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Abstract: The NE–SW trending Tiddas Souk Es-Sebt des Ait Ikko (TSESDAI) basin, located at 110 km
southeast of Rabat, in the region of Khmesset between the village of Tiddas and Souk Es-Sebt des Ait
Ikko, is the third largest late Palaeozoic continental trough in the northern Central Moroccan Meseta.
It is a ~20 km long and ~2–3 km wide basin, comprising mainly mixed volcano-sedimentary reddish-
purple continental Permian rocks laying with an angular unconformity on Visean deep marine
siliciclastic sediments and unconformably overlain by the Triassic and Cenozoic formations. In this
study we aim to better determine the age of Permian volcanics and their chemical and mineralogical
characteristics, as well as assess the provenance of inherited zircons, thus contributing to the under-
standing of the late stages of the Variscan orogeny in Morocco. The standard volcanic succession
includes the following terms: (i) andesites, lapilli tuffs and andesitic ash deposits; (ii) accumulations
of rhyolitic lavas; (iii) lapilli tuffs and rhyolitic ash (formation F1); (iv) flows and breccias of dacites;
(v) andesite flows; and (vi) basaltic flows. The various volcanic and subvolcanic studied rocks dis-
play calc-alkaline-series characteristics with high contents of SiO2, Al2O3, CaO, MgO, and relatively
abundant alkalis, and low contents of MnO. In the classification diagram, the studied facies occupy
the fields of andesites, trachy-basalts, dacites, trachydacites, and rhyolites and display a sub-alkaline
behavior. These lavas would be derived from a parental mafic magma (basalts) produced by partial
fusion of the upper mantle. Specific chemical analyses that were carried out on the mineralogical
phases (biotite and pyroxene) revealed that the examined biotites can be classified as magnesian
and share similarities with the calc-alkaline association-field, while the clinopyroxenes are mainly
augites and plot on the calc-alkaline orogenic basalt field. Andesites and dacites of TSESDAI show
similarities with the rocks of the calc-alkaline series not linked to active subduction and which involve
a continental crust in their genesis. The existence of enclaves in the lavas of the TSESDAI massif;
the abnormally high contents of Rb, Ba, Th, and La; and the systematic anomalies in TiO2 and P2O5

indicate also a crustal contamination mechanism. Three magmatic episodes are distinguished with
two episodes that correspond to an eruptive cycle of calc-alkaline andesites and rhyolites followed
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by a basaltic episode. The SHRIMP U–Pb geochronologic data of zircons recovered from the rhyolite
dome of Ari El Mahsar in TSESDAI basin show a Concordia age of 286.4 ± 4.7 Ma interpreted to date
the magmatic crystallization of this dome. Thus, the rhyolite likely belongs to the third magmatic
episodes of TSESDAI.

Keywords: Western Hercynian Meseta; Permian basin; Tiddas Souk Es-Sebt des ait ikko volcanic
basin; U–Pb geochronology; mineralogy; petrology

