Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = late variscan magmatism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10609 KiB  
Article
Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco)
by Khadra Zaid, Mohammed Bouabdellah, Gilles Levresse, Mohamed Idbaroud, Erik Melchiorre, Ryan Mathur, Michel Jébrak, Adriana Potra, Johan Yans, Max Frenzel, Valby van Schijndel, Lakhlifa Benaissi and Said Belkacim
Minerals 2025, 15(7), 669; https://doi.org/10.3390/min15070669 - 22 Jun 2025
Viewed by 824
Abstract
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments [...] Read more.
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments and metavolcaniclastic rocks with tuff interbeds and amphibolite sills, locally intruded by late Visean calc-alkaline to alkaline granitoid intrusions. Paragenetic relationships indicate that the sequence of ore precipitation comprises a succession of Ni-Co-Fe arsenides, followed by Pb-Sb-As-Ag-Hg sulfarsenides/sulfosalts and then Zn-Pb-Fe sulfides. Results indicate that the ore shoot mineralization formed from episodic stages of fracturing and subsequent fluid migration. Precipitation of ore phases is thought to have occurred as a result of isothermal mixing and subsequent fluid–rock interactions. The timing of mineralization is thought to have occurred between Late Triassic and Late Miocene, coinciding with major crustal extension and Middle Jurassic–Upper Cretaceous alkaline magmatism. Thermal convection and seismic pumping are proposed as the main driving force for the large-scale migration of the ore-forming brines. This research bears directly upon the potential for new exploration targets in Pb-Zn ± fluorite ± barite deposits hosted in Variscan inliers throughout North Africa. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

24 pages, 11232 KiB  
Article
Microstructural Investigation of Variscan Late-Collisional Granitoids (Asinara Island, NW Sardinia, Italy): New Insights on the Relationship Between Regional Deformation and Magma Emplacement
by Diego Pieruccioni, Matteo Simonetti, Salvatore Iaccarino, Chiara Montomoli and Rodolfo Carosi
Geosciences 2025, 15(3), 108; https://doi.org/10.3390/geosciences15030108 - 18 Mar 2025
Viewed by 1004
Abstract
In the framework of the geological mapping of sheet “n. 425—Asinara Island” (NW Sardinia, Italy) of the Italian National Geological Mapping Project (CARG Project), three late- to post-collisional Variscan intrusive units are recognized: (i) Castellaccio Unit; (ii) Punta Sabina Unit; and (iii) sheeted [...] Read more.
In the framework of the geological mapping of sheet “n. 425—Asinara Island” (NW Sardinia, Italy) of the Italian National Geological Mapping Project (CARG Project), three late- to post-collisional Variscan intrusive units are recognized: (i) Castellaccio Unit; (ii) Punta Sabina Unit; and (iii) sheeted dyke complex. Granitoid rocks from these intrusive units intruded into the medium- to high-grade metamorphic micaschist and paragneiss and the migmatitic complex. A range of deformation microstructures from sub-magmatic to low-temperature subsolidus conditions are recognized. The main observed microstructures are represented by chessboard patterns in quartz and by feldspar sub-grain rotation dynamic recrystallization, indicative of deformation at high-temperature conditions (T > 650 °C). Solid-state high-temperature deformations (T > 450 °C) are provided by feldspar bulging, myrmekites, quartz grain boundary migration and sub-grain rotation dynamic recrystallization. Low-temperature sub-solidus microstructures (T < 450 °C) consist of quartz bulging, mica kinks, and feldspar twinning and bending. These features highlight that the three intrusive units recorded tectonic stresses, which affected the granitoids during cooling without developing a strong penetrative meso/microstructural fabric, as observed in other sectors of the Variscan orogen. The complete sequence of deformation microstructures, recorded in all intrusive units, suggests a weak but still ongoing deformation regime during granitoid emplacement in the Variscan orogen of northwestern Sardinia. These observations are similar to the features highlighted in other sectors of the southern Variscan belt and suggest a complex interplay between transpressional-induced exhumation of the middle/deep crust and magma intrusion. Full article
Show Figures

