Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = laundry industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3111 KiB  
Article
Iron Sludge-Derived Photo-Fenton Reaction for Laundry Wastewater Effluent Oxidation and Process Optimization into Industrial Ecology Symbiosis
by Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Shehab A. Mansour, Abdullah F. Al Naim, Adil Alshoaibi, Najeh Rekik, Manasik M. Nour and Maha A. Tony
Catalysts 2025, 15(7), 669; https://doi.org/10.3390/catal15070669 - 10 Jul 2025
Viewed by 449
Abstract
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed [...] Read more.
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed as treatment factors for their direct impact on the oxidation of organic compounds. Additionally, optimal oxidation conditions are determined using the response surface methodology (RSM) technique, and the ranges of treatment variables are analyzed. The optimum values of a pH of 2.0, Fe sludge concentration of 99 mg/L, and H2O2 content of 402 mg/L resulted in optimal organics removal of up to 98%, expressed as Chemical Oxygen Demand (COD) removal. The oxidation efficacy attained from the design is confirmed and the model validation is assessed, and the suggestive model is accepted since it possesses a correlation coefficient of 97.7%. The thermodynamic and kinetic models are also investigated, and the reaction showed that the temperature increases resulted in the oxidation efficiency being reduced. The oxidation efficiency expressed as COD reduction is clearly characterized by first-order reaction kinetics. The thermodynamic characteristics indicated that the oxidation reaction was exothermic and not spontaneous. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 2657 KiB  
Article
Efficient Filtration Systems for Microplastic Elimination in Wastewater
by Jamal Sarsour, Benjamin Ewert, Bernd Janisch, Thomas Stegmaier and Götz T. Gresser
Microplastics 2025, 4(3), 36; https://doi.org/10.3390/microplastics4030036 - 30 Jun 2025
Viewed by 441
Abstract
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at [...] Read more.
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at filtering microplastic particles down to 1.5 µm. Polypropylene fabrics with pore sizes of 100, 50 and 20 µm and 3D warp-knitted fabrics with high porosity (96%) were used. Filtration tests were carried out with polyethylene model microplastic particles at a concentration of 167 mg/L. To regenerate the filter and restore its filtration performance, backwashing with filtered water and compressed air was applied. Field trials at an industrial laundry facility and a municipal wastewater treatment plant confirmed high removal efficiencies. The 3D textile sandwich structure promotes filter cake formation, allowing extended backwash intervals and the effective recovery of filtration capacity between 89.7% and 98.5%. The innovative use of 3D textile composites enables a high level of microplastic removal while extending the filter media lifetime. This makes a significant contribution to the reduction in microplastic emissions in the aquatic environment. The system is scalable, space and cost efficient and adaptable to various industrial applications and is thus a promising solution for advanced wastewater treatment. Full article
Show Figures

Figure 1

20 pages, 982 KiB  
Article
Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production
by Merve Aslı Ergün, Başak Esin Köktürk-Güzel and Tuğba Keskin-Gündoğdu
Fermentation 2025, 11(6), 319; https://doi.org/10.3390/fermentation11060319 - 4 Jun 2025
Viewed by 645
Abstract
Proteins are crucial for medicine, pharmaceuticals, food, and environmental applications since they are used in various fields such as synthesis of drugs, industrial enzyme production, biodegradable plastics, bioremediation processes, etc. Xylanase is an important and versatile enzyme with applications across various industries, including [...] Read more.
Proteins are crucial for medicine, pharmaceuticals, food, and environmental applications since they are used in various fields such as synthesis of drugs, industrial enzyme production, biodegradable plastics, bioremediation processes, etc. Xylanase is an important and versatile enzyme with applications across various industries, including pulp and paper, biofuel production, food processing, textiles, laundry detergents, and animal feed. Key parameters in biotechnological protein production include temperature, pH, and working volumes and especially medium compositions where optimization is crucial for large-scale applications due to cost considerations. Machine learning methods have emerged as effective alternatives to traditional statistical approaches in optimization. This study focuses on optimizing xylanase production via bioprocesses by employing regression analysis on datasets from various studies. The extreme gradient boosting (XGBoost) regression model was applied to predict xylanase activity under different experimental conditions, accurately predicting xylanase activity and identifying the significance of each variable. This study utilized experimentally derived datasets from peer-reviewed publications, in which the corresponding laboratory experiments had already been conducted and validated. The results demonstrate that machine learning methods can effectively optimize protein production processes, offering a strong alternative to traditional statistical approaches. Full article
Show Figures