1. Introduction

The European Northwest African Magmatic Province (EUNWA or EUNWAMP;
e.g., [1–3] was emplaced during Late Carboniferous–Permian times and has been linked to
the gravitational collapse of the previously overthickened and weakened Variscan orogenic
belt. The gravitational collapse of the Variscan edifice occurred through simple pure shear
low-angle extensional detachments during the late Carboniferous–Permian, giving rise to a
Basin and Range type extensional province in Europe, and northwestern Africa involving
the unroofing of large metamorphic core complexes and synextensional plutonic bodies,
dike and sill swarms, and volcanic successions. Coevally with this extensional scenario, Eu-
rope and northwestern Africa were affected by a complex system of conjugate strike-slips
faults (NE–SW sinistral and NW–SE dextral), which partially disrupted the Variscan edifice,
resulting in new Permo-Carboniferous stress patterns with the principal compressional axis
oriented N–S [4,5]. This episode was accompanied by sediment deposition and volcanism
in transtensional and pull-apart basins [1,6,7]. This episode resulted from a major dextral
transcurrent movement along an intracontinental shear zone located between Gondwana
and Laurussia [4,5,8,9]. To date, a range of chronometers has been applied to determine
crystallization ages from across the region of the EUNWA Large Igneous Province, includ-
ing whole-rock Rb–Sr and K–Ar dating; 40Ar/39Ar dating of mineral separates; and U–Pb
dating of zircon, titanite, and perovskite (e.g., [10]). The duration of activity is currently
estimated to span a period of ca. 100 million years, from the Early Carboniferous to the
Late Permian–Early Triassic (350–250 Ma), with several hiatuses [11]. Three main pulses
can be distinguished at ca. 300 Ma, 290–275 Ma, and 250 Ma, and each of these pulses
can be considered a separate LIP within the overall EUNWA Large Igneous Province.
These eruptive cycles are well represented in Morocco in northwestern Africa and also in
southern Scandinavia and northern Germany. The huge volume of extruded and intruded
magmatic products of the EUNWA province (in the Oslo Graben, the estimated volume
is 35,000 km3, while in the North German Basin, the total volume of felsic volcanic rocks,
mainly rhyolites and rhyodacites, was of the order of 48,000 km3) has led to suggestions
of a thermally anomalous mantle plume to explain this magmatic pulse [12,13]. A signifi-
cant problem of the plume hypothesis is the duration of activity and the helium isotope
signature of lithospheric mantle xenoliths from the Scottish Permo-Carboniferous dikes,
sills, and vents [14]. The EUNWA magmatic province may have contributed to the great
Gondwanan glaciation that occurred from the late Devonian to the late Permian [15–17].
Glaciers achieved their maximum paleolatitudinal range between the middle Stephanian
(ca. 305 Ma ago) and the end of the Sakmarian (ca. 284 Ma ago) [17]. This hypothesis is
termed the icehouse-silicic large igneous province (SLIP) hypothesis [18].

In Morocco, the Permian sedimentation was continental and occurred in small isolated
basins (Khenifra, Boudoufoud, Bou-Achouch, Tiddas Souk Es-Sebt des Aït Ikko (TSESDAI),
Chougrane, Mechraa Ben Abbou, Senhaja, Ouelad Maachou, Ourika, and Argana; see
Figure 1), mostly originated as NE–SW to NNE–SSW half-graben-like structures, during
the gravitational collapse of the Variscan orogenic belt [19–22]. They are the remnants
of strongly subsided intramountainous troughs predominantly filled with red-colored
detritus, often associated with andesitic and rhyolitic lava flows, domes, pyroclastic rocks,
and shallow-level dikes and sills. These volcanic basins and their associated plumbing
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systems belong to the European Northwest African Magmatic Province (EUNWAMP);
e.g., [1]).
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Figure 1. Principal tectonic domains of central Morocco (modified after [23–26]). Numbers 1–8 correspond to Carboniferous–
Early Permian basins (1: the studied outcrops of Tiddas; 2: Bou Achouch, 3: Khenifra, 4: Chougrane, 5: Mechra ben Abbou,
6: Nzalet el Hararcha, 7: Senhaja, 8: Souss). Abbreviations: MF, Maghrebide Front; RTFZ, Rabat Tiflet Fault Zone; SAF,
South Atlas Fault; SMF, South Meseta Fault; TTF, Tizi n’ Tretten Fault Zone; WMSZ, Western Meseta Shear Zone.

While several Late Carboniferous–Permian basins have been extensively studied
for their stratigraphic, paleontological, and sedimentological characteristics, very little
is known on the petrology, geochemistry, and geochronology, with the exception of the
recent work of [23]. In this study, we focus on TSESDAI Permian volcanism affecting
the northwestern Gondwanaland margin in order to (1) determine, using a sensitive
high-resolution ion microprobe (SHRIMP) the zircon U–Pb age of volcanic crystallization;
(2) assess the provenance of inherited zircons; (3) describe the mineral chemistry of the
main rock-forming minerals; (4) characterize geochemically the magma affinities; and
(5) discuss the petrogenesis of volcanic rocks.