Figure 1

40 pages, 14218 KiB  
Article
Geochemistry and Petrogenesis of Permo–Triassic Silicic Volcanic Rocks from the Circum-Rhodope Belt in the Vardar/Axios Zone, Northern Greece: An Example of a Post-Collision Extensional Tectonic Setting in the Tethyan Realm
by Argyro Asvesta
Geosciences 2025, 15(2), 48; https://doi.org/10.3390/geosciences15020048 - 2 Feb 2025
Viewed by 994
Abstract
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic [...] Read more.
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic rocks from the CRB are mainly rhyolitic to rhyodacitic lavas with aphyric and porphyritic textures as well as pyroclastic deposits. In this study, geochemical data obtained with X-ray fluorescence (XRF) for the CRB silicic volcanic rocks are reported and discussed to constrain their petrogenesis and tectonic setting. The rocks are peraluminous and show enrichment in K, Rb, Th, Zr, Y, and Pb while being depleted in Ba, Sr, Nb, P, and Ti, and they have Zr + Nb + Y + Ce > 350 ppm, which are characteristic features of anorogenic A-type granites. They have a Y/Nb ratio > 1.2 and belong to A2-subtype granitoids, implying crust-derived magma in a post-collisional tectonic setting. The high Rb/Sr ratio (3.45–39.14), the low molar CaO/(MgO + FeOt) ratio, and the CaO/Na2O ratio (<0.5), which they display, indicate that metapelites are the magma sources. Their low Al2O3/TiO2 ratio (<100), consistent with their high zircon saturation temperatures (average TZr = 886 °C), and their low Pb/Ba ratio (average 0.06) reveal that they were generated by biotite dehydration melting. The increased Rb/Sr ratio relative to that of presumable parental metapelites of the Vertiskos Unit, coupled with their low Sr/Y ratio (0.12–1.08), reflects plagioclase and little or no garnet in the source residue, indicating magma derivation at low pressures of 0.4–0.8 GPa that correspond to a depth of ~15–30 km. The nearby tholeiitic basalts and dolerites, interstratified with the Triassic pelagic sediments, indicate bimodal volcanism in the region. They also support a model involving an upwelling asthenosphere that underplated the Vertiskos Unit basement, supplying the heat required for crustal melting at low pressures. The Permo–Triassic magmatism marks the transition from an orogenic to an anorogenic environment during the initial stage of continental breakup of the Variscan basement in a post-collision extensional tectonic framework, leading to the formation of the nascent Mesozoic Neo-Tethyan Maliac–Vardar Ocean. This apparently reveals that the Variscan continental collision between the Gondwana-derived Vertiskos and Pelagonian terranes must have been completed by at least the earliest Late Permian. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

31 pages, 11704 KiB  
Article
Petrology and Geochemistry of Highly Differentiated Tholeiitic Magmas: Granophyres in the Messejana–Plasencia Great Dyke (Central Iberia)
by David Orejana, Carlos Villaseca, Emma Losantos and Pilar Andonaegui
Minerals 2024, 14(3), 316; https://doi.org/10.3390/min14030316 - 16 Mar 2024
Viewed by 1771
Abstract
The Messejana–Plasencia great dyke (MPGD) is a Late Triassic tholeiitic gabbro intrusion related to the Central Atlantic Magmatic Province. Its large outcrop extent (~530 km), combined with its prolongation below the Duero basin (additional 100 km), makes it one of the world’s largest [...] Read more.
The Messejana–Plasencia great dyke (MPGD) is a Late Triassic tholeiitic gabbro intrusion related to the Central Atlantic Magmatic Province. Its large outcrop extent (~530 km), combined with its prolongation below the Duero basin (additional 100 km), makes it one of the world’s largest dykes known. We have studied felsic granophyric bodies appearing in its northernmost segment at different scales, from mm-sized (interstitial micrographic pockets) to felsic dykes of up to 10 m thick and 1.5 km long, intruding within the gabbros. Significant differences exist in the mineral and whole-rock composition of gabbros and granophyres, including the Sr–Nd isotopic ratios. The chemical variation in the gabbros is coherent with fractionation of olivine, clinopyroxene and plagioclase at depth. However, the presence of a compositional gap between gabbros and granophyres (absence of intermediate compositions) and the formation of these late-stage intergranular felsic melts within the gabbro mesostasis suggest that they could be derived by liquid immiscibility. The Sr–Nd isotopic heterogeneity in the MPGD gabbros and the presence of zircons with Variscan ages (~286 Ma), inherited from granulitic rocks, indicate that the mafic magmas experienced some degree of lower crust assimilation during fractionation close to the Moho depth. On the contrary, the scarce xenocrystic Variscan zircon crystals found in a granophyric dyke within the MPGD gabbro display similar textures and ages (~299 Ma) to those of the country rock granites and point to contamination at a different crustal level. Full article
Show Figures