Graphical abstract

14 pages, 1558 KiB  
Article
Biocatalytic Potential of a Raoultella terrigena-Derived Lipolytic Enzyme for High-Performance Detergents
by Mfezeko Noxhaka, Nonso E. Nnolim, Lindelwa Mpaka and Uchechukwu U. Nwodo
Fermentation 2025, 11(4), 225; https://doi.org/10.3390/fermentation11040225 - 17 Apr 2025
Viewed by 735
Abstract
Dump sites harbour microorganisms with potential for environmentally friendly industrial applications. This study assessed the lipolytic activity of municipal dumpsite-associated bacteria and evaluated the stability of the most potent isolate’s lipolytic enzyme against laundry detergents. It also examined the crude lipase’s ability to [...] Read more.
Dump sites harbour microorganisms with potential for environmentally friendly industrial applications. This study assessed the lipolytic activity of municipal dumpsite-associated bacteria and evaluated the stability of the most potent isolate’s lipolytic enzyme against laundry detergents. It also examined the crude lipase’s ability to remove stains from cotton fabric. Among twelve bacteria isolated, five demonstrated notable halo zones on tributyrin agar plates. The diameters (mm) were MN38 (11 ± 1.4), MN1310 (8.5 ± 0.7), MN28 (6.5 ± 0.71), MN18 (7.0 ± 1.4), and MN310 (8.15 ± 0.21). Quantitative analysis revealed that MN38 exhibited the highest lipase activity (14.76 ± 0.27 U/mL), while MN1310 showed the lowest (6.40 ± 0.85 U/mL). Nucleotide sequence analysis identified the isolates as Raoultella terrigena veli18 (MN38), Stenotrophomonas maltophilia veli96 (MN1310), Viridibacillus sp. veli10 (MN28), Stenotrophomonas sp. veli19 (MN18), and Klebsiella sp. veli70 (MN310). The crude lipase from R. terrigena veli18 maintained 73.33%, 52.67%, 55.0%, and 54.0% of its original activity after 60 min of exposure to Sunlight, Surf, Maq, and Omo, respectively. Adding crude lipase to enzyme-free laundry detergents significantly enhanced their cleaning efficacy, completely removing oil stains from cotton fabric. This performance of R. terrigena veli18 crude lipase highlights its potential as an effective detergent bio-additive. Full article
(This article belongs to the Special Issue Microbial Production of Industrial Enzymes)
Show Figures

Figure 1

24 pages, 2575 KiB  
Article
Assessing European Consumers’ Willingness to Pay for Sustainable Laundry Detergents: A Choice Experiment Approach
by Maria Elena Saija and Sara Daniotti
Sustainability 2025, 17(8), 3365; https://doi.org/10.3390/su17083365 - 9 Apr 2025
Viewed by 1860
Abstract
The environmental impact of laundry detergents is a growing concern due to their chemical composition, production processes, disposal methods, and packaging waste. Understanding consumer preferences for sustainable detergents is essential to promoting environmentally responsible choices while ensuring product quality. This study explores European [...] Read more.
The environmental impact of laundry detergents is a growing concern due to their chemical composition, production processes, disposal methods, and packaging waste. Understanding consumer preferences for sustainable detergents is essential to promoting environmentally responsible choices while ensuring product quality. This study explores European consumers’ willingness to pay for sustainable detergent using a Choice Experiment (CE) framework, integrating attributes such as packaging materials, surfactant composition, washing temperature, efficiency, and price. A survey of 304 respondents across Europe revealed a preference for sustainability-related features, particularly reduced plastic packaging and renewable surfactants, over attributes like washing temperature and efficiency. Generational, socioeconomic, and regional differences influenced willingness to pay (WTP), with Spanish consumers, Baby Boomers, and higher-income groups showing the highest WTP. Despite positive attitudes towards sustainability, the study highlighted an attitude–behavior gap, where stated preferences did not always align with purchasing behavior, suggesting that performance and cost remain key factors. The findings highlight the need to align technological advancements with consumer expectations, balancing sustainability, performance, and affordability to drive the adoption of eco-friendly detergents. These insights provide valuable guidance for researchers and industry in advancing efforts that enhance market acceptance of environmentally sustainable laundry products across Europe. Full article
Show Figures