2. Geological Background

The NE–SW TSESDAI basin is located 110 km to the SE of Rabat (Figure 1), in the
region of Khemisset (between the villages of Tiddas and Souk Es Sebt des Ait Ikko) and
is the third-largest late Palaeozoic continental trough in the northern Central Moroccan
Meseta. It is a ~20 km long and ~2–3 km wide basin, comprising mainly mixed volcanic–
sedimentary reddish-purple Permian rocks laying with an angular unconformity on Visean
deep marine siliciclastic sediments and being unconformably overlain by the Triassic
and Cenozoic formations (Figure 2). The volcanic/subvolcanic formations of this basin
consist of rhyolitic domes with associated rhyolitic dike swarms and andesitic to dacitic
flows with a relatively reduced extension. These magmatic formations occupy an area
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of about 48 km2 and display massive textures and tabular surfaces. They are aligned
along a NE–SW direction corresponding to the orientation of the major Hercynian to
late Hercynian structures. These volcanics are intruded by a dike swarm with a NE–SW
dominant direction and covered by Triassic and Tertiary deposits [19,27–29]. The red
sedimentary package (40 to 300 m thick) of this basin is generally incomplete due to
faulting. Three main formations have been recognized on the TSESDAI basin by [30–33]:
(i) A 100 m-thick lower formation (F1) constituted by purple–red silty argillites, alternating
with conglomerates including andesites, quartz, quartzite, sandstone, and rare limestones
pebbles; (ii) an intermediate formation (F2) of about 120 m thick, consisting of silty argillites
gullied and interspersed with channel deposits (e.g., puddingstones and coarse sandstone)
with lenticular stratification and oblique tabular/horizontal bedding (the paleocurrents
are directed towards the SW and S); and (iii) an upper formation (F3) of 50 to 80 m thick
that is marked by thick red silty argillites interspersed with sandstone in centimetric to
decametric benches. Determining the Permian age of these formations was constrained by
using plant remains and vertebrate ichnofossils (e.g., [33,34]). The age has been recently
confirmed by [35]. The occurrence of volcanics in this basin was first reported and termed
by [36], being considered part, with those of the Khenifra Basin, of the so-called “Central
Moroccan volcanic axis”, extending from Khenifra to TSESDAI basins and displaying
felsic and mafic volcanics overlain by Neogene/Quaternary formations. Until the 1980s,
this “axial-model” has been accepted by several authors (e.g., [37] and references therein).
Later on, many contributions largely improved the geological knowledge of this basin
(e.g., [6,27,29]). The main conclusions of these authors are as follows: (i) The age of the
TSESDAI basin volcanic complex is Permian s.l. (late-Carboniferous and pre-Triassic,
probably Stephanian/Permian). (ii) There is a distinction of three major volcanic pulses,
the first one (mainly andesitic) predating the Permian series. Witnesses of this pulse
have been observed in the Tiddas region; however, most of this material is reworked
within the conglomerates. The second pulse is synsedimentary and displays various
interesting petrographic characteristics and remarkable andesitic lava flows interbedded
within the detrital sediments. The third pulse consists of intrusive rhyolitic dikes that
precede the Ari el Mahsar rhyolitic dome emplacement and the dacitic flows. (iii) There
has been identification of three intra-Permian tectonic events. The close relationship
between volcanism and fracturation is obvious; dikes and effusive centers are aligned
along N40–N70, mostly strike-slip faults.
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stones, and argillites; 4. biotite rhyolite dikes; 5. biotite rhyolitic dome (Ari Almahsar and Agrued El khebiza); 6. pyroxene
dacites (Bled Bou Haouza); 7. olivine and pyroxene andesites (Sebt Ait ikko); 8. pyroxene dolerite vein; 9. pyroxene basalt
flows of El Gitoune; 10. Triassic detrital and volcanic formations; 11. Messinian and Pliocene conglomeratic and marl
formations; 12. Quaternary; 13. undefined faults; 14. inverse faults.
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The assignment of the TSESDAI basin to the Permian was based on (a) the intrusion
of rhyolites into the Visean deep marine siliciclastics (e.g., shark-thin rhyolitic extrusive
dome of Ari el Mahsar and its satellite dikes); (b) the angular unconformity between the
Visean siliciclastics folded during the late Westphalian A and red detrital sediments; (c)
the presence of reworked rhyolitic/andesitic pebbles in the red sediments of this basin
and their absence in the detrital sediments of the Westphalian C/D preserved nearby in
the Sidi Kacem graben; (d) the angular unconformity between the Triassic and the red
detrital sediments; and (e) a strike-slip fault that postdates the basin sedimentary/volcanic
formations and predates the Triassic/Cenozoic.

