Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Methods
2.2. Measurement Conditions and VOC Analysis Using PTR-ToF-MS
2.3. Calculation for VOC Emissions
2.4. Classification of Business Types
3. Results and Discussion
3.1. Characteristics for Functinal Group of VOCs
3.2. Characteristics of Individual VOC Species
3.3. Calculation for Emissions of VOC Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rumchev, K.; Brown, H.; Spickett, J. Volatile Organic Compounds: Do They Present a Risk to Our Health? Rev. Environ. Health 2007, 22, 39–56. [Google Scholar] [CrossRef]
- Pandey, P.; Yadav, R. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. IJPE 2018, 4, 14–26. [Google Scholar] [CrossRef]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health. In Air Pollution and Control; Sharma, N., Agarwal, A.K., Eastwood, P., Gupta, T., Singh, A.P., Eds.; Springer: Singapore, 2018; pp. 119–142. ISBN 978-981-10-7185-0. [Google Scholar]
- Zhou, X.; Zhou, X.; Wang, C.; Zhou, H. Environmental and Human Health Impacts of Volatile Organic Compounds: A Perspective Review. Chemosphere 2023, 313, 137489. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Kumar, A.; Singh, V.; Chakraborty, B.; Kumar, R.; Min, L. Recent Advancement in Organic Aerosol Understanding: A Review of Their Sources, Formation, and Health Impacts. Water Air Soil Pollut. 2023, 234, 750. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric Chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Ziemann, P.J.; Atkinson, R. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chem. Soc. Rev. 2012, 41, 6582–6605. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Kanakidou, M. Secondary Organic Aerosol Importance in the Future Atmosphere. Atmos. Environ. 2007, 41, 4682–4692. [Google Scholar] [CrossRef]
- Borbon, A.; Gilman, J.B.; Kuster, W.C.; Grand, N.; Chevaillier, S.; Colomb, A.; Dolgorouky, C.; Gros, V.; Lopez, M.; Sarda-Esteve, R.; et al. Emission Ratios of Anthropogenic Volatile Organic Compounds in Northern Mid-latitude Megacities: Observations versus Emission Inventories in Los Angeles and Paris. JGR Atmos. 2013, 118, 2041–2057. [Google Scholar] [CrossRef]
- Ehn, M.; Thornton, J.A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A Large Source of Low-Volatility Secondary Organic Aerosol. Nature 2014, 506, 476–479. [Google Scholar] [CrossRef]
- Louie, P.K.K.; Ho, J.W.K.; Tsang, R.C.W.; Blake, D.R.; Lau, A.K.H.; Yu, J.Z.; Yuan, Z.; Wang, X.; Shao, M.; Zhong, L. VOCs and OVOCs Distribution and Control Policy Implications in Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 125–135. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H. Contribution of VOC Sources to Photochemical Ozone Formation and Its Control Policy Implication in Hong Kong. Environ. Sci. Policy 2014, 38, 180–191. [Google Scholar] [CrossRef]
- He, Z.; Wang, X.; Ling, Z.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of Different Anthropogenic Volatile Organic Compound Sources to Ozone Formation at a Receptor Site in the Pearl River Delta Region and Its Policy Implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef]
- Cui, L.; Wu, D.; Wang, S.; Xu, Q.; Hu, R.; Hao, J. Measurement Report: Ambient Volatile Organic Compound (VOC) Pollution in Urban Beijing: Characteristics, Sources, and Implications for Pollution Control. Atmos. Chem. Phys. 2022, 22, 11931–11944. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source Profiles of Volatile Organic Compounds (VOCs) Measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Shen, L.; Xiang, P.; Liang, S.; Chen, W.; Wang, M.; Lu, S.; Wang, Z. Sources Profiles of Volatile Organic Compounds (VOCs) Measured in a Typical Industrial Process in Wuhan, Central China. Atmosphere 2018, 9, 297. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Zhang, Z.; Zhang, Q.; Zhang, T.; Niu, X.; Huang, Y.; Cui, L.; Xu, H.; et al. Urban VOC Profiles, Possible Sources, and Its Role in Ozone Formation for a Summer Campaign over Xi’an, China. Environ. Sci. Pollut. Res. 2019, 26, 27769–27782. [Google Scholar] [CrossRef]