Figure 1

12 pages, 2678 KiB  
Article
A Novel Biodegradable Technology for Wool Fabric Restoration and Cotton Color Retention Based on Shikimic Acid and L-Arginine
by Taisiia Latypova, Darya Kosovskaya, Mikhail Lovygin, Grigoriy Evseev, Mariya Olkhovskaya and Viktor Filatov
Textiles 2024, 4(4), 549-560; https://doi.org/10.3390/textiles4040032 - 4 Dec 2024
Cited by 2 | Viewed by 1806
Abstract
The textile and garment care industries significantly impact ecological conditions and resources worldwide. Possible ways of minimizing the harmful influence on the environment include giving a preference to natural textiles; reducing the consumption rate by extending the lifespan of clothes, e.g., preserving colors [...] Read more.
The textile and garment care industries significantly impact ecological conditions and resources worldwide. Possible ways of minimizing the harmful influence on the environment include giving a preference to natural textiles; reducing the consumption rate by extending the lifespan of clothes, e.g., preserving colors and fibers; and using biodegradable garment care products. Wool is a natural fabric that must be washed with special laundry care products to preserve its initial appearance. Currently, there are no approaches that focus not only on preserving but also restoring wool fibers. To investigate the efficacy of biodegradable technology, consisting of natural-derived shikimic acid and L-arginine, in the restoration of wool fabric, SEM was applied. To analyze the obtained data, a novel three-point scale was suggested. In comparison with untreated samples, the composition promoted a smoothing of the scale structure of wool fibers of up to 34.87%. The system has shown efficacy in both the low pH (fabric softener) and high pH (laundry gel) systems. To further investigate biodegradable technology, the color retention of dark-colored cotton fabric was tested. It was shown that the composition promotes 96.15% color preservation after 10 laundry cycles when used in the fabric softener. Biodegradable technology is a promising solution for the maintenance of wool fabrics and color preservation solutions. Full article
Show Figures

Figure 1

15 pages, 2689 KiB  
Article
Mitigating Microfiber Pollution in Laundry Wastewater: Insights from a Filtration System Case Study in Galle, Sri Lanka
by Mahagama Gedara Yohan Lasantha Mahagamage, Sachith Gihan Gamage, Rathnayake Mudiyanselage Shehan Kaushalya Rathnayake, Premakumara Jagath Dickella Gamaralalage, Matthew Hengesbugh, Thejani Abeynayaka, Chathura Welivitiya, Lahiru Udumalagala, Chathura Rajitha and Supun Suranjith
Microplastics 2024, 3(4), 599-613; https://doi.org/10.3390/microplastics3040037 - 20 Oct 2024
Cited by 1 | Viewed by 2553
Abstract
Synthetic fibers are widely used in daily life due to their durability, elasticity, low cost, and ease of use. The textile industry is the primary source of synthetic microfibers, as these materials are mostly used in production processes. Globally, plastic pollution has been [...] Read more.
Synthetic fibers are widely used in daily life due to their durability, elasticity, low cost, and ease of use. The textile industry is the primary source of synthetic microfibers, as these materials are mostly used in production processes. Globally, plastic pollution has been identified as a major environmental threat in this era, since plastics are not degradable but break down into smaller particles such as mesoplastics, microplastics, and microfibers. Synthetic microfiber pollution is a significant issue in aquatic ecosystems, including oceans and rivers, with laundry wastewater being a major source. This problem is particularly pressing in cities like Galle, Sri Lanka, where numerous tourist hotels are located. Despite the urgency, there has been a lack of scientific and systematic analysis to fully understand the extent of the issue. This study addresses this gap by analyzing the generation of microfibers from laundry activities at a selected hotel and evaluating the efficiency of a laundry wastewater filtration system. This study focused on a fully automatic front-loading washing machine (23 kg capacity) with a load of 12 kg of polyester–cotton blend serviettes (black and red). Samples (1 L each) were taken from both treated and untreated wastewater during four wash cycles, with a total of 100 L of water used for the process. The samples were filtered through a 100 μm sieve and catalytic wet oxidation along with density separation were employed to extract the microfibers, which were then collected on a membrane filter paper (0.45 μm). Microfibers were observed and analyzed for shapes, colors and sizes under a stereo microscope. Results revealed that untreated laundry wastewater contained 10,028.7 ± 1420.8 microfibers per liter (n = 4), while treated wastewater samples recorded 191.5 ± 109.4 microfibers per liter (n = 4). Most of the microfibers observed were black and white/transparent colors. Further analysis revealed that 1 kg of polyester–cotton blend fabric can generate 336,833 microfibers per wash, which was reduced to 6367 microfibers after treatment. The filtration unit recorded an impressive efficiency of 98.09%, indicating a remarkably high capacity for removing microfibers from wastewater. These findings highlight the potential of such filtration techniques to significantly reduce microfiber emissions from laundry wastewater, presenting a promising approach to mitigating environmental pollution from microfibers. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