3. Sampling and Analytical Procedures
3.1. Sampling

In order to investigate the nature, the tectonic setting, and the petrogenetic processes
of the post-collisional Variscan volcanism of the TSESDAI basin, we collected and an-
alyzed a total of eighteen samples from the least weathered outcrops (major and trace
elements; Table 1). Nine chemicals analyses of [19,28] were used for comparison. In addi-
tion, a sample from the shark-fin-like rhyolitic extrusive dome of Ari el Mahsar (sample
ARM15; N 30◦48′45.7′′, W 7◦32′29.1′′) was dated using SHRIMP U–Pb zircon geochronol-
ogy (Figure 14, Table 2). Specific chemical analyzes were carried out on the mineralogical
phases (pyroxene; Tables S1 and S2, biotite; Table S3) to characterize them and to determine
the physicochemical conditions of the crystallization of the studied rocks. The pyroxenes
selected for this study were exclusively from dacites given their better preservation in
comparison with those of the andesites, which are mostly transformed into secondary
minerals (chlorite, calcite, and silica).

3.2. Analytical Procedures
3.2.1. U–Pb Geochronology: Sensitive High-Resolution Ion Microprobe (SHRIMP IIe)

Igneous zircon grains from the shark-fin-like rhyolitic extrusive dome of the Ari el
Mahsar sample ARM15 was separated for U–Pb age determinations at the CPGeo-USP,
Brazil. The crystals were further mounted, together with the TEMORA-2 standard [39],
in epoxy and polished to expose the interior of the grains. After coating with Au, the
polished mounts were comprehensively examined with a FEI Quanta 250 scanning electron
microscope equipped with secondary electrons and cathodoluminescence (CL) detectors
at CPGeo-USP; the most common conditions used in CL analysis were as follows: 60 µA
emission current, 15.0 kV accelerating voltage, 7 µm beam diameter, 200 µs acquisition
time, and a resolution of 1024 × 884. The same mounts were analyzed afterwards by the
U–Pb isotopic technique using a SHRIMP II following the analytical procedures of [40].
Correction for common Pb was made based on the 204Pb measured, and the typical error
for the 206Pb/238U ratio was less than 2%; uranium abundance and U/Pb ratios were
calibrated against the TEMORA standard, and the ages were calculated using the Isoplot®

(version3.0, Berkeley Geochronology Center, Berkeley, CA, USA) application of [41]. Errors
were reported as 1σ deviations, and ages were calculated at the 95% confidence level.
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Table 1. Chemical compositions in major and traces elements of Tiddas-Souk Es Sebt des Ait Ikko volcanic complex magmatic rocks added to nine whole rock chemical analyses available
in the literature (identified by an asterisk (*); [19,28]). Mg # = (MgO/40.32)/(Fe2O3t*0.9/71.8) + (MgO/40.32).

No Fac. 1 1 2 2 2 2 2 2 2 2 3 3 3 3

No Samp. YK48 YK49 YK37 YK44 YK43 YK32 YK27 YK1 W184 * W186 * YK6 W183A * W181 * W183B *

SiO2 54.12 56.21 63.90 64.83 64.85 65.39 65.85 65.86 66.47 67.85 67.18 68.35 68.82 68.82
TiO2 1.04 1.03 0.73 0.69 0.69 0.59 0.64 0.59 0.70 0.66 0.24 0.29 0.32 0.35

Al2O3 15.99 15.88 15.79 15.33 15.45 15.22 15.10 14.93 14.20 14.05 14.73 13.99 14.55 14.12
Fe2O3t 5.62 5.41 3.26 4.04 3.90 3.63 3.83 3.53 2.26 3.72 1.42 2.39 2.41 1.72
Fe2O3 - - - - - - - - 2.09 2.72 - 1.44 2.04 0.96
FeO - - - - - - - - 0.15 0.90 - 0.85 0.33 0.68
MnO 0.06 0.07 0.01 0.05 0.04 0.02 0.04 0.02 0.02 0.03 0.02 0.03 0.06 0.01
MgO 2.55 2.09 0.37 1.51 1.79 1.02 0.61 0.88 0.18 0.4 0.43 0.41 0.25 0.57
CaO 6.32 5.93 2.45 2.62 2.74 3.02 2.59 2.26 1.97 2.22 3.86 2.18 2.02 1.98