- Hegazi, A.H.; Andersson, J.T. Limitations to GC-MS Determination of Sulfur-Containing Polycyclic Aromatic Compounds in Geochemical, Petroleum, and Environmental Investigations. Energy Fuels 2007, 21, 3375–3384. [Google Scholar] [CrossRef]
- Nevigato, T.; Masci, M.; Orban, E.; Di Lena, G.; Casini, I.; Caproni, R. Analysis of Fatty Acids in 12 Mediterranean Fish Species: Advantages and Limitations of a New GC-FID/GC–MS Based Technique. Lipids 2012, 47, 741–753. [Google Scholar] [CrossRef]
- Gin, J.; Imwinkelried, E.J. Gas Chromatography-Mass Spectrometer (GC/MS): In Scientific Evidence, Even “Gold Standard” Techniques Have Limitations; SSRN Scholarly Paper: Rochester, NY, USA, 2018. [Google Scholar]
- Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J. Volatile Organic Compounds in a Typical Petrochemical Industrialized Valley City of Northwest China Based on High-Resolution PTR-MS Measurements: Characterization, Sources and Chemical Effects. Sci. Total Environ. 2019, 671, 883–896. [Google Scholar] [CrossRef]
- Maji, S.; Yadav, R.; Beig, G.; Gunthe, S.S.; Ojha, N. On the Processes Governing the Variability of PTR-MS Based VOCs and OVOCs in Different Seasons of a Year over Hillocky Mega City of India. Atmos. Res. 2021, 261, 105736. [Google Scholar] [CrossRef]
- Krechmer, J.; Lopez-Hilfiker, F.; Koss, A.; Hutterli, M.; Stoermer, C.; Deming, B.; Kimmel, J.; Warneke, C.; Holzinger, R.; Jayne, J.; et al. Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Anal. Chem. 2018, 90, 12011–12018. [Google Scholar] [CrossRef] [PubMed]
- Coggon, M.M.; Stockwell, C.E.; Claflin, M.S.; Pfannerstill, E.Y.; Xu, L.; Gilman, J.B.; Marcantonio, J.; Cao, C.; Bates, K.; Gkatzelis, G.I.; et al. Identifying and Correcting Interferences to PTR-ToF-MS Measurements of Isoprene and Other Urban Volatile Organic Compounds. Atmos. Meas. Technol. 2024, 17, 801–825. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as Complementary Techniques for Analysis of Volatiles: A Tutorial Review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Derstroff, B. Investigation of Oxygenated and Intermediate Volatility Organic Compounds (OVOCs/IVOCs) with a Proton Transfer Reaction—Time Of Flight—Mass Spectrometer (PTR-TOF-MS); Johannes Gutenberg-Universität Mainz: Mainz, Germany, 2017. [Google Scholar]
- Huang, X.-F.; Wang, C.; Zhu, B.; Lin, L.-L.; He, L.-Y. Exploration of Sources of OVOCs in Various Atmospheres in Southern China. Environ. Pollut. 2019, 249, 831–842. [Google Scholar] [CrossRef]
- Han, C.; Liu, R.; Luo, H.; Li, G.; Ma, S.; Chen, J.; An, T. Pollution Profiles of Volatile Organic Compounds from Different Urban Functional Areas in Guangzhou China Based on GC/MS and PTR-TOF-MS: Atmospheric Environmental Implications. Atmos. Environ. 2019, 214, 116843. [Google Scholar] [CrossRef]
- Reinecke, T.; Leiminger, M.; Jordan, A.; Wisthaler, A.; Müller, M. Ultrahigh Sensitivity PTR-MS Instrument with a Well-Defined Ion Chemistry. Anal. Chem. 2023, 95, 11879–11884. [Google Scholar] [CrossRef]
- Di Girolamo, A.; Pedrotti, M.; Koot, A.; Verstappen, F.; van Houwelingen, A.; Vossen, C.; Bouwmeester, H.; de Ridder, D.; Beekwilder, J. The Use of Proton Transfer Reaction Mass Spectrometry for High Throughput Screening of Terpene Synthases. J. Mass Spectrom. 2023, 58, e4951. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Granitto, P.M.; Schuhfried, E.; Soukoulis, C.; Costa, F.; Märk, T.D.; Gasperi, F. On Data Analysis in PTR-TOF-MS: From Raw Spectra to Data Mining. Sens. Actuators B Chem. 2011, 155, 183–190. [Google Scholar] [CrossRef]
- Automated Measurement and Evaluation (AME). Available online: https://www.ionicon.com/accessories/details/automated-measurement-and-evaluation-ame (accessed on 5 August 2024).