18 pages, 2504 KiB  
Article
Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
by Kyoung-Chan Kim, Byeong-Hun Oh, Jeong-Deok Baek, Chun-Sang Lee, Yong-Jae Lim, Hung-Soo Joo and Jin-Seok Han
Atmosphere 2024, 15(10), 1156; https://doi.org/10.3390/atmos15101156 - 27 Sep 2024
Cited by 2 | Viewed by 2520
Abstract
Volatile organic compounds (VOCs) are one of significant contributors to air pollution and have profound effects on human health and the environment. This study introduces a detailed analysis of VOC emissions from various industries within an industrial complex using a high-resolution measurement instrument. [...] Read more.
Volatile organic compounds (VOCs) are one of significant contributors to air pollution and have profound effects on human health and the environment. This study introduces a detailed analysis of VOC emissions from various industries within an industrial complex using a high-resolution measurement instrument. This study aimed to identify the VOC profiles and their concentrations across 12 industries. Sampling was conducted across 99 facilities in an industrial complex in South Korea, and VOC analysis was performed based on measurement data using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). The results indicated that the emission of oxygenated VOCs (OVOCs) was dominant in most industries. Aromatic hydrocarbons were also dominant in most industries, except in screen printing (SP), lubricating oil and grease manufacturing (LOG), and industrial laundry services (ILS) industries. Chlorinated VOCs (Cl-VOCs) showed a relatively higher level in the metal plating (MP) industry than those in other industries and nitrogen-containing VOCs (N-VOCs) showed high levels in general paints and similar product manufacturing (PNT), MP, and ILS industries, respectively. The gravure printing industry was identified as the highest emitter of VOCs, with the highest daily emissions reaching 5934 mg day−1, primarily consisting of ethyl acetate, toluene, butyl acetate, and propene. The findings suggest that the VOC emissions from the gravure printing and plastic synthetic leather industries should be primarily reduced, and it would be the most cost-effective approach to improving air quality. This study can provide the fundamental data for developing effective reduction technologies and policies of VOC, ultimately contributing to enhanced atmospheric models and regulatory measures. Full article
(This article belongs to the Special Issue Novel Insights into Air Pollution over East Asia (Second Edition))
Show Figures

Figure 1

14 pages, 2705 KiB  
Article
Cloning, Expression, and Characterization of a Metalloprotease from Thermophilic Bacterium Streptomyces thermovulgaris
by Amna Mushtaq, Sibtain Ahmed, Tahir Mehmood, Jorge Cruz-Reyes, Amer Jamil and Shafaq Nawaz
Biology 2024, 13(8), 619; https://doi.org/10.3390/biology13080619 - 15 Aug 2024
Cited by 3 | Viewed by 1906
Abstract
Proteases hydrolyze proteins and reduce them to smaller peptides or amino acids. Besides many biological processes, proteases play a crucial in different industrial applications. A 792 bp protease gene (nprB) from the thermophilic bacterium Streptomyces thermovulgaris was cloned and expressed in [...] Read more.
Proteases hydrolyze proteins and reduce them to smaller peptides or amino acids. Besides many biological processes, proteases play a crucial in different industrial applications. A 792 bp protease gene (nprB) from the thermophilic bacterium Streptomyces thermovulgaris was cloned and expressed in E. coli BL21 using pET 50b (+). Optimal recombinant protease expression was observed at 1 mM IPTG, 37 °C for 4 h. The resulting protease was observed in soluble form. The molecular mass estimated by SDS-PAGE and Western blot analysis of the protease (NprB) fused with His and Nus tag is ~70 KDa. The protease protein was purified by Ammonium sulfate precipitation and immobilized metal ion affinity chromatography. The optimum pH and temperature for protease activity using casein as substrate were 7.2 and 70 °C, respectively. The mature protease was active and retained 80% of its activity in a broad spectrum of pH 6–8 after 4 h of incubation. Also, the half-life of the protease at 70 °C was 4 h. EDTA (5 mM) completely inhibited the enzyme, proving the isolated protease was a metalloprotease. NprB activity was enhanced in the presence of Zn2+, Mn2+, Fe2+ and Ca2+, while Hg2+ and Ni2+ decreased its activity. Exposure to organic solvents did not affect the protease activity. The recombinant protease was stable in the presence of 10% organic solvents and surfactants. Further characterization showed that zinc-metalloprotease is promising for the detergent, laundry, leather, and pharmaceutical industries. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