Figure 1

30 pages, 7994 KiB  
Review
Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy)
by Stefano Naitza, Leonardo Casini, Fabrizio Cocco, Matteo Luca Deidda, Antonio Funedda, Alfredo Loi, Giacomo Oggiano and Francesco Secchi
Minerals 2024, 14(1), 65; https://doi.org/10.3390/min14010065 - 4 Jan 2024
Cited by 2 | Viewed by 2566
Abstract
Since the early Paleozoic, numerous metallogenic events produced in the Sardinian massif a singular concentration of mineral deposits of various kinds. Among them, the Variscan metallogenic peak represents a late Paleozoic phase of diffuse ore formation linked to the tectonomagmatic evolution of the [...] Read more.
Since the early Paleozoic, numerous metallogenic events produced in the Sardinian massif a singular concentration of mineral deposits of various kinds. Among them, the Variscan metallogenic peak represents a late Paleozoic phase of diffuse ore formation linked to the tectonomagmatic evolution of the Variscan chain. Two main classes of ores may primarily be attributed to this peak: (1) mesothermal orogenic-type As-Au ± W ± Sb ores, only found in E Sardinia, and (2) intrusion-related Sn-W-Mo-F and base metals-bearing ores found in the whole Sardinian Batholith, but mainly occurring in central–south Sardinia. Both deposit classes formed diachronously during the Variscan post-compressional extension. The orogenic-type ores are related to regional-scale flows of mineralizing fluids, and the intrusion-related ores occur around fertile intrusions of different granite suites. Metallogenic reconstructions suggest almost entirely crustal processes of mineralization without a significant contribution from the mantle. We summarized these processes with a holistic approach and conceptualized the Sardinian Variscan Mineral System (SVMS), a crustal-scale physical system of ore mineralization in the Sardinian basement. The SVMS required suitable metal sources in the crust and diffuse crustal reworking triggered by heat that allowed (a) the redistribution of the original metal budget of the crust in magmas by partial melting and (b) the production of metal-bearing fluids by metamorphic dehydration. Heat transfer in the Sardinian Variscan crust involved shear heating in lithospheric shear zones and the role of mantle uplift as a thermal engine in an extensional tectonic setting. Lithospheric shear zones acted as effective pathways in focusing fluid flow through a large-scale plumbing system into regional-scale structural traps for ores. Pre-Variscan metal sources of metallogenic relevance may have been (1) the magmatic arc and magmatic arc-derived materials of Ordovician age, extensively documented in E Sardinia crust, and (2) an inferred Precambrian crystalline basement lying under the Phanerozoic crustal section, whose presence has been assumed from geophysical data and from petrological and geochemical characteristics of granite suites. At shallower crustal levels, important contributions of metals may have come from pre-Variscan ore sources, such as the Pb-Zn MVT Cambrian ores of SW Sardinia or the REE-bearing Upper Ordovician paleoplacers of E Sardinia. Full article
Show Figures

Figure 1

22 pages, 28360 KiB  
Article
Structural Analysis and Paleostress Evolution in the Imiter Silver Mining Region, Eastern Anti Atlas, Morocco: Implications for Mineral Exploration
by Youssef Atif, Abderrahmane Soulaimani, Abdelhak Ait Lahna, Driss Yaagoub, Nasrrddine Youbi, Amin Beiranvand Pour and Mazlan Hashim
Minerals 2022, 12(12), 1563; https://doi.org/10.3390/min12121563 - 4 Dec 2022
Cited by 5 | Viewed by 3761
Abstract
Development and concentration of many ore deposits at the regional and district scales closely depend on structural geology, especially in polydeformed basements. The superposition of many deformation periods highlights the complexity of the structural context and expected potential location of mineralization zones. The [...] Read more.
Development and concentration of many ore deposits at the regional and district scales closely depend on structural geology, especially in polydeformed basements. The superposition of many deformation periods highlights the complexity of the structural context and expected potential location of mineralization zones. The formation and concentration of hydrothermal ore deposits is highly dependent on structural controls. On the NE flank of the Saghro massif (Eastern Anti-Atlas, Morocco), the Imiter silver mining region has been affected by multiple tectonic events since the Precambrian and throughout the Phanerozoic. In this investigation, a structural analysis of the different geological units revealed multi-stage deformation, beginning with the late Pan-African-Cadomian event, and ending with the last Cenozoic exhumation of the area. At least eight tectonic regimes have been identified. The Imiter basement, formed by the Cryogenian-early Ediacaran “flysch-like” Saghro Group, has been folded in low-grade metamorphic conditions, followed by an ENE-WSW brittle compressive event. These deformations occurred before to the early Ediacaran during the compressional and/or transpressional late Pan-African-Cadomian events (600–580 Ma). The unconformably overlaying deposition of the late Ediacaran Ouarzazate Group takes place in a WNW-ESE extensional setting and then involved in a NNW-SSE compressional event that occurred concurrently with a regional exhumation and erosion stages. A similar extensional event appears to have controlled the middle Cambrian sedimentation, the oldest Paleozoic deposits in this area. During the late Carboniferous, Variscan shortening was recorded by NW-SE transpressional deformation responsible for combined dextral strike-slip and southward thrusts. The Imiter silver mining region is part of the Moroccan Sub-Meseta Zone along with Paleozoic inliers of the Skoura and Tamlelt on the southern side of the High Atlas. The Mesozoic evolution began with the Late Triassic NNW-SSW transtensional tectonic regime with a northeast trending CAMP (Central Atlantic Magmatic Province) dyke during the Pangea breakup. Ultimately, the Imiter silver mining region experienced NNW-SSE Atlasic shortening during the uplift of the adjacent High Atlas. Over time, the direction of implemented tectonic stress and its effect on various geological units can elucidate the relationship between tectonism and hydrothermal silver mineralization in the Imiter region. In conclusion, structural analysis and investigation of paleostress development can be one of the most important factors for successful exploration plan and resource recovery in the Imiter region. An analysis of geological structures in determining feasible mineralization zones is crucial for future safe mining operation in the study area and can be extrapolated to other ore mining regions. Full article
Show Figures