- Park, J.; Kim, K.; Choi, G.; Kim, T.; Yoon, C.; Lee, S. Verification for Real-time Analysis (AME Method) of VOCs Concentration using PTR-TOF/MS. Proc. 62th Korean Soc. Atmos. Environ. Conf. 2019, 129. [Google Scholar]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T.D. A High Resolution and High Sensitivity Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128. [Google Scholar] [CrossRef]
- Piel, F.; Müller, M.; Winkler, K.; Skytte af Sätra, J.; Wisthaler, A. Introducing the Extended Volatility Range Proton-Transfer-Reaction Mass Spectrometer (EVR PTR-MS). Atmos. Meas. Technol. 2021, 14, 1355–1363. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Min, C.; Kim, S.; Yoon, G.; Kim, S. A Study on the Trimethylsilanol Analysis Method of Semiconductor Processing using a Proton Transfer Reaction—Time of Flight Mass Spectrometer. J. Korean Soc. Urban Environ. 2017, 17, 85–95. [Google Scholar]
- Koss, A.R.; Sekimoto, K.; Gilman, J.B.; Selimovic, V.; Coggon, M.M.; Zarzana, K.J.; Yuan, B.; Lerner, B.M.; Brown, S.S.; Jimenez, J.L.; et al. Non-Methane Organic Gas Emissions from Biomass Burning: Identification, Quantification, and Emission Factors from PTR-ToF during the FIREX 2016 Laboratory Experiment. Atmos. Chem. Phys. 2018, 18, 3299–3319. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Veres, P.R.; Williams, J.; Yokelson, R.J. Characterization of Biomass Burning Emissions from Cooking Fires, Peat, Crop Residue, and Other Fuels with High-Resolution Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry. Atmos. Chem. Phys. 2015, 15, 845–865. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.; Warneke, C.; Gilman, J.B.; Lerner, B.M.; Stark, H.; de Gouw, J.A. A High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer Utilizing Hydronium Ions (H3O+ ToF-CIMS) for Measurements of Volatile Organic Compounds in the Atmosphere. Atmos. Meas. Technol. 2016, 9, 2735–2752. [Google Scholar] [CrossRef]
- Cappellin, L.; Karl, T.; Probst, M.; Ismailova, O.; Winkler, P.M.; Soukoulis, C.; Aprea, E.; Märk, T.D.; Gasperi, F.; Biasioli, F. On Quantitative Determination of Volatile Organic Compound Concentrations Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Environ. Sci. Technol. 2012, 46, 2283–2290. [Google Scholar] [CrossRef]
- Statistics Korea Korean Standard Industrial Classification. Available online: https://kssc.kostat.go.kr:8443/ksscNew_web/ekssc/main/main.do# (accessed on 9 July 2024).
- National Air Emission Inventory and Research Center Emission Source Classification. Available online: https://www.air.go.kr/eng/contents/view.do?contentsId=35&menuId=91 (accessed on 8 July 2024).
- European Environment Agency Index to Methodology Chapters Ordered by SNAP97 Activity. Available online: https://www.eea.europa.eu/publications/EMEPCORINAIR4/page009-a.html (accessed on 8 July 2024).