20 pages, 4065 KiB  
Article
Laundry Isolate Delftia sp. UBM14 Capable of Biodegrading Industrially Relevant Aminophosphonates
by Ramona Riedel, Karsten Meißner, Arne Kaschubowski, Dirk Benndorf, Marion Martienssen and Burga Braun
Microorganisms 2024, 12(8), 1664; https://doi.org/10.3390/microorganisms12081664 - 13 Aug 2024
Cited by 1 | Viewed by 1665
Abstract
Phosphonates such as ethylenediaminetetra (methylenephosphonic acid) (EDTMP) and aminotris (methylenephosphonic acid) (ATMP) are used every day in water treatment processes or in household products. Their consumption is still increasing, regardless of the debates on their environmental impact. Here, the microbial characterisation and determination [...] Read more.
Phosphonates such as ethylenediaminetetra (methylenephosphonic acid) (EDTMP) and aminotris (methylenephosphonic acid) (ATMP) are used every day in water treatment processes or in household products. Their consumption is still increasing, regardless of the debates on their environmental impact. Here, the microbial characterisation and determination of the biodegradation potential of selected industrially relevant phosphonates for the isolate Delftia sp. UMB14 is reported. The opportunistic strain was isolated from a biofilm that was derived from a conventional washing machine using conventional detergents containing phosphonates. In antimicrobial susceptibility testing, the strain was only susceptible to sulfonamide, tetracycline, and chloramphenicol. Physiological and biochemical characteristics were determined using the BIOLOG EcoPlate assay. Most importantly, the strain was shown to convert D-malic acid and D-mannitol, as confirmed for strains of Delftia lacustris, and thus the new isolate could be closely related. Biodegradation tests with different phosphonates showed that the strain preferentially degrades ATMP and EDTMP but does not degrade glyphosate (GS) and amino (methylphosphonic acid) (AMPA). A specific gene amplification confirmed the presence of phnX (phosphonoacetaldehyde hydrolase) and the absence of PhnJ (the gene for the core component of C–P lyase). The presence of PhnCDE is strongly suggested for the strain, as it is common in Delftia lacustris species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 966 KiB  
Article
Laundry Machine Auto-Balancing Mechanism: Non-Linear Simulation of Imbalance Settlement
by Jiri Podesva, Pavel Marsalek, Jakub Cienciala, Lukas Drahorad and Radim Halama
Symmetry 2024, 16(8), 980; https://doi.org/10.3390/sym16080980 - 2 Aug 2024
Cited by 2 | Viewed by 1879
Abstract
The auto-balancing mechanism is used in the spin-dry regime of the laundry machine. The high rotating speed and unbalanced mass inside the drum create centrifugal force, which is the cause of vibration. The auto-balancing mechanism consists of a set of balls in the [...] Read more.
The auto-balancing mechanism is used in the spin-dry regime of the laundry machine. The high rotating speed and unbalanced mass inside the drum create centrifugal force, which is the cause of vibration. The auto-balancing mechanism consists of a set of balls in the circular guiding track. During the spin-dry process, the balls settle in the opposite position to an unbalanced mass. The centrifugal force of the balls compensates the one of the unbalanced masses. The paper deals with the non-linear numerical simulation of the imbalance settlement and the following parametric study. The solution to the problem is demonstrated on an industrial laundry machine with a maximum capacity of 7 kg of dry laundry and a maximum rotating speed of 930 rpm. The proposed numerical model allows us to investigate the behavior of the auto-balancing mechanism and predict the vibration amplitudes of the system. Full article
(This article belongs to the Special Issue Nonlinear Dynamics: Symmetry or Asymmetry Nonlinear Dynamical Systems)
Show Figures

