N. Hishimone, Kenta Watarai, Hiroki Nagai and Mitsunobu Sato
Coatings 2019, 9(2), 97; https://doi.org/10.3390/coatings9020097 - 5 Feb 2019
Cited by 3 | Viewed by 3687
Abstract
A LiCoO2 thin film on a quartz glass substrate was fabricated by a wet process involving heat treatment of a precursor film spray-coated with an aqueous ammonia solution containing LiCH3COO and Co(CH3COO)2. The precursor film formed [...] Read more.
A LiCoO2 thin film on a quartz glass substrate was fabricated by a wet process involving heat treatment of a precursor film spray-coated with an aqueous ammonia solution containing LiCH3COO and Co(CH3COO)2. The precursor film formed onto the substrate at 180 °C in air, and was heat treated at 500 °C in air for 0.5 h. The obtained film was spin-coated further with an ethanol-based precursor solution containing identical metal acetates, and heat treated at 500 °C in air for 0.5 h. The X-ray diffraction pattern of the resultant film showed only peaks assignable to the layered-rock-salt LiCoO2. Raman spectroscopy measurements revealed vibrational modes assignable to layered rock salt LiCoO2, with minor content of less than 5 mol% of spinel-type Co3O4. The field emission scanning electron microscopy images indicated that the resultant film was 0.21 μm thick, had no voids, and was a combination of small rounded grains measuring 18 nm in diameter and hexagonal grains larger than 0.2 μm in length. The Hall effect measurements indicated that the resultant thin film was a p-type semiconductor with electrical resistivity of 35(2) Ω·cm and a carrier concentration and carrier mobility of 8(2) × 1016 cm−3 and 2(1) cm2·V−1·s−1, respectively. Full article
Show Figures

Figure 1

10 pages, 3560 KiB  
Article
Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process
by Tao Cheng, Zhongtao Ma, Run Gu, Riming Chen, Yingchun Lyu, Anmin Nie and Bingkun Guo
Energies 2018, 11(10), 2712; https://doi.org/10.3390/en11102712 - 11 Oct 2018
Cited by 9 | Viewed by 4394
Abstract
The lithium-rich Li[Li0.2Ni0.13Mn0.54Co0.13]O2 nanoplates were synthesized using a molten-salt method. The nanoplates showed an initial reversible discharge capacity of 233 mA·h·g−1, with a fast capacity decay. The morphology and micro-structural change, after [...] Read more.
The lithium-rich Li[Li0.2Ni0.13Mn0.54Co0.13]O2 nanoplates were synthesized using a molten-salt method. The nanoplates showed an initial reversible discharge capacity of 233 mA·h·g−1, with a fast capacity decay. The morphology and micro-structural change, after different cycles, were studied by a scanning electron microscope (SEM) and transmission electron microscopy (TEM) to understand the mechanism of the capacity decay. Our results showed that the cracks generated from both the particle surface and the inner, and increased with long-term cycling at 0.1 C rate (C = 250 mA·g−1), together with the layered to spinel and rock-salt phase transitions. These results show that the cracks and phase transitions could be responsible for the capacity decay. The results will help us to understand capacity decay mechanisms, and to guide our future work to improve the electrochemical performance of lithium-rich cathode materials. Full article
(This article belongs to the Special Issue Electrochemical Energy Conversion and Storage Technologies 2018)
Show Figures

Figure 1

Back to TopTop