Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = latewood ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 350
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2005 KiB  
Article
Comparison of Growth Strategies and Biomass Allocation in Chinese Fir Provenances from the Subtropical Region of China
by Zhibing Wan, Ning Liu, Chenggong Liu, Meiman Zhang, Chengcheng Gao, Lingyu Yang, Liangjin Yao and Xueli Zhang
Forests 2025, 16(4), 687; https://doi.org/10.3390/f16040687 - 16 Apr 2025
Viewed by 532
Abstract
This study aims to evaluate the growth characteristics of six Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) provenances (S1–S6) from different climatic regions in subtropical China in order to select superior provenances with strong adaptability, fast growth, and reasonable biomass allocation. These results [...] Read more.
This study aims to evaluate the growth characteristics of six Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) provenances (S1–S6) from different climatic regions in subtropical China in order to select superior provenances with strong adaptability, fast growth, and reasonable biomass allocation. These results will provide references for genetic improvement and resource utilization of Chinese fir plantations. A total of 385 trees, aged 26 to 48 years, were selected from the Chinese fir gene bank in Anhui. Wood core sampling was used to obtain tree ring width and early/latewood width data. Growth rate, fast-growth period, and biomass allocation of each provenance were analyzed using methods such as the logistic growth equation, BAI (basal area increment), latewood percentage, and biomass estimation. The fast-growth period of Chinese fir starts from the 2nd to the 4th year, with significant growth occurring around the 14th year and growth stabilizing between 30 and 50 years. Provenance S2 showed clear advantages in growth rate and biomass, while S6 was relatively weak. BAI analysis revealed that the provenances reached their growth peak around 10 years of age, with a gradual decline afterward, but S2 maintained higher growth levels for a longer period. Root-shoot ratio analysis showed that S2 had the most balanced ratio, promoting stable growth and efficient water and nutrient absorption, while S6 had a higher root-shoot ratio, indicating growth limitations. Furthermore, S2 demonstrated continuous biomass increase after 30 years, indicating excellent growth potential. This study provides quantitative analysis of the growth characteristics and adaptability of different Chinese fir provenances, offering scientific support for the construction and breeding of Chinese fir plantations, and contributing to enhancing the productivity and ecological adaptability of Chinese fir plantations for sustainable resource utilization. Full article
Show Figures

Figure 1

15 pages, 1926 KiB  
Communication
Modeling of the Statistical Distribution of Tracheids in Conifer Rings: Finding Universal Criterion for Earlywood–Latewood Distinction
by Liliana V. Belokopytova, Dina F. Zhirnova, Bao Yang, Elena A. Babushkina and Eugene A. Vaganov
Plants 2023, 12(19), 3454; https://doi.org/10.3390/plants12193454 - 30 Sep 2023
Cited by 4 | Viewed by 1460
Abstract
The quantitative description of growth rings is yet incomplete, including the functional division into earlywood and latewood. Methods developed to date, such as the Mork criterion for conifers, can be biased and arbitrary depending on species and growth conditions. We proposed the use [...] Read more.
The quantitative description of growth rings is yet incomplete, including the functional division into earlywood and latewood. Methods developed to date, such as the Mork criterion for conifers, can be biased and arbitrary depending on species and growth conditions. We proposed the use of modeling of the statistical distribution of tracheids to determine a universal criterion applicable to all conifer species. Thisstudy was based on 50-year anatomical measurements of Pinus sylvestris L., Pinus sibirica Du Tour, and Picea obovata Ledeb. near the upper tree line in the Western Sayan Mountains (South Siberia). Statistical distributions of the cell wall thickness (CWT)-to-radial-diameter (D) ratio and its slope were investigated for raw and standardized data (divided by the mean). The bimodal distribution of the slope for standardized CWT and D was modeled with beta distributions for earlywood and latewood tracheids and a generalized normal distribution for transition wood to account for the gradual shift in cell traits. The modelcan describe with high accuracy the growth ring structure for species characterized by various proportions of latewood, histometric traits, and gradual or abrupt transition. The proportion of two (or three, including transition wood) zones in the modeled distribution is proposed as a desired criterion. Full article
Show Figures