Figure 1

19 pages, 1828 KiB  
Article
Carbon Footprint for Jeans’ Circular Economy Model Using Bagasse
by Toshiro Semba, Ryuzo Furukawa and Norihiro Itsubo
Sustainability 2024, 16(14), 6044; https://doi.org/10.3390/su16146044 - 15 Jul 2024
Cited by 2 | Viewed by 3293
Abstract
To date, clothing has been produced and disposed of in large quantities. It is also known that each process, from the procurement of raw materials to production, transportation, sales, laundry, and disposal, has a significant environmental impact. According to the Global Fashion Agenda, [...] Read more.
To date, clothing has been produced and disposed of in large quantities. It is also known that each process, from the procurement of raw materials to production, transportation, sales, laundry, and disposal, has a significant environmental impact. According to the Global Fashion Agenda, greenhouse gas (GHG) emissions from the fashion industry account for 4% of the global total. Therefore, apparel makers are shifting from a linear economy to a circular economy. For example, the Japanese start-up Curelabo Co., Ltd. (Okinawa, Japan) developed jeans (bagasse washi jeans) made from bagasse, which is a residual material derived from sugarcane after the extraction of cane juice. Furthermore, the use of improved dyeing reduces boiler fuel consumption and eliminates the need for detergents and acid. For disposal, the used jeans and their production waste are processed into biochar for carbon sequestration. In this study, we attempted to calculate GHG emissions using life cycle assessment (LCA) for the circular economy model developed by Curelabo Co., Ltd. GHG emissions from the production of bagasse washi jeans were 1.09 × 101 kg-CO2e. Dyeing, bleaching, and fabric finishing, known as the wet processes, were found to contribute a large proportion of GHG emissions due to their high energy consumption. Furthermore, the entire lifecycle of GHG emissions from bagasse washi jeans, including transport, sales, laundry, and disposal, were 1.53 × 101 kg-CO2e. First, the use of bagasse washi yarn for the weft reduced by 2.99 × 10−1 kg-CO2e compared with the use of conventional 100% bleached cotton yarn. Second, compared with conventional dyeing, GHG emissions from the improved dyeing process were reduced by 2.78 kg-CO2e. Third, the disposal of the used jeans and their production waste into biochar reduced GHG emissions by 9.01 × 10−1 kg-CO2e. Additionally, GHG emissions can be reduced by re-inputting waste in the paper-making process and by using liquefied natural gas as boiler fuel in the dyeing process. Full article
Show Figures

Figure 1

29 pages, 4994 KiB  
Review
A Systematic Literature Review for Addressing Microplastic Fibre Pollution: Urgency and Opportunities
by Carmen Ka-Man Chan, Chris Kwan-Yu Lo and Chi-Wai Kan
Water 2024, 16(14), 1988; https://doi.org/10.3390/w16141988 - 13 Jul 2024
Cited by 11 | Viewed by 3827
Abstract
Microplastic fibre (MPF) pollution is a pressing concern that demands urgent attention. These tiny synthetic textile fibres can be found in various ecosystems, including water and air, and pose significant environmental risks. Despite their size (less than 5 mm), they can harm aquatic [...] Read more.
Microplastic fibre (MPF) pollution is a pressing concern that demands urgent attention. These tiny synthetic textile fibres can be found in various ecosystems, including water and air, and pose significant environmental risks. Despite their size (less than 5 mm), they can harm aquatic and terrestrial organisms and human health. Studies have demonstrated that these imperceptible pollutants can contaminate marine environments, thereby putting marine life at risk through ingestion and entanglement. Additionally, microplastic fibres can absorb toxins from the surrounding water, heightening their danger when consumed by aquatic organisms. Traces of MPFs have been identified in human food chains and organs. To effectively combat MPF pollution, it is crucial to understand how these fibres enter ecosystems and their sources. Primary sources include domestic laundry, where synthetic textile fibres are released into wastewater during washing. Other significant sources include industrial effluents, breakdown of plastic materials, and atmospheric deposition. Additionally, MPFs can be directly released into the environment by improperly disposing of consumer products containing these fibres, such as non-woven hygienic products. A comprehensive approach is necessary to address this pressing issue, including understanding the sources, pathways, and potential risks of MPFs. Immediate action is required to manage contamination and mitigate MPF pollution. This review paper provides a systematic literature analysis to help stakeholders prioritise efforts towards reducing MPFs. The key knowledge gaps identified include a lack of information regarding non-standardised test methodology and reporting units, and a lack of information on manufacturing processes and products, to increase understanding of life cycle impacts and real hotspots. Stakeholders urgently need collaborative efforts to address the systematic changes required to tackle this issue and address the proposed opportunities, including targeted government interventions and viable strategies for the industry sector to lead action. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment III)
Show Figures