Figure 1

17 pages, 5139 KiB  
Article
Allanite in Variscan Post-Collisional Lamprophyre Dykes from Les Guilleries (NE Iberia) as a Part of Rare Earth Elements Recycling in Collisional Orogens
by Esteban Mellado, Mercè Corbella and Andrew Kylander-Clark
Minerals 2022, 12(8), 954; https://doi.org/10.3390/min12080954 - 28 Jul 2022
Cited by 5 | Viewed by 2926
Abstract
Recent studies of Late Permian calc-alkaline lamprophyre dykes located in the Les Guilleries Paleozoic massif of the Catalan Coastal Range have revealed that allanite is present as the main REE-bearing accessory phase, which is the object of this study. The lamprophyre dykes are [...] Read more.
Recent studies of Late Permian calc-alkaline lamprophyre dykes located in the Les Guilleries Paleozoic massif of the Catalan Coastal Range have revealed that allanite is present as the main REE-bearing accessory phase, which is the object of this study. The lamprophyre dykes are amphibole–plagioclase-dominated spessartites with a wide variety of accessory phases, including titanite, ilmenite, allanite, fluorapatite, spinel, zircon, and sulfides, and show complex alteration textures related to secondary albite, chlorite, epidote, titanite and calcite. The allanite crystal composition, analyzed by SEM-EPMA and LA-ICP-MS, evidences the solid solution between epidote and allanite with a ferriallanite component, similar to what is found in Variscan post-collisional granitoids from western Europe. However, heterogeneity in crystal shapes, sizes, type of zoning, dissolution embayment textures, growth of epidote coronas, mineral paragenesis, and the unique geochemical characteristics of allanite crystals suggest multiple crystallization events. At least two types of allanite–epidote composite grains have been identified: allanite Type I, with regular allanite–epidote core-to-rim zoning and a secondary allanite rim; and allanite Type II, with anhedral allanite cores surrounded by epidote coronas. Additionally, irregular zoning, complex dissolution textures and REE redistribution suggest the occurrence of deuteric and/or post-magmatic processes, which are also common in Variscan post-collisional plutons from the Catalan Coastal Range and nearby Paleozoic massifs. Multivariate statistical analyses of major elements in allanite–epidote composite grains show a relationship between major textural and geochemical variations for three out of ten principal components, mainly related to cationic substitutions between ferriallanite-(Ce) and epidote, but also involving Mn and Ti(REE3+ + Fe2+ + Ti4+ + Mg2+ + Mn2+ = Al3+ + Ca2+ + Fe3+). The allanite U-Pb-Th- weighted mean age of 265 ± 15 Ma (MSWD = 0.57) is roughly similar to the age of emplacement of the lamprophyres in the upper crust in the mid–late Permian, and coincides with the period following the main tectonometamorphic and magmatic events of the post-collisional evolution in the Catalan Coastal Range. Th/U and La/Sm ratios suggest a metamorphic origin for most allanite grains, but a combination of metamorphic processes prior to partial melting, early–late magmatic crystallization, and/or post-magmatic hydrothermal processes is the most plausible explanation to account for the diversity of allanite grains in Les Guilleries lamprophyres. Full article
Show Figures