Na2O 3.39 3.36 2.06 3.15 3.18 3.31 2.53 2.93 1.95 2.95 4.01 5.11 4.49 5.1
K2O 3.6 3.28 7.33 3.92 3.86 4.02 5.11 5.17 8.37 5.61 1.89 2.17 2.8 2.48
P2O5 0.31 0.32 0.18 0.15 0.16 0.12 0.15 0.13 0.16 0.12 0.07 0.07 0.12 0.11
LOI 7.1 6.13 3.07 3 3.1 3.09 3.3 2.97 3.51 2.61 5.52 4.36 3.68 3.97
Total 100.1 99.71 99.15 99.29 99.76 99.43 99.75 99.27 99.77 100.12 99.37 99.25 99.48 99.15
Rb 134 125 163 135 134 146 157 150 - - 44 - - -
Ba 655 650 653 494 520 630 521 600 - - 442 - - -
Sr 578 502 342 265 275 289 239 250 - - 455 - - -
Th 4.5 4.1 4.1 3.8 3.8 4.3 4 3.9 - - 2.5 - - -
U 1 2 2 2 1 1 2 2 - - 2 - - -
Pb 2 2 2 2 2 2 2 2 - - 2 - - -
Zr 298 288 202 214 219 214 191 214 - - 151 - - -
Hf 4 4 2 3 3 3 1 3 - - 2 - - -
Nb 5 5 5 5 5 5 5 5 - - 5 - - -
La 45 41 41 38 38 43 40 39 - - 25 - - -
Ce 80 80 79 69 75 77 75 77 - - 52 - - -
Nd 33 35 30 25 27 27 27 24 - - 9 - - -
Y 20 20 13 16 16 17 16 16 - - - - - -
Cr 110 111 37 54 56 52 54 49 - - 4 - - -
Co 18 19 9 13 13 9 11 10 - - - - - -
Ni 41 54 20 25 25 23 32 23 - - - - - -
V 110 97 69 65 69 58 53 55 - - 7 - - -

Cu 36 - - - - - - - - - - - - -
Zn 58 37 28 52 57 45 49 49 - - 35 - - -

Mg # 0.961 0.816 0.234 0.777 0.953 0.581 0.330 0.515 0.162 0.223 0.610 0.350 0.212 0.671
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Table 1. Cont.

No Fac. 3 3 3 3 3 3 3 3 3 3 3 3 4 4

No Samp. W147 * YK4 W144 * YK13 YK19 YK7 YK8 YK5 W182 * W145 * YK12 ARM15 YK14F YK36F

SiO2 69.1 69.55 69.76 69.8 69.95 70.3 70.3 70.42 70.45 70.7 70.81 71.69 70.06 70.29
TiO2 0.24 0.23 0.29 0.23 0.23 0.25 0.25 0.23 0.31 0.54 0.23 0.26 0.24 0.23

Al2O3 15.35 15.07 15.5 15.17 15.29 15.41 15.27 15.25 14.05 13.72 15.33 15.58 14.72 14.73
Fe2O3t 1.73 1.5 1.63 1.47 1.53 1.68 1.39 1.5 2.40 1.44 1.48 - 1.62 1.61
Fe2O3 1.36 - 1.07 - - - - - 2.08 0.18 - 1.63 - -
FeO 0.33 - 0.5 - - - - - 0.29 1.13 - - - -
MnO 0.03 0.01 0.03 0.02 0.01 0.02 0.02 0.01 0.04 0.02 0.01 0.03 0.03 0.03
MgO 0.7 0.43 0.45 0.43 0.42 0.11 0.18 0.43 0.26 0.61 0.44 0.21 0.7 0.7
CaO 2.55 2 1.12 1.93 1.83 1.85 1.92 1.94 0.49 1.93 1.76 0.19 1.88 1.87