- Pinthong, N.; Thepanondh, S.; Kultan, V.; Keawboonchu, J. Characteristics and Impact of VOCs on Ozone Formation Potential in a Petrochemical Industrial Area, Thailand. Atmosphere 2022, 13, 732. [Google Scholar] [CrossRef]
- McDonald, B.C.; De Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile Chemical Products Emerging as Largest Petrochemical Source of Urban Organic Emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef]
- Yen, C.-H.; Horng, J.-J. Volatile Organic Compounds (VOCs) Emission Characteristics and Control Strategies for a Petrochemical Industrial Area in Middle Taiwan. J. Environ. Sci. Health Part A 2009, 44, 1424–1429. [Google Scholar] [CrossRef]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient Levels of Volatile Organic Compounds in the Vicinity of Petrochemical Industrial Area of Yokohama, Japan. Air Qual. Atmos Health 2010, 3, 65–75. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S.; Qu, H.; Zhou, M.; Sun, J.; Gou, B. Process-Specific Emission Characteristics of Volatile Organic Compounds (VOCs) from Petrochemical Facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Case Studies on Safer Alternatives for Solvent Degreasing Applications. Available online: https://www.epa.gov/p2/case-studies-safer-alternatives-solvent-degreasing-applications (accessed on 8 July 2024).
- Liu, Z.; Cao, Z.; Zhao, J.; Fang, Y.; Wei, W. Characteristics of VOCs Emission Components in Typical Solvents Source Industries in Tianjin. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 032010. [Google Scholar] [CrossRef]
- Oh, B.; Kim, H.; Lee, H.; Lee, C.; Kim, K.; Choi, D.; Joo, H.; Han, J. Source characterization of volatile organic compounds of industrial complex measured by proton-transfer-reaction time-of-flight mass spectrometers in Korea. J. Odor Indoor Environ. 2023, 22, 139–152. [Google Scholar] [CrossRef]
- Liang, X.; Chen, L.; Liu, M.; Lu, H.; Lu, Q.; Gao, B.; Zhao, W.; Sun, X.; Ye, D. Improved Emission Factors and Speciation to Characterize VOC Emissions in the Printing Industry in China. Sci. Total Environ. 2023, 866, 161295. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Yan, Q.; Han, S.; Zhao, Q.; Yang, L.; Liu, Y.; Zhang, R. Typical Industrial Sector-Based Volatile Organic Compounds Source Profiles and Ozone Formation Potentials in Zhengzhou, China. Atmos. Pollut. Res. 2020, 11, 841–850. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Zhang, Y.; Wang, L.; Sun, Z.; Wang, H. Review on Source Profiles of Volatile Organic Compounds (VOCs) in Typical Industries in China. Atmosphere 2023, 14, 878. [Google Scholar] [CrossRef]
- Kiurski, J.S.; Marić, B.B.; Aksentijević, S.M.; Oros, I.B.; Kecić, V.S.; Kovacević, I.M. Indoor Air Quality Investigation from Screen Printing Industry. Renew. Sustain. Energy Rev. 2013, 28, 224–231. [Google Scholar] [CrossRef]
- Aydemir, C.; Özsoy, S.A. Environmental Impact of Printing Inks and Printing Process. J. Graph. Eng. Des. 2020, 11, 11–17. [Google Scholar] [CrossRef]
- Rossitza, S. Offset Printing without Isopropyl Alcohol in Damping Solution. Energy Procedia 2015, 74, 690–698. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, X.; Wang, G.; Shao, X.; Li, Z.; Nie, L.; Li, G. Sector-Based Volatile Organic Compounds Emission Characteristics from the Electronics Manufacturing Industry in China. Atmos. Pollut. Res. 2021, 12, 101097. [Google Scholar] [CrossRef]
- Ma, Y.-G. Composition and characteristics of volatile organic chemicals emission from printed circuit board factories. Huan Jing Ke Xue 2012, 33, 2967–2972. [Google Scholar] [PubMed]