Figure 1

15 pages, 3007 KiB  
Article
Combining Tree-Ring Width and Density to Separate the Effects of Climate Variation and Insect Defoliation
by Marcel Kunz, Jan Esper, Eileen Kuhl, Lea Schneider, Ulf Büntgen and Claudia Hartl
Forests 2023, 14(7), 1478; https://doi.org/10.3390/f14071478 - 19 Jul 2023
Cited by 3 | Viewed by 2201
Abstract
Though frequently used in dendroclimatology, European larch (Larix decidua Mill.) is regularly defoliated by mass outbreaks of the larch budmoth (Zeiraphera griseana Hb., LBM). The near-cyclic growth depressions are unrelated to but possibly coincide with cold summers, which challenges signal detection [...] Read more.
Though frequently used in dendroclimatology, European larch (Larix decidua Mill.) is regularly defoliated by mass outbreaks of the larch budmoth (Zeiraphera griseana Hb., LBM). The near-cyclic growth depressions are unrelated to but possibly coincide with cold summers, which challenges signal detection on interannual timescales. LBM defoliation events cause sharp maximum latewood density declines and irregular earlywood/latewood ratios in the outbreak year, followed by one or two anomalously narrow rings. Here, we present a process-based method integrating these diverse response patterns to identify and distinguish LBM-related signals from climate-induced deviations. Application to larch sites along elevational transects in the Swiss Alps reveals the algorithm to perform better than existing extreme event detection methods, though our approach enables additional differentiation between insect- and climate-induced signatures. The new process-based multi-parameter algorithm is a suitable tool to identify different causes of growth disturbances and will therefore help to improve both tree-ring-based climate and insect defoliation reconstructions. Full article
(This article belongs to the Special Issue Forest Health: Forest Insect Population Dynamics)
Show Figures

Figure 1

23 pages, 5597 KiB  
Article
The More the Merrier or the Fewer the Better Fare? Effects of Stand Density on Tree Growth and Climatic Response in a Scots Pine Plantation
by Yulia A. Kholdaenko, Elena A. Babushkina, Liliana V. Belokopytova, Dina F. Zhirnova, Nataly N. Koshurnikova, Bao Yang and Eugene A. Vaganov
Forests 2023, 14(5), 915; https://doi.org/10.3390/f14050915 - 28 Apr 2023
Cited by 3 | Viewed by 2333
Abstract
In forests, the growth and productivity of individual trees and stands as a whole are regulated by stand density among other factors, because access to vital resources is limited by competition between trees. On 18 experimental plots of Scots pine (Pinus sylvestris [...] Read more.
In forests, the growth and productivity of individual trees and stands as a whole are regulated by stand density among other factors, because access to vital resources is limited by competition between trees. On 18 experimental plots of Scots pine (Pinus sylvestris L.) planted with a density of 500–128,000 trees/ha in the south taiga (Middle Siberia), interactions between stand density, tree- and stand-scale productivity, and tree-ring parameters were investigated. Tree-scale productivity variables, tree-ring width, and latewood width had stable negative allometric relationships with stand density (R2 > 0.75), except for tree height (insignificant for inventory surveys at ages of 20 and 25 years; R2 > 0.4 at the age of 35 years), while positive allometry was registered for stand productivity variables (R2 > 0.7) and the all-time average latewood ratio (R2 = 0.5 with planting density). Tree-ring parameters aside from the age trends correlate (p < 0.05) between the plots and demonstrate common responses to moderate moisture deficit. Although, its seasonality apparently depends on the resource base and intensity changes with stand density. February–June precipitation is more important for pine growth in dense stands, July–August conditions affect the latewood ratio stronger in sparse stands, and medium-density stands are more resistant to winter frosts. Full article
(This article belongs to the Special Issue Response of Tree Rings to Climate Change and Climate Extremes)
Show Figures