Na2O 4.11 4.11 4.38 4.12 4.21 4.72 4.33 4.11 4.85 4.75 4.14 3.75 4.11 4.11
K2O 0.27 2.6 2.49 2.57 2.5 2.74 2.79 2.61 2.48 2.24 2.54 3.76 1.83 1.82
P2O5 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.11 0.08 0.07 0.12 0.05 0.05
LOI 5.51 3.45 3.6 3.31 3.2 2.69 3.1 3.34 3.33 2.91 3.22 1.98 4.15 4.07
Total 99.62 99.02 99.27 99.12 99.24 99.84 99.62 99.91 98.74 98.81 100.03 99.20 99.39 99.51
Rb - 55 - 55 54 59 63 55 - - 55 56.54 56 56
Ba - 668 - 636 618 538 751 698 - - 595 627.54 65 630
Sr - 373 - 376 373 382 428 380 - - 370 343.00 492 494
Th - 2.7 - 2.6 2.7 2.7 2.6 2.9 - - 2.7 3.69 2.9 2.7
U - 2 - 2 2 2 2 2 - - 2 0.63 2 2
Pb - 2 - 2 2 2 2 2 - - 2 30.93 2 2
Zr - 153 - 156 156 153 155 157 - - 158 183.00 153 155
Hf - 2 - 2 2 2 2 2 - - 2 3.60 2 2
Nb - 5 - 5 5 5 5 5 - - 5 2.21 5 5
La - 27 - 26 27 27 26 29 - - 27 20.45 29 27
Ce - 49 - 50 54 48 48 43 - - 49 37.85 52 51
Nd - 8 - 7 13 13 10 9 - - 9 15.58 14 12
Y - - - - - - - - - - - 4.64 - -
Cr - 2 - 1 1 3 2 10 - - 3 - 1 -
Co - - - - - - - - - - - - - -
Ni - - - - - - - - - - - 23.00 - -
V - 9 - 11 9 14 12 12 - - 11 - 9 11

Cu - - - - - - - - - - - - - -
Zn - 15 - 13 13 38 98 14 - - 16 - 76 76

Mg # 0.819 0.578 0.559 0.589 0.554 0.132 0.261 0.578 0.221 0.855 0.599 - 0.872 0.878
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Table 2. SHRIMPII zircon U–Th–Pb results of the rhyolitic dome of TSESDAI.

Unit/
Sample

Spot
Name

Concentrations Ratios Ages (Ma) Conc
%

U
(ppm)

Th
(ppm)

232Th
238U

±
%

206Pb*
(ppm)

206Pbc
(%)

238U
206Pb*

1 σ
%

207Pb*
206Pb*

1 σ
%

207Pb*
235U

1 σ
%

206Pb*
238U

1 σ
%

Rho 206Pb
238U

1 σ
(Ma)

207Pb
206Pb

1 σ
(Ma)