- Dinh, T.-V.; Kim, S.-Y.; Son, Y.-S.; Choi, I.-Y.; Park, S.-R.; Sunwoo, Y.; Kim, J.-C. Emission Characteristics of VOCs Emitted from Consumer and Commercial Products and Their Ozone Formation Potential. Environ. Sci. Pollut. Res. 2015, 22, 9345–9355. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y. Evaluation of Lubricating-Oil Performance and Emissions with Lubricant Formulations Using ZDDP as the Selected Additive in GDI Engines: A Simultaneous Study of VOCs and Soot in Oil. J. Mech. Sci. Technol. 2021, 35, 5197–5212. [Google Scholar] [CrossRef]
- Canagaratna, M.R.; Jayne, J.T.; Ghertner, D.A.; Herndon, S.; Shi, Q.; Jimenez, J.L.; Silva, P.J.; Williams, P.; Lanni, T.; Drewnick, F.; et al. Chase Studies of Particulate Emissions from In-Use New York City Vehicles. Aerosol. Sci. Technol. 2004, 38, 555–573. [Google Scholar] [CrossRef]
- Gentner, D.R.; Jathar, S.H.; Gordon, T.D.; Bahreini, R.; Day, D.A.; El Haddad, I.; Hayes, P.L.; Pieber, S.M.; Platt, S.M.; De Gouw, J.; et al. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environ. Sci. Technol. 2017, 51, 1074–1093. [Google Scholar] [CrossRef]
- Liang, Z.; Yu, Z.; Chen, L. Quantifying the Contributions of Diesel Fuel and Lubricating Oil to the SVOC Emissions from a Diesel Engine Using GC × GC-ToFMS. Fuel 2022, 310, 122409. [Google Scholar] [CrossRef]
- Drozd, G.T.; Zhao, Y.; Saliba, G.; Frodin, B.; Maddox, C.; Oliver Chang, M.-C.; Maldonado, H.; Sardar, S.; Weber, R.J.; Robinson, A.L.; et al. Detailed Speciation of Intermediate Volatility and Semivolatile Organic Compound Emissions from Gasoline Vehicles: Effects of Cold-Starts and Implications for Secondary Organic Aerosol Formation. Environ. Sci. Technol. 2019, 53, 1706–1714. [Google Scholar] [CrossRef]
- Shankar, R.; Jung, J.-H.; Loh, A.; An, J.G.; Ha, S.Y.; Yim, U.H. Environmental Significance of Lubricant Oil: A Systematic Study of Photooxidation and Its Consequences. Water Res. 2020, 168, 115183. [Google Scholar] [CrossRef]
- Chang, C.-T.; Lin, K.-L. Assessment of the Strategies for Reducing VOCs Emission from Polyurea-Formaldehyde Resin Synthetic Fiber Leather Industry in Taiwan. Resour. Conserv. Recycl. 2006, 46, 321–334. [Google Scholar] [CrossRef]
- Azhar Zakir, M.J.; Ramalingam, S.; Balasubramanian, P.; Rathinam, A.; Sreeram, K.J.; Rao, J.R.; Nair, B.U. Innovative Material from Paper and Pulp Industry for Leather Processing. J. Clean. Prod. 2015, 104, 436–444. [Google Scholar] [CrossRef]
- Yang, H.-H.; Gupta, S.K.; Dhital, N.B. Emission Factor, Relative Ozone Formation Potential and Relative Carcinogenic Risk Assessment of VOCs Emitted from Manufacturing Industries. Sustain. Environ. Res 2020, 30, 28. [Google Scholar] [CrossRef]
- Shen, K.P.; Lai, C.C.; Lin, S.S.; Wu, H.H.; Huang, J.J.; Wang, Y.M.; Chen, H.W. Best Available Control Technology (BACT) of VOC for PU (Polyurethane) Synthetic Leather Surface Coating Industry in Taiwan; Air and Waste Management Association: Pittsburgh, PA, USA, 1999. [Google Scholar]
- Jiménez-López, A.M.; Hincapié-Llanos, G.A. Identification of Factors Affecting the Reduction of VOC Emissions in the Paint Industry: Systematic Literature Review—SLR. Prog. Org. Coat. 2022, 170, 106945. [Google Scholar] [CrossRef]
- Song, B.; Lee, S.; Cho, G.; Cho, J.; You, P.; Kim, G. VOC/HAPs Emission Characteristics & Adsorption Evaluation for Paint Products in Busan Area. J. Korean Soc. Environ. Eng. 2012, 34, 316–325. [Google Scholar]