Figure 1

22 pages, 8910 KiB  
Article
Changing Carboniferous Arc Magmatism in the Ossa-Morena Zone (Southwest Iberia): Implications for the Variscan Belt
by Manuel Francisco Pereira, José Manuel Fuenlabrada, Carmen Rodríguez and António Castro
Minerals 2022, 12(5), 597; https://doi.org/10.3390/min12050597 - 9 May 2022
Cited by 6 | Viewed by 2914
Abstract
Carboniferous magmatism in southwestern Iberia was continuously active for more than 60 m.y. during the development of the Appalachian-Variscan belt of North America, North Africa and Western-Central Europe. This collisional orogen that records the closure of the Rheic Ocean is essential to understanding [...] Read more.
Carboniferous magmatism in southwestern Iberia was continuously active for more than 60 m.y. during the development of the Appalachian-Variscan belt of North America, North Africa and Western-Central Europe. This collisional orogen that records the closure of the Rheic Ocean is essential to understanding the late Paleozoic amalgamation of the Pangea supercontinent. However, the oblique convergence between Laurussia and Gondwana that lasted from the Devonian to the Carboniferous was likely more complex. Recently, a new tectonic model has regarded the Iberia Variscan belt as the site of coeval collisional and accretionary orogenic processes. Early Carboniferous plutonic rocks of southwest Iberia indicate arc magmatism in Gondwana. The Ossa-Morena Zone (OMZ) acted as the upper plate in relation to the geometry of the Paleotethys subduction. This active accretionary-extensional margin was progressively involved in a collisional phase during the Late Carboniferous. Together, the Évora Massif and the Beja Igneous Complex include three successive stages of bimodal magmatism, with a chemical composition indicative of a long-lived subduction process lasting from the Tournaisian to the Moscovian in the OMZ. The earliest stage of arc magmatism includes the Tournaisian Beja and Torrão gabbro-dioritic rocks of the Layered Gabbroic Sequence. We present new geochemical and Nd isotopic and U-Pb geochronological data for magmatic rocks from the Main (Visean-Serpukhovian) and Latest (Bashkirian-Moscovian) stages of arc magmatism. Visean Toca da Moura trachyandesite and rhyolites and Bashkirian Baleizão porphyries and Alcáçovas quartz diorite share enriched, continental-crust like characteristics, as indicated by major and trace elements, mainly suggesting the addition of calc-alkaline magma extracted from various mantle sources in a subduction-related setting (i.e., Paleotethys subduction). New U-Pb zircon geochronology data have allowed us to establish a crystallization age of 317 ± 3 Ma (Bashkirian) for Alcáçovas quartz diorite that confirms a temporal link with Baleizão porphyry. Positive εNd(t) values for the Carboniferous igneous rocks of the Beja Igneous Complex and the Évora gneiss dome indicate production of new juvenile crust, whereas negative εNd(t) values also suggest different grades of magma evolution involving crustal contamination. The production and evolution of Carboniferous continental crust in the OMZ was most likely associated with the development of an active continental margin during the convergence of the Paleotethys Ocean with Gondwana, involving juvenile materials and different grades of crustal contamination. Full article
(This article belongs to the Special Issue Petrology and Geochemistry of Igneous Complexes and Formations)
Show Figures

Figure 1

17 pages, 16961 KiB  
Article
Metasomatism by Boron-Rich Fluids along Permian Low-Angle Normal Faults (Central Southern Alps, N Italy)
by Stefano Zanchetta, Sofia Locchi, Gregorio Carminati, Manuel Mancuso, Chiara Montemagni and Andrea Zanchi
Minerals 2022, 12(4), 404; https://doi.org/10.3390/min12040404 - 25 Mar 2022
Cited by 4 | Viewed by 3700
Abstract
Low-Angle Normal Faults (LANFs) represent in the central Southern Alps area (N Italy) the main structures along which the Variscan basement is in contact with the Upper Carboniferous-Permian volcanic-sedimentary succession. Tourmalinites frequently occur along LANFs, usually replacing former cataclasites. The mineralogy and chemical [...] Read more.
Low-Angle Normal Faults (LANFs) represent in the central Southern Alps area (N Italy) the main structures along which the Variscan basement is in contact with the Upper Carboniferous-Permian volcanic-sedimentary succession. Tourmalinites frequently occur along LANFs, usually replacing former cataclasites. The mineralogy and chemical composition of tourmalinites point to a metasomatic origin. LANFs, together with high-angle faults, controlled the opening of the Permian Orobic Basin and likely acted as a preferred pathway for hydrothermal fluids that triggered the Boron-metasomatism. Along the Aga-Vedello LANF, tourmalinites appear to have formed after the cessation of fault activity, as no brittle post-metasomatism deformation overprint has been observed. These relationships suggest that the circulation of B-rich fluids occurred after the opening of the Orobic Basin that is broadly constrained to the Early Permian. At the same time, ca. 285–270 Ma, a strong magmatic activity affected all the Southern Alps, ranging in composition from mafic to acidic rocks and from intrusions at deep crustal levels to effusive volcanic products. The Early Permian magmatism was likely the source of the late-stage hydrothermal fluids that formed the tourmalinites. The same fluids could also have played a significant role in the formation of the Uranium ore deposit of the Novazza-Vedello mining district, as the ore bodies in the Vedello valley are concentrated along the basement-cover contact. Full article
Show Figures