Ti
dd

as
So

uk
Es

-S
eb

tD
es

A
it

Ik
ko

/A
ri

el
M

ah
sa

r/
A

R
M

15

1.1 283 171 0.62 2.31 20.3 0.30 11.945 3.468 0.0594 0.991 0.69 3.607 0.084 3.468 0.962 518 17 582 22 111
2.1 615 365 0.61 1.59 24.2 −0.02 21.851 3.083 0.0519 0.721 0.33 3.166 0.046 3.083 0.974 288 9 282 16 98
3.1 632 468 0.76 0.78 23.4 0.56 23.206 3.121 0.0538 1.527 0.32 3.474 0.043 3.121 0.898 272 8 362 34 125
4.1 675 383 0.59 1.34 25.3 0.15 22.856 3.055 0.0522 0.904 0.32 3.186 0.044 3.055 0.959 276 8 295 21 107
5.1 619 260 0.43 4.79 24.0 0.14 22.116 3.053 0.0529 0.807 0.33 3.158 0.045 3.053 0.967 285 9 323 18 112
6.1 497 219 0.46 0.69 47.1 4.08 8.711 3.447 0.0941 0.508 1.49 3.484 0.115 3.447 0.989 701 23 1510 10 157
7.1 399 169 0.44 0.22 16.1 0.16 21.211 3.237 0.0525 1.400 0.34 3.527 0.047 3.237 0.918 297 9 309 32 104
8.1 165 97 0.60 0.66 64.5 1.21 2.174 3.087 0.1669 0.285 10.59 3.101 0.460 3.087 0.996 2439 63 2527 5 104
8.2 669 380 0.59 0.22 25.5 0.23 22.522 3.063 0.0520 1.496 0.32 3.409 0.044 3.063 0.899 280 8 284 34 101
9.1 564 744 1.36 0.49 41.8 0.80 11.541 3.057 0.0606 1.227 0.72 3.294 0.087 3.057 0.928 536 16 625 26 115
10.1 229 50 0.23 1.47 49.8 1.37 3.902 3.165 0.1030 0.784 3.64 3.260 0.256 3.165 0.971 1471 42 1679 14 114
10.2 484 160 0.34 2.51 47.3 2.26 8.583 3.371 0.0809 0.722 1.30 3.448 0.117 3.371 0.978 710 23 1219 14 144
11.1 557 323 0.60 0.71 22.0 0.56 3.223 0.0527 1.871 0.33 3.727 0.046 3.223 0.865 290 9 318 43 109
11.2 176 86 0.50 9.59 10.1 0.31 14.943 4.013 0.0588 2.546 0.54 4.753 0.067 4.013 0.844 418 16 561 55 126
12.1 582 387 0.69 0.83 23.2 0.35 21.585 3.531 0.0516 1.963 0.33 4.039 0.046 3.531 0.874 292 10 267 45 90
13.1 195 81 0.43 0.65 39.9 2.04 4.114 3.089 0.1055 0.495 3.53 3.129 0.243 3.089 0.987 1403 39 1722 9 121
13.2 652 332 0.53 0.73 26.2 0.18 21.409 3.143 0.0520 1.543 0.33 3.501 0.047 3.143 0.898 294 9 284 35 96
14.1 497 171 0.36 0.41 28.9 0.14 14.786 3.937 0.0556 2.050 0.52 4.439 0.068 3.937 0.887 422 16 438 46 104
14.2 105 56 0.55 0.39 8.3 0.55 10.896 3.138 0.0589 2.984 0.74 4.330 0.092 3.138 0.725 566 17 562 65 99
15.1 243 116 0.49 0.29 11.7 0.54 17.881 3.087 0.0548 2.342 0.42 3.875 0.056 3.087 0.797 351 11 402 52 113
16.1 300 139 0.48 0.27 24.2 0.07 10.638 3.133 0.0603 0.876 0.78 3.254 0.094 3.133 0.963 579 17 616 19 106
17.1 471 186 0.41 0.81 19.5 0.58 20.707 3.190 0.0541 2.456 0.36 4.026 0.048 3.190 0.792 304 9 376 55 120
18.1 336 104 0.32 0.55 29.2 0.09 9.864 3.072 0.0611 0.754 0.85 3.163 0.101 3.072 0.971 622 18 644 16 104
19.1 49 52 1.10 0.46 4.1 0.39 10.235 3.248 0.0609 3.219 0.82 4.573 0.098 3.248 0.710 601 19 637 69 106
19.2 440 186 0.44 2.01 17.0 0.87 22.216 3.150 0.0521 4.986 0.32 5.897 0.045 3.150 0.534 284 9 290 114 102
20.1 361 4 0.01 1.34 101.3 1.44 3.023 3.071 0.1235 0.307 5.63 3.086 0.331 3.071 0.995 1842 49 2007 5 125
20.2 1129 410 0.37 0.35 71.3 1.01 13.605 3.706 0.0566 4.970 0.57 6.199 0.074 3.706 0.598 457 16 475 110 104
21.1 774 478 0.64 0.19 31.6 0.14 21.065 3.058 0.0522 1.213 0.34 3.290 0.047 3.058 0.930 299 9 294 28 98
22.1 461 45 0.10 2.34 112.5 2.73 3.424 3.063 0.1227 0.274 4.94 3.075 0.292 3.063 0.996 1652 45 1996 5 120
22.2 1082 920 0.88 0.19 40.7 0.14 22.807 3.162 0.0517 1.283 0.31 3.413 0.044 3.162 0.927 277 9 273 29 99
23.1 649 399 0.63 0.46 25.3 0.30 22.068 3.223 0.0520 1.643 0.33 3.618 0.045 3.223 0.891 286 9 287 38 101

Errors are 1-sigma; Pbc and Pb* indicate the common and radiogenic portions, respectively. Common Pb corrected using measured 204Pb.
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3.2.2. Whole-Rock Geochemistry