- Kim, M.; Lee, J.; Kim, J.; Lee, H.; Cho, S.; Yu, J.; Kang, C.; Moon, K. Study of Chemical Substances Emitted during Paint Manufacturing through VOC Speciation. Atmosphere 2022, 13, 1245. [Google Scholar] [CrossRef]
- Ghobakhloo, S.; Khoshakhlagh, A.H.; Morais, S.; Mazaheri Tehrani, A. Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. Toxics 2023, 11, 111. [Google Scholar] [CrossRef]
- Song, M.; Chun, H. Species and Characteristics of Volatile Organic Compounds Emitted from an Auto-Repair Painting Workshop. Sci. Rep. 2021, 11, 16586. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, C.; Wang, M.; Shao, X.; Yao, Y.; Wang, G.; Li, Y.; Hou, M.; Fan, L.; Ye, D. Characteristics and Environmental and Health Impacts of Volatile Organic Compounds in Furniture Manufacturing with Different Coating Types in the Pearl River Delta. J. Clean. Prod. 2023, 397, 136599. [Google Scholar] [CrossRef]
- Adamová, T.; Hradecký, J.; Pánek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef]
- Teng, W.; Liu, W.; Shao, X.; Wu, Q. Emission Characteristics, Environmental Impact Assessment and Priority Control Strategies Derived from VOCs Speciation Sourcely through Measurement for Wooden Furniture-Manufacturing Industry in China. Sci. Total Environ. 2023, 877, 162287. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, F.; Sun, L.; Yu, X.; Zhao, J.; Hu, Y.; Wang, Y. Characterization of VOC Emissions from Composite Wood Furniture: Parameter Determination and Simplified Model. Build. Environ. 2019, 161, 106237. [Google Scholar] [CrossRef]
- Abbaspour, P. Metal Plating Industry and Environmental Pollution. Asian Res. J. Curr. Sci. 2022, 4, 1–6. [Google Scholar]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial Sector-Based Volatile Organic Compound (VOC) Source Profiles Measured in Manufacturing Facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456–457, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Sha, Q.; Zheng, J.; Yuan, Z.; Gao, Z.; Ou, J.; Zheng, Z.; Li, C.; Huang, Z. Sector-Based VOCs Emission Factors and Source Profiles for the Surface Coating Industry in the Pearl River Delta Region of China. Sci. Total Environ. 2017, 583, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Shen, J.; Wang, Q.; Li, H.; Xu, C.; Dong, H. Characteristics of VOCs Released from Plywood in Airtight Environments. Forests 2019, 10, 709. [Google Scholar] [CrossRef]
- Qifan, W.; Jun, S.; Yang, Z.; Wanjun, L. Influence of Environmental Factors on Volatile Organic Compound Emissions from Plywood Tested by a Rapid Detection Method. For. Prod. J. 2017, 67, 120–125. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Park, B.; Lim, J.; Jang, S.; Kim, S. Effect of Surface Laminate Type on the Emission of Volatile Organic Compounds from Wood-Based Composite Panels. J. Adhes. Sci. Technol. 2013, 27, 620–631. [Google Scholar] [CrossRef]
- Kim, K.-W.; Oh, J.-K.; Lee, B.-H.; Kim, H.-J.; Lee, Y.-K.; Kim, S.-H.; Kim, G.-E. Influence of Surface Finishing Material Types to Formaldehyde and Volatile Organic Compounds Emission from Plywood. J. Korean Wood Sci. Technol. 2008, 36, 39–45. [Google Scholar]
- Liu, Y.; Zhu, X.; Qin, X.; Wang, W.; Hu, Y.; Yuan, D. Identification and Characterization of Odorous Volatile Organic Compounds Emitted from Wood-Based Panels. Environ. Monit. Assess. 2020, 192, 348. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Control of VOC Emissions from Non-Ferrous Metal Rolling Processes. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000HHPU.TXT (accessed on 8 July 2024).