Figure 1

19 pages, 2772 KiB  
Article
Staphylococcus aureus Alkaline Protease: A Promising Additive for Industrial Detergents
by Mona Alonazi
Catalysts 2024, 14(7), 446; https://doi.org/10.3390/catal14070446 - 12 Jul 2024
Cited by 4 | Viewed by 1979
Abstract
A novel alkaline serine protease, derived from the Staphylococcus aureus strain ALA1 previously isolated from dromedary milk, was subjected to purification and characterization. Optimal protease production occurred under specific culture conditions. The purified protease, designated S. aureus Pr with a molecular mass of [...] Read more.
A novel alkaline serine protease, derived from the Staphylococcus aureus strain ALA1 previously isolated from dromedary milk, was subjected to purification and characterization. Optimal protease production occurred under specific culture conditions. The purified protease, designated S. aureus Pr with a molecular mass of 23,662 Da and an N-terminal sequence, showed an approximately 89% similar identity with those of other Staphylococcus strains. It exhibited its highest enzymatic activity at a pH of 10.0 and 60 °C in the presence of 3 mM Ca2+. Remarkable thermostability was observed at temperatures up to 70 °C and within a pH range of 6.0 to 10.0 for 2 h. The presence of Ca2+ or Mg2+ and Zn2+ significantly enhanced both enzymatic activity and thermal stability. Additionally, notable stability was demonstrated in the presence of reducing and chaotropic agents as well as in surfactants, oxidizing agents, and organic solvents commonly found in detergent compositions. This highlights the enzyme’s potential as a versatile biocatalyst, especially in detergents. Its stability and compatibility with laundry detergents matched Alcalase 2.5 L, type Dx, and the Stearothermophilus protease, used as controls. Collectively, this study investigated the potential utilization of S. aureus Pr in industrial detergents as an excellent candidate for incorporation as an additive in detergent formulations. Full article
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Development of a Standardised International Protocol for Evaluation of the Disinfection Efficacy of Healthcare Laundry Wash Processes
by Lucy Owen, Caroline Cayrou, Georgina Page, Martin Grootveld and Katie Laird
Appl. Microbiol. 2024, 4(1), 194-214; https://doi.org/10.3390/applmicrobiol4010014 - 18 Jan 2024
Cited by 2 | Viewed by 2968
Abstract
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and [...] Read more.
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and bioindicator testing for in-wash-process efficacy. Enterococcus faecium as an indicator species within industrial wash systems is preferable due to its high thermal and disinfectant tolerance. Methods for measuring laundry disinfection were compared; commercially available E. faecium bioindicators and contaminated cotton swatches (loose, in cloth bags or within nylon membranes) were laundered industrially at ambient temperature and microbial recovery determined. E. faecium was lost from cotton during laundering but retained by the bioindicator membrane, which allows disinfection efficacy to be measured without loss of microorganisms from the test swatch. Commercially available bioindicators were only permeable to disinfectants and detergents at ≥60 °C. Subsequently, polyethersulphone membranes for enclosing contaminated swatches were developed for low-temperature laundering, with permeability to industrial laundry chemistries at below ≤60 °C. This study demonstrates that bioindicators are the recommended methodology for laundry disinfection validation. The use of a universal healthcare laundry disinfection methodology will lead to standardised microbiological testing across the industry and improvements in infection control. Full article
Show Figures

Figure 1

Back to TopTop