Figure 1

20 pages, 6366 KiB  
Article
Structural Study and Detrital Zircon Provenance Analysis of the Cycladic Blueschist Unit Rocks from Iraklia Island: From the Paleozoic Basement Unroofing to the Cenozoic Exhumation
by Sofia Laskari, Konstantinos Soukis, Stylianos Lozios, Daniel F. Stockli, Eirini M. Poulaki and Christina Stouraiti
Minerals 2022, 12(1), 83; https://doi.org/10.3390/min12010083 - 11 Jan 2022
Cited by 10 | Viewed by 3693
Abstract
Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. [...] Read more.
Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. and an overlying Upper Schist Fm. The contact is an extensional ductile-to-brittle-ductile, top-to-N shear zone, kinematically associated with the Oligo-Miocene exhumation. The DZ spectra of the Lower Schist have Gondwanan/peri-Gondwanan provenance signatures and point to Late Triassic Maximum Depositional Ages (MDAs). A quartz-rich schist lens yielded Precambrian DZ ages exclusively and is interpreted as part of the pre-Variscan metasedimentary Cycladic Basement, equivalent to schists of the Ios Island core. The Upper Schist represents a distinctly different stratigraphic package with late Cretaceous MDAs and dominance of Late Paleozoic DZ ages, suggestive of a more internal Pelagonian source. The contrast in the DZ U-Pb record between Lower and Upper Schist likely reflects the difference between a Paleotethyan and Neotethyan geodynamic imprint. The Triassic DZ input from eroded volcanic material is related to the final Paleotethys closure and Pindos/CBU rift basin opening, while late Cretaceous metamorphic/magmatic zircons and ~48–56 Ma zircon rims constrain the onset of Neotethyan convergence and high-pressure subduction metamorphism. Full article
Show Figures

Graphical abstract

26 pages, 12441 KiB  
Article
First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland
by Ewa Krzemińska, Leszek Krzemiński, Paweł Poprawa, Jolanta Pacześna and Krzysztof Nejbert
Minerals 2021, 11(12), 1361; https://doi.org/10.3390/min11121361 - 2 Dec 2021
Cited by 3 | Viewed by 3454
Abstract
The U–Pb measurements of youngest, coherent group of zircons from the Mielnik IG1 dolerite at the Teisseyre-Tornquist margin (TTZ) of East European Craton (EEC) in Poland yielded age of 300 ± 4 Ma. Zircon dated an evolved portion of magma at the late [...] Read more.
The U–Pb measurements of youngest, coherent group of zircons from the Mielnik IG1 dolerite at the Teisseyre-Tornquist margin (TTZ) of East European Craton (EEC) in Poland yielded age of 300 ± 4 Ma. Zircon dated an evolved portion of magma at the late stage crystallization. It is shown that this isolated dyke from the northern margin of the Lublin Podlasie basin (Podlasie Depression) and regional dyke swarms of close ages from the Swedish Scania, Bornholm and Rügen islands, Oslo rift, Norway, and the Great Whine Sill in northeastern England, were coeval. They have been controlled by the same prominent tectonic event. The Mielnik IG1 dolerite is mafic rock with Mg-number between 52 and 50 composed of the clinopyroxene, olivine-pseudomorph, plagioclase, titanite, magnetite mineral assemblage, indicating relatively evolved melt. This hypabyssal rock has been affected by postmagmatic alteration. The subalkaline basalt composition, enrichment in incompatible trace elements, progressive crustal contamination, including abundance of zircon xenocrysts determines individual characteristics of the Mielnik IG1 dolerite. The revised age of dolerite, emplaced in vicinity of TTZ provides more evidences documenting the reach of the Permo-Carboniferous extension and rifting accompanied by magmatic pulses, that were widespread across Europe including the margin of the EEC incorporated that time into the broad foreland of the Variscan orogen. Full article
(This article belongs to the Special Issue East European Craton—From Crustal Growth to Sedimentary Cover)
Show Figures