- Peterangelo, S.C.; Gschwender, L.; Snyder, C.E., Jr.; Jones, W.R., Jr.; Nguyen, Q.; Jansen, M.J. Improved Additives for Multiply Alkylated Cyclopentane-Based Lubricants. J. Synth. Lubr. 2008, 25, 31–41. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, L.; Xue, Q. Comparative Studies on Tribological Behavior of Multiply-Alkylated Cyclopentane with Other Liquid Lubricants for Various Frictional Materials. Tribol. Trans. 2009, 52, 602–610. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Tańska, M.; Ogrodowska, D. Phenolic Compounds in Plant Oils: A Review of Composition, Analytical Methods, and Effect on Oxidative Stability. Trends Food Sci. Technol. 2021, 113, 110–138. [Google Scholar] [CrossRef]
- Park, O.; Lee, K.; Min, K.; Cho, G.; Yoon, K.; Jeung, W.; Cho, Y.; Kim, E.; Yang, J. Generating Characteristics of VOCs in a Commercial Laundry Shop and the Effects on the Health of Workers. J. Korean Soc. Occup. Environ. Hyg. 2016, 26, 159–169. [Google Scholar] [CrossRef]
- Song, M.; Kim, K.; Cho, C.; Kim, D. Reduction of Volatile Organic Compounds (VOCs) Emissions from Laundry Dry-Cleaning by an Integrated Treatment Process of Condensation and Adsorption. Processes 2021, 9, 1658. [Google Scholar] [CrossRef]
- Eun, D.; Han, Y.; Park, S.; Yoo, H.; Le, Y.T.-H.; Jeong, S.; Jeon, K.; Youn, J. Analysis of VOCs Emitted from Small Laundry Facilities: Contributions to Ozone and Secondary Aerosol Formation and Human Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 15130. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, K.; Choi, Y.; Kim, D. Emissions of Volatile Organic Compounds (VOCs) from an Open-Circuit Dry Cleaning Machine Using a Petroleum-Based Organic Solvent: Implications for Impacts on Air Quality. Atmosphere 2021, 12, 637. [Google Scholar] [CrossRef]
Groups | Species | Chemical Formula | m/z |
---|---|---|---|
Alkanes | Cyclopentane | C5H10 | 70.0 |
Cyclohexane | C6H10 | 82.1 | |
Alkenes | Propene | C3H6 | 42.1 |
Butadiene | C4H6 | 54.1 | |
Alcohols | Methanol | CH4O | 32.0 |
Ethanol | C2H6O | 46.1 | |
Butanol | C4H10O | 74.1 | |
OVOCs | Formaldehyde | CH2O | 30.0 |
Acetaldehyde | C2H4O | 44.1 | |
Formic acid | CH2O2 | 46.0 | |
Acrolein | C3H4O | 56.1 | |
Acetone | C3H6O | 58.1 | |
Acetic acid | C2H4O2 | 60.1 | |
Crotonaldehyde | C4H6O | 70.1 | |
Methyl ethyl ketone (MEK) | C4H8O | 72.1 | |
Butanedione | C4H6O2 | 86.1 | |
Pentanal | C5H10O | 86.1 | |
Ethyl acetate | C4H8O2 | 88.1 | |
Cyclohexanone | C6H10O | 98.2 | |
Valeric acid | C5H10O2 | 102.1 | |
Heptanal | C7H14O | 114.2 | |
Butyl acetate | C6H12O2 | 116.2 | |
Nonanal | C9H18O | 142.2 | |
Decanal | C10H20O | 156.3 | |
Aromatics | Benzene | C6H6 | 78.1 |
Toluene | C7H8 | 92.1 | |
Phenol | C6H6O | 94.1 | |
Styrene | C8H8 | 104.2 | |
Xylene | C8H10 | 106.2 | |
Ethylbenzene | C8H10 | 106.2 | |
Trimethylbenzene | C9H12 | 120.2 | |
Cl-VOCs | Chloroethylene | C2H3Cl | 62.5 |
Dichloromethane | CH2Cl2 | 84.9 | |
Dichloroethane | C2H4Cl2 | 99.0 | |
Chlorobenzene | C6H5Cl | 112.6 | |
Chloroform | CHCl3 | 119.4 | |
Carbon tetrachloride | CCl4 | 153.8 | |
Tetrachloroethylene | C2Cl4 | 165.8 | |
N-VOCs | Acetonitrile | C2H3N | 41.1 |
S-VOCs | Methyl mercaptan | CH4S | 48.1 |
Dimethyl sulfide (DMS) | C2H6S | 62.1 |