Figure 1

13 pages, 11010 KiB  
Article
Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch
by Yucheng Liu, Yunhui Xie, Xiaomei Sun and Shougong Zhang
Sustainability 2023, 15(8), 6508; https://doi.org/10.3390/su15086508 - 12 Apr 2023
Cited by 2 | Viewed by 1878
Abstract
The increase in the atmospheric carbon dioxide concentration promotes its accumulation in trees by regulating the synthesis and transportation genes for endogenous hormones, such as IAA and GA, which are key factors in regulating various life activities, including growth rings. To explore the [...] Read more.
The increase in the atmospheric carbon dioxide concentration promotes its accumulation in trees by regulating the synthesis and transportation genes for endogenous hormones, such as IAA and GA, which are key factors in regulating various life activities, including growth rings. To explore the impact of changes in endogenous hormone levels such as IAA and GA on the growth of tree rings, and to provide a basis for improving the management of hybrid larch clonal forests, we investigated the effects of exogenous indole-3-acetic acid (IAA), gibberellic acid 3 (GA3), and their combination on tree-ring growth in hybrid larch. IAA, GA3, and a combination treatment were sprayed on the leaves of one clone of a hybrid larch seedling every three days. Small blocks were collected at the base stems for sequential anatomical observations. The phytohormone type, instead of the concentration, had a more significant effect on wood formation. Specifically, IAA treatment at 300 mg L−1 significantly increased latewood (LW) layers until 90 days after treatment (DAT). The 500 mg L−1 treatment significantly increased the wall radial thickness (WRT) of latewood (LW) cells. GA3 treatment at 100 mg L−1 significantly decreased the layers and width of total wood (TW), LW, and earlywood (EW). The 300 mg L−1 treatment significantly increased the WRT of EW. The IAA 100 mg L−1 + GA3 100 mg L−1 combination treatment significantly increased the layers and width of TW and LW by inducing cambium activity and increasing the rate of wood cell development. The WRT and lumen radial diameter (LRD) of EW or LW in this treatment were similar to those observed with the corresponding single phytohormone treatment. These results indicate that combination treatment at 100 mg L−1 + 100 mg L−1 was a better way to promote tree-ring growth. Our study suggests that changes in phytohormone levels and ratios are important factors that affect tree-ring formation. Hormone levels and ratios should be regarded as important indicators to guide the improvement of management practices in hybrid larch clonal plantations. Full article
(This article belongs to the Special Issue Forest Growth Monitoring and Sustainable Management)
Show Figures

Figure 1

12 pages, 3278 KiB  
Article
Moisture-Related Shrinkage Behavior of Wood at Macroscale and Cellular Level
by Yufa Gao, Zongying Fu, Yongdong Zhou, Xin Gao, Fan Zhou and Huimin Cao
Polymers 2022, 14(22), 5045; https://doi.org/10.3390/polym14225045 - 21 Nov 2022
Cited by 14 | Viewed by 3271
Abstract
Due to wood moisture sensitivity, shrinkage cracks tend to present wooden structures. These failures are caused by moisture-related shrinkage behavior. In order to avoid it, it is necessary to have a better understanding of shrinkage behavior. In this respect, studying the dimension changes [...] Read more.
Due to wood moisture sensitivity, shrinkage cracks tend to present wooden structures. These failures are caused by moisture-related shrinkage behavior. In order to avoid it, it is necessary to have a better understanding of shrinkage behavior. In this respect, studying the dimension changes in wood at different scales is of utmost significance for a better understanding of the shrinkage properties. Herein, the shrinkage behavior of Masson pines (Pinus massoniana) wood was investigated at macroscopic and cellular levels during moisture loss via digital image correlation using VIC-3D and digital microscopic systems, respectively. According to the full-field strain maps, shrinkage strain near the external face was higher than that at the internal face, which increased susceptibility to cracking at the external face of lumber. Additionally, the anisotropic shrinkage of wood was explored. The shrinkage ratio at the end of drying was about 5.5% in the tangential (T) direction and 3.5% in the radial (R) direction. However, at a cellular level, the shrinkage ratios in the T and R directions of earlywood tracheids were 7.13% and 2.46%, whereas the corresponding values for latewood tracheid were 9.27% and 5.52%, respectively. Furthermore, the maximum T/R shrinkage ratio at the macroscopic level (1.7) was found to be similar to the value of latewood tracheid (1.72). The earlywood showed high anisotropic, its T/R shrinkage ratio was 2.75. The macroscopic shrinkage was the result of the interaction of the tracheids of earlywood and latewood and was mainly dominated by latewood tracheids. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2265 KiB  
Article
Different Responses in Vascular Traits between Dutch Elm Hybrids with a Contrasting Tolerance to Dutch Elm Disease
by Michal Moravčík, Miroslava Mamoňová, Vladimír Račko, Ján Kováč, Miloň Dvořák, Jana Krajňáková and Jaroslav Ďurkovič
J. Fungi 2022, 8(3), 215; https://doi.org/10.3390/jof8030215 - 22 Feb 2022
Cited by 3 | Viewed by 2618
Abstract
The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, [...] Read more.
The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, ‘Groeneveld’ and ‘Dodoens’, which show different vascular architecture in the secondary xylem and possess contrasting tolerances to DED. ‘Groeneveld’ trees, sensitive to DED, possessed a high number of small earlywood vessels. However, these trees showed a poor response to DED infection for the earlywood vascular characteristics. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 decreased from 65.4% down to 53.2%. A delayed response in the increasing density of vessels showing a reduced size in the latewood prevented neither the rapid fungal spread nor the massive colonisation of the secondary xylem tissues resulting in the death of the infected trees. ‘Dodoens’ trees, tolerant to DED, possessed a low number of large earlywood vessels and showed a prominent and fast response to DED infection. Vessel lumen areas of newly formed earlywood vessels were severely reduced together with the vessel size : number ratio. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 increased from 75.6% up to 92.9%. A trend in the increasing density of vessels showing a reduced size was maintained not only in the latewood that was formed in the year of infection but also in the earlywood that was formed in the consecutive year. The occurrence of fungal hyphae in the earlywood vessels that were formed a year following the infection was severely restricted, as revealed by X-ray micro-computed tomography imaging. Possible reasons responsible for a contrasting survival of ‘Groeneveld’ and ‘Dodoens’ trees are discussed. Full article
(This article belongs to the Special Issue Dutch Elm Disease in the 21st Century)
Show Figures