Figure 1

30 pages, 12176 KiB  
Article
U–Pb Zircon Geochronological and Petrologic Constraints on the Post-Collisional Variscan Volcanism of the Tiddas-Souk Es-Sebt des Aït Ikko Basin (Western Meseta, Morocco)
by Ismail Hadimi, Nasrrddine Youbi, Abdelhak Ait Lahna, Mohamed Khalil Bensalah, Oussama Moutbir, João Mata, Miguel Doblas, Colombo Celso Gaeta Tassinari, Laura Gaggero, Miguel Angelo Stipp Basei, Kei Sato, Warda El Moume and Moulay Ahmed Boumehdi
Minerals 2021, 11(10), 1099; https://doi.org/10.3390/min11101099 - 7 Oct 2021
Cited by 8 | Viewed by 3695
Abstract
The NE–SW trending Tiddas Souk Es-Sebt des Ait Ikko (TSESDAI) basin, located at 110 km southeast of Rabat, in the region of Khmesset between the village of Tiddas and Souk Es-Sebt des Ait Ikko, is the third largest late Palaeozoic continental trough in [...] Read more.
The NE–SW trending Tiddas Souk Es-Sebt des Ait Ikko (TSESDAI) basin, located at 110 km southeast of Rabat, in the region of Khmesset between the village of Tiddas and Souk Es-Sebt des Ait Ikko, is the third largest late Palaeozoic continental trough in the northern Central Moroccan Meseta. It is a ~20 km long and ~2–3 km wide basin, comprising mainly mixed volcano-sedimentary reddish-purple continental Permian rocks laying with an angular unconformity on Visean deep marine siliciclastic sediments and unconformably overlain by the Triassic and Cenozoic formations. In this study we aim to better determine the age of Permian volcanics and their chemical and mineralogical characteristics, as well as assess the provenance of inherited zircons, thus contributing to the understanding of the late stages of the Variscan orogeny in Morocco. The standard volcanic succession includes the following terms: (i) andesites, lapilli tuffs and andesitic ash deposits; (ii) accumulations of rhyolitic lavas; (iii) lapilli tuffs and rhyolitic ash (formation F1); (iv) flows and breccias of dacites; (v) andesite flows; and (vi) basaltic flows. The various volcanic and subvolcanic studied rocks display calc-alkaline-series characteristics with high contents of SiO2, Al2O3, CaO, MgO, and relatively abundant alkalis, and low contents of MnO. In the classification diagram, the studied facies occupy the fields of andesites, trachy-basalts, dacites, trachydacites, and rhyolites and display a sub-alkaline behavior. These lavas would be derived from a parental mafic magma (basalts) produced by partial fusion of the upper mantle. Specific chemical analyses that were carried out on the mineralogical phases (biotite and pyroxene) revealed that the examined biotites can be classified as magnesian and share similarities with the calc-alkaline association-field, while the clinopyroxenes are mainly augites and plot on the calc-alkaline orogenic basalt field. Andesites and dacites of TSESDAI show similarities with the rocks of the calc-alkaline series not linked to active subduction and which involve a continental crust in their genesis. The existence of enclaves in the lavas of the TSESDAI massif; the abnormally high contents of Rb, Ba, Th, and La; and the systematic anomalies in TiO2 and P2O5 indicate also a crustal contamination mechanism. Three magmatic episodes are distinguished with two episodes that correspond to an eruptive cycle of calc-alkaline andesites and rhyolites followed by a basaltic episode. The SHRIMP U–Pb geochronologic data of zircons recovered from the rhyolite dome of Ari El Mahsar in TSESDAI basin show a Concordia age of 286.4 ± 4.7 Ma interpreted to date the magmatic crystallization of this dome. Thus, the rhyolite likely belongs to the third magmatic episodes of TSESDAI. Full article
Show Figures

Figure 1

31 pages, 5693 KiB  
Article
Fabric Analysis in Upper Crustal Post-Collisional Granitoids from the Serre Batholith (Southern Italy): Results from Microstructural and AMS Investigations
by Patrizia Fiannacca, Damiano Russo, Eugenio Fazio, Rosolino Cirrincione and Manish A. Mamtani
Geosciences 2021, 11(10), 414; https://doi.org/10.3390/geosciences11100414 - 4 Oct 2021
Cited by 10 | Viewed by 2733
Abstract
The Serre Batholith in Central Calabria (southern Italy) represents the intermediate portion of a continuous cross-section of late Variscan continental crust. The various granitoid units of the batholith were emplaced at depths between 23 and 6 km through an overaccretion mechanism that, at [...] Read more.
The Serre Batholith in Central Calabria (southern Italy) represents the intermediate portion of a continuous cross-section of late Variscan continental crust. The various granitoid units of the batholith were emplaced at depths between 23 and 6 km through an overaccretion mechanism that, at its upper levels, was marked by the emplacement of two-mica granodiorites and granites (MBG) at c. 295 Ma, followed by weakly peraluminous granodiorites (BAG) at c. 292 Ma. These upper crustal granitoid rocks have recorded tectonic stresses, which affected the batholith during cooling of the magmatic bodies, exhibiting a range of deformation microstructures from submagmatic to low-temperature subsolidus conditions, but without developing an evident meso/micro-structural fabric. Anisotropy of magnetic susceptibility (AMS) was employed to identify a possible “internal” fabric of the Serre upper crustal granitoids, revealing a magnetic foliation represented by a mainly oblate AMS ellipsoid. Magnetic foliations and lineations are consistent with a stress field characterized by a shortening axis roughly oriented NW–SE. Further studies are in progress to investigate more in depth the relationships between regional tectonic structures and the emplacement of the late-Variscan Serre Batholith granitoids. Full article
(This article belongs to the Special Issue Magmatic Feedbacks on Tectonics)
Show Figures