Ionization Source | U Drift (V) | Regent Ion Flow Rate (mL min−1) | Ihc (mA) | Delay Duration (s) | Measurement Duration (s) |
---|---|---|---|---|---|
H3O+ | 600 | 6 (H2O) | 4 | 15 | 20 |
H3O+ | 500 | 6 (H2O) | 4 | 5 | 20 |
H3O+ | 400 | 6 (H2O) | 4 | 5 | 20 |
O2+ | 600 | 5 (O2) | 5.5 | 20 | 20 |
NO+ | 350 | 3 (O2), 3 (N2) | 5.5 | 15 | 20 |
Total | 60 | 100 |
First-Level Category | Second-Level Category | VOC Emissions (ton yr−1) | Business Type in This Study | Abbreviation |
---|---|---|---|---|
Solvent use | Painting Facilities | 330,445 | Manufacture of general paints and similar products | PNT |
Solvent use | Other Organic Solvent Use | 167,568 | Gravure printing | GP |
Screen printing | SP | |||
Other printing * | OP | |||
Industrial process | Food and Beverage Processing | 59,005 | ||
Solvent use | Petroleum Products Industry | 53,144 | Manufacture of plastic synthetic leather | PSL |
Manufacture of lubricating oils and greases | LOG | |||
Industrial process | Organic Chemical Products Manufacturing | 53,017 | ||
Waste disposal | Waste Incineration | 51,954 | ||
Solvent use | Cleaning Facilities | 25,880 | Manufacture of laminated plates for printed circuit boards | PCB |
Energy transport and storage | Gasoline Supply | 24,107 | ||
Solvent use | Laundry Facilities | 20,386 | Industrial laundry services | ILS |
Industrial process | Iron and Steel Industry | 19,582 | Manufacture of copper products by rolling, extrusion, and drawing | CP |
Metal plating | MP | |||
Energy production | Public Power Generation Facilities | 4643 | ||
Energy production | Private Power Generation Facilities | 3329 | ||
Waste disposal | Other Waste Treatment | 2422 | ||
Manufacturing industry | Process Furnace | 1296 | ||
Manufacturing industry | Others (Manufacturing Combustion) | 1059 | ||
Energy production | District Heating Facilities | 963 | ||
Industrial process | Inorganic Chemical Products Manufacturing | 705 | ||
Manufacturing industry | Combustion Facilities | 539 | ||
Industrial process | Other Manufacturing | 367 | ||
Energy production | Oil Refining Facilities | 70 | ||
Industrial process | Wood and Pulp Manufacturing | 1.3 | Manufacture of veneer sheets, plywood, and similar laminated wood boards | LWB |
Manufacture of wood furniture for kitchen and restaurant | WF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-C.; Oh, B.-H.; Baek, J.-D.; Lee, C.-S.; Lim, Y.-J.; Joo, H.-S.; Han, J.-S. Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Atmosphere 2024, 15, 1156. https://doi.org/10.3390/atmos15101156
Kim K-C, Oh B-H, Baek J-D, Lee C-S, Lim Y-J, Joo H-S, Han J-S. Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Atmosphere. 2024; 15(10):1156. https://doi.org/10.3390/atmos15101156
Chicago/Turabian StyleKim, Kyoung-Chan, Byeong-Hun Oh, Jeong-Deok Baek, Chun-Sang Lee, Yong-Jae Lim, Hung-Soo Joo, and Jin-Seok Han. 2024. "Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)" Atmosphere 15, no. 10: 1156. https://doi.org/10.3390/atmos15101156
APA StyleKim, K. -C., Oh, B. -H., Baek, J. -D., Lee, C. -S., Lim, Y. -J., Joo, H. -S., & Han, J. -S. (2024). Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Atmosphere, 15(10), 1156. https://doi.org/10.3390/atmos15101156