Graphical abstract

15 pages, 3307 KiB  
Article
Investigations of the Chemical Distribution in Sorbitol and Citric Acid (SorCA) Treated Wood—Development of a Quality Control Method on the Basis of Electromagnetic Radiation
by Katarzyna Kurkowiak, Aaron K. Mayer, Lukas Emmerich and Holger Militz
Forests 2022, 13(2), 151; https://doi.org/10.3390/f13020151 - 20 Jan 2022
Cited by 12 | Viewed by 2880
Abstract
Recent studies showed treatments with sorbitol and citric acid (SorCA) to significantly improve the dimensional stability and biological durability of wood. The industrialization of this process requires a quality control (QC) method to determine if the fixated chemicals are homogenously distributed within the [...] Read more.
Recent studies showed treatments with sorbitol and citric acid (SorCA) to significantly improve the dimensional stability and biological durability of wood. The industrialization of this process requires a quality control (QC) method to determine if the fixated chemicals are homogenously distributed within the piece of wood, which is essential for uniform material performance. Therefore, the objective of this work was to evaluate the use of common electromagnetic radiation-based methods to determine the degree of modification in SorCA-treated wood. Both Fourier transform infrared (FTIR) spectroscopy and near-infrared (NIR) spectroscopy have been used to create rough calibrations for the weight percent gain (WPG) prediction models. The FTIR measurements resulted in a high linear correlation between the band area ratio (BAR) and the WPG (R2 = 0.93). Additionally, a partial least square (PLS) regression of NIR spectroscopic data resulted in a model with a high prediction power (R2 = 0.83). Furthermore, X-ray density profiling emerged as a simple alternative for the QC by showing a gradient of modification chemicals inside the sample and differences in chemical uptake between earlywood and latewood. Overall, it can be concluded that the results from FTIR, NIR and X-ray densitometry can serve as indicators of impregnation chemical distribution in SorCA-modified wood. Full article
Show Figures

Figure 1

15 pages, 5726 KiB  
Article
Surface Characteristics of One-Sided Charred Beech Wood
by Dita Machová, Anna Oberle, Lucie Zárybnická, Jakub Dohnal, Vít Šeda, Jakub Dömény, Veronika Vacenovská, Michal Kloiber, Jan Pěnčík, Jan Tippner and Petr Čermák
Polymers 2021, 13(10), 1551; https://doi.org/10.3390/polym13101551 - 12 May 2021
Cited by 20 | Viewed by 3804
Abstract
The aim of this paper was to analyze selected properties of beech wood (Fagus sylvatica L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C). Characteristics such as colour, [...] Read more.
The aim of this paper was to analyze selected properties of beech wood (Fagus sylvatica L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C). Characteristics such as colour, discoloration, surface roughness, fire resistance, total carbohydrate content at several wood layers and decay resistance were evaluated. Surface charring was applied to the radial and tangential surfaces. Colour measurements showed that the surface of the wood turned grey due to charring. In addition to colour measurements, other experiments showed significant differences between radial and tangential specimens due to their different structures. The higher the temperature used in treating them, the lower the roughness values for radial specimens, while the trend for tangential specimens was the opposite. A smoother surface is more fire resistant, so radial specimens are generally better in this regard. Tangential specimens are more susceptible during preparation to forming cracks that impair flame resistance because a continuous protective densified layer is not formed. The determination of total carbohydrates revealed significant changes at various wood depths after surface charring. These changes were more predictable in radial specimens due to the annual ring orientation, because each layer consisted of a similar earlywood/latewood ratio. Finally, when decay resistance was assessed, weight loss was found to be lower in all specimens than in the references. The results suggest that charring at a particular combination of temperature and time improved the investigated properties of the surface-modified beech. Full article
(This article belongs to the Special Issue Durability and Modification of Wood Surfaces)
Show Figures