Figure 1

21 pages, 7393 KiB  
Article
Compositional Variability of Monazite–Cheralite–Huttonite Solid Solutions, Xenotime, and Uraninite in Geochemically Distinct Granites with Special Emphasis to the Strongly Fractionated Peraluminous Li–F–P-Rich Podlesí Granite System (Erzgebirge/Krušné Hory Mts., Central Europe)
by Karel Breiter and Hans-Jürgen Förster
Minerals 2021, 11(2), 127; https://doi.org/10.3390/min11020127 - 27 Jan 2021
Cited by 5 | Viewed by 3108
Abstract
A comprehensive study of monazite–cheralite–huttonite solid solutions (s.s.) and xenotime from the highly evolved, strongly peraluminous P–F–Li-rich Podlesí granite stock in the Krušné Hory Mts., Czech Republic, indicates that, with the increasing degree of magmatic and high-T early post-magmatic evolution, the content of [...] Read more.
A comprehensive study of monazite–cheralite–huttonite solid solutions (s.s.) and xenotime from the highly evolved, strongly peraluminous P–F–Li-rich Podlesí granite stock in the Krušné Hory Mts., Czech Republic, indicates that, with the increasing degree of magmatic and high-T early post-magmatic evolution, the content of the cheralite component in monazite increases and the relative dominance of middle rare earth elements (MREE) in xenotime becomes larger. Considering the overall compositional signatures of these two accessory minerals in the late Variscan granites of the Erzgebirge/Krušné Hory Mts., three types of granites can be distinguished: (i) chemically less evolved F-poor S(I)- and A-type granites contain monazite with a smooth, mostly symmetric chondrite-normalized (CN) rare-earth elements (REE) pattern gradually declining from La to Gd; associated xenotime is Y-rich (˃0.8 apfu Y) with a flat MREE–HREE (heavy rare earth elements) pattern; (ii) fractionated A-type granites typically contain La-depleted monazite with Th accommodated as the huttonite component, combined with usually Y-poor (0.4–0.6 apfu Y) xenotime characterized by a smoothly inclining, Yb–Lu-dominant CN-REE pattern; (iii) fractionated peraluminous Li-mica granites host monazite with a flat, asymmetric (kinked at La and Nd) CN-LREE pattern, with associated xenotime distinctly MREE (Gd–Tb–Dy)-dominant. Monazite and xenotime account for the bulk of the REE budgets in all types of granite. In peraluminous S(I)-type granites, which do not bear thorite, almost all Th is accommodated in monazite–cheralite s.s. In contrast, Th budgets in A-type granites are accounted for by monazite–huttonite s.s. together with thorite. The largest portion of U is accommodated in uraninite, if present. Full article
(This article belongs to the Special Issue Geochemistry of Granites and Granitic Pegmatites)
Show Figures

Graphical abstract

28 pages, 6662 KiB  
Article
Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff
by Elena Sizova, Christoph Hauzenberger, Harald Fritz, Shah Wali Faryad and Taras Gerya
Geosciences 2019, 9(12), 499; https://doi.org/10.3390/geosciences9120499 - 27 Nov 2019
Cited by 47 | Viewed by 7324
Abstract
Some (ultra)high-pressure metamorphic rocks that formed during continental collision preserve relict minerals, indicating a two-stage evolution: first, subduction to mantle depths and exhumation to the lower-crustal level (with simultaneous cooling), followed by intensive heating that can be characterized by a β-shaped pressure–temperature–time (P–T–t) [...] Read more.
Some (ultra)high-pressure metamorphic rocks that formed during continental collision preserve relict minerals, indicating a two-stage evolution: first, subduction to mantle depths and exhumation to the lower-crustal level (with simultaneous cooling), followed by intensive heating that can be characterized by a β-shaped pressure–temperature–time (P–T–t) path. Based on a two-dimensional (2D) coupled petrological–thermomechanical tectono-magmatic numerical model, we propose a possible sequence of tectonic stages that could lead to these overprinting metamorphic events along an orogenic β-shaped P–T–t path: the subduction and exhumation of continental crust, followed by slab retreat that leads to extension and subsequent asthenospheric upwelling. During the last stage, the exhumed crustal material at the crust–mantle boundary undergoes heating from the underlying hot asthenospheric mantle. This slab rollback scenario is further compared numerically with the classical continental collision scenario associated with slab breakoff, which is often used to explain the late heating impulse in the collisional orogens. The mantle upwelling occurring in the experiments with slab breakoff, which is responsible for the heating of the exhumed crustal material, is not related to the slab breakoff but can be caused either by slab bending before slab breakoff or by post-breakoff exhumation of the subducted crust. Our numerical modeling predictions align well with a variety of orogenic P–T–t paths that have been reported from many Phanerozoic collisional orogens, such as the Variscan Bohemian Massif, the Triassic Dabie Shan, the Cenozoic Northwest Himalaya, and some metamorphic complexes in the Alps. Full article
(This article belongs to the Special Issue Active Deformation and Rheology of the Continental Lithosphere)
Show Figures

Graphical abstract

Back to TopTop