Graphical abstract

17 pages, 4949 KiB  
Article
Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones
by Yamei Liu, Liang Zhou, Yingqi Zhu and Shengquan Liu
Forests 2020, 11(8), 824; https://doi.org/10.3390/f11080824 - 29 Jul 2020
Cited by 16 | Viewed by 3549
Abstract
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the [...] Read more.
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the genetic origin and cambial age on the anatomical characteristics of C. bungei wood. Materials and Methods: Six new 13-year-old C. bungei clones: ‘1-1’ (n trees = 3), ‘1-3’ (n trees = 3), ‘2-7’ (n trees = 3), ‘2-8’ (n trees = 3), ‘8-1’ (n trees = 4), and ‘9-1’ (n trees = 3) were removed for study from a plantation in Tianshui City, Gansu province, China. Xylem features were observed and the anatomical variables were manually measured via image analysis on (macro- micro-, and ultra-) features cut from radial increments of earlywood and latewood sampled at breast height. Results: Between the age of 1 and 2 years, wood was diffuse-porous; between the age of 3 and 9 years, wood was semi-ring-porous; and between the age of 10 and 13 years, wood was ring-porous. The effect of clones on anatomical characteristics was significant except for the microfibril angle in latewood and ring width. The transition between juvenile and mature wood was between 7 and 8 years based on patterns of radial variation in fiber length (earlywood) and microfibril angle. From the pith to the bark, fiber length, double wall thickness, fiber wall: lumen ratio, vessel diameter in earlywood, proportion of vessel in earlywood, and axial parenchyma in latewood increased significantly, whereas ring width, earlywood vessels, and the proportion of fiber decreased significantly. In addition, other features, such as vessel length, microfibril angle, and ray proportion, did not differ significantly from the pith to the bark. Conclusions: Breeding program must consider both clone and cambial age to improve the economic profitability of wood production. Full article
(This article belongs to the Special Issue Wood Structure and Properties)
Show Figures

Figure 1

19 pages, 10001 KiB  
Article
Bark Features for Identifying Resonance Spruce Standing Timber
by Florin Dinulică, Cristian-Teofil Albu, Maria Magdalena Vasilescu and Mariana Domnica Stanciu
Forests 2019, 10(9), 799; https://doi.org/10.3390/f10090799 - 12 Sep 2019
Cited by 14 | Viewed by 3854
Abstract
Measuring the acoustic properties of wood is not feasible for most luthiers, so identifying simple, valid criteria for diagnosis remains an exciting challenge when selecting materials for manufacturing musical instruments. This article aims to verify whether the bark qualities as a marker of [...] Read more.
Measuring the acoustic properties of wood is not feasible for most luthiers, so identifying simple, valid criteria for diagnosis remains an exciting challenge when selecting materials for manufacturing musical instruments. This article aims to verify whether the bark qualities as a marker of resonance wood are indeed useful. The morphometric and colour traits (in CIELab space) of the bark scales were compared with the structural (width and regularity of the growth rings and of the latewood) and acoustic features (transverse sound velocity, radiation ratio, impedance, and wood basic density) of the wood from 145 standing and 10 felled spruce trees, which are considered a resource of the resonance wood in the Romanian Carpathians. It has been emphasized that the spruce trees with acoustic and structural features that match the requirements for the manufacture of violins have a bark phenotype distinguishable by colour (higher redness, lower yellowness and brightness)—as well as by scale shape (higher slenderness and width). The south-facing side of the trunk and the external side of the scale are best for identifying resonance trees by their bark. Additionally, the mature bark phenotypes denote topoclinal variations and do not depend on tree age. Moreover, the differences among bark phenotypes are noticeable to the naked eye. Full article
(This article belongs to the Special Issue Genetic and Phenotypic Variation in Tree Crops Biodiversity)
Show Figures

Figure 1

16 pages, 5075 KiB  
Article
Influence of Cambial Age and Axial Height on the Spatial Patterns of Xylem Traits in Catalpa bungei, a Ring-Porous Tree Species Native to China
by Shan Li, Xin Li, Roman Link, Ren Li, Liping Deng, Bernhard Schuldt, Xiaomei Jiang, Rongjun Zhao, Jingming Zheng, Shuang Li and Yafang Yin
Forests 2019, 10(8), 662; https://doi.org/10.3390/f10080662 - 6 Aug 2019
Cited by 35 | Viewed by 3574
Abstract
Studying how cambial age and axial height affects wood anatomical traits may improve our understanding of xylem hydraulics, heartwood formation and axial growth. Radial strips were collected from six different heights (0–11.3 m) along the main trunk of three Manchurian catalpa (Catalpa [...] Read more.
Studying how cambial age and axial height affects wood anatomical traits may improve our understanding of xylem hydraulics, heartwood formation and axial growth. Radial strips were collected from six different heights (0–11.3 m) along the main trunk of three Manchurian catalpa (Catalpa bungei) trees, yielding 88 samples. In total, thirteen wood anatomical vessel and fiber traits were observed usinglight microscopy (LM) and scanning electron microscopy (SEM), and linear models were used to analyse the combined effect of axial height, cambial age and their interaction. Vessel diameter differed by about one order of magnitude between early- and latewood, and increased significantly with both cambial age and axial height in latewood, while it was positively affected by cambial age and independent of height in earlywood. Vertical position further had a positive effect on earlywood vessel density, and negative effects on fibre wall thickness, wall thickness to diameter ratio and length. Cambial age had positive effects on the pit membrane diameter and vessel element length, while the annual diameter growth decreased with both cambial age and axial position. In contrast, early- and latewood fiber diameter were unaffected by both cambial age and axial height. We further observed an increasing amount of tyloses from sapwood to heartwood, accompanied by an increase of warty layers and amorphous deposits on cell walls, bordered pit membranes and pit apertures. This study highlights the significant effects of cambial age and vertical position on xylem anatomical traits, and confirms earlier work that cautions to take into account xylem spatial position when interpreting wood anatomical structures, and thus, xylem hydraulic functioning. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 3014 KiB  
Article
Effects of Drought on Xylem Anatomy and Water-Use Efficiency of Two Co-Occurring Pine Species
by Dario Martin-Benito, Kevin J. Anchukaitis, Michael N. Evans, Miren Del Río, Hans Beeckman and Isabel Cañellas
Forests 2017, 8(9), 332; https://doi.org/10.3390/f8090332 - 8 Sep 2017
Cited by 60 | Viewed by 10621
Abstract
Exploring how drought influences growth, performance, and survival in different species is crucial to understanding the impacts of climate change on forest ecosystems. Here, we investigate the responses of two co-occurring pines (Pinus nigra and Pinus sylvestris) to interannual drought in [...] Read more.
Exploring how drought influences growth, performance, and survival in different species is crucial to understanding the impacts of climate change on forest ecosystems. Here, we investigate the responses of two co-occurring pines (Pinus nigra and Pinus sylvestris) to interannual drought in east-central Spain by dendrochronological and wood anatomical features integrated with isotopic ratios of carbon (δ13C) and oxygen (δ18O) in tree rings. Our results showed that drought induces both species to allocate less carbon to build tracheid cell-walls but increases tracheid lumen diameters, particularly in the transition wood between early and latewood, potentially maximizing hydraulic conductivity but reducing resistance to embolism at a critical phase during the growing season. The thicker cell-wall-to-lumen ratio in P. nigra could imply that its xylem may be more resistant to bending stress and drought-induced cavitation than P. sylvestris. In contrast, the higher intrinsic water-use efficiency (iWUE) in P. sylvestris suggests that it relies more on a water-saving strategy. Our results suggest that narrower cell-walls and reduced growth under drought are not necessarily linked to increased iWUE. At our site P. nigra showed a higher growth plasticity, grew faster and was more competitive than P. sylvestris. In the long term, these sustained differences in iWUE and anatomical characters could affect forest species performance and composition, particularly under increased drought stress. Full article
(This article belongs to the Special Issue Isotope Application in Forest Growth Assessment)
Show Figures

Graphical abstract

Back to TopTop