Chemical compositions of the analyzed whole rocks are given in (Table 1), which also
presented nine whole rock chemical analyses available on the literature (identified by an
asterisk; [19,28]). Whole rocks of 18 samples were analyzed for major oxides and trace
elements by X-ray fluorescence (XRF) spectroscopy using a Phillips PW 1400 at the Centre
d’Analyses Minérale, University of Lausanne, Lausanne, Switzerland. After reducing the
sample to centimeter sized chips in a hydraulic press, the freshest pieces were selected
and crushed using a jaw crusher and then powdered in an agate swing mill. Routine
analyses of major elements and traces were performed on fused disks prepared from 1.2 g
of calcined sample powder mixed with lithium-tetraborate. Calibrations were based on
certified international standards. The limits of detection depend on the element concerned
and the matrix but typically range between 1 to 7 ppm. The dated sample (ARM 15) was
analyzed for bulk rock major and trace element analyses using the analytical facilities of
the Instituto Andaluz De Ciencias De La Tierra (IACT), CSIC–UGR, Armilla, Granada,
Spain. The analytical techniques were described in detail by [42].

3.2.3. Mineral Chemistry: Electron Probe MicroAnalyser (EPMA)

Major and trace element analyses of minerals (pyroxenes and biotites) were performed
at the CAMP-Paris of the University of Pierre et Marie Curie (Laboratoire de Géochimie
Comparée et Systématique, Paris, France) using a Cameca SX100 electron microprobe
calibrated with a combination of natural and synthetic standards including sanidine (Al),
titanite (Ti, Si, and Ca), halite (Cl), chromite (Cr), topaz (F), andradite (Fe), orthoclase (K),
olivine (Mg), spessartine (Mn), and albite (Na). Analyses were carried out using a beam
size of 1 µm, an accelerating voltage of 15 kV, and a probe current of 20 nA. Counting time
varied depending on elements and minerals (see [38] for more details).

4. Results
4.1. Field Observations and Petrographic Features

The major types of volcanic rocks outcropping in the TSESDAI basin and their petro-
graphic features are summarized below.

4.1.1. Dolerites

These rocks crop out in the northeastern sector of the Tiddas region as a NE–SW
kilometric length dolerite dike (50 m thick). Their primary mineralogical composition
consists of pyroxene and plagioclase (60–70% An), both presenting variable degrees of
alteration. Pyroxene are often epigenized into secondary minerals such as chlorite, calcite,
and silica, while plagioclases are partially or completely sericitized.

4.1.2. Sebt Ait Ikko Andesites

The andesites crop out southwest of Sebt Ait Ikko, on both sides of the Oued BouAzza
valley. They consist of a 15 m thick flow pile uncomfortably resting on the F1 formation
of Permian detrital deposits [38]. These andesites are mainly composed of plagioclase,
pyroxene, and olivine, presenting variable degrees of alteration.

4.1.3. Tiddas Andesites and Associated Pyroclastites

In the vicinity of Tiddas, the andesites and associated pyroclastites crop out at the
Kikene and Glimis Mountains (Figure 3A). They consist of 15 to 50 m thick flows and
pyroclastites lying with an angular unconformity directly on the Visean basement [38].
The summit is systematically underlined by metric-scale horizons of breccias, sometimes
covered by tuffs of ash lapillis of the same nature and Permian detritic deposits of the F1
formation. The mineralogical assemblage essentially consists of pyroxenes and plagioclases.
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is indicated. 
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structured in a series of domes and preceded by the intrusion of rhyolitic dikes, a phase 
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(iii) 2 m deposits of lapilli tuffs and rhyolitic ashes that are contemporaneous with the 
filling of the basin (deposits of the F1 formation); (iv) 60 m of flows and breccias of dacite; 
(v) 15 m of andesite flows; and (vi) 50 m of basaltic flows. 

Figure 3. Field photographs: (A) Tiddas andesites located to the SW of this village; (B) dacites of
Bled Bou Haouza located to the SE of Sebt Ait Ikko; (C) Ari el Mahsar dome laying on the Visean
basement; (D) a close view of the rhyolites in the Ari el Mahsar dome. The location of sample ARM15
is indicated.

4.1.4. Pyroxenes Dacites

These rocks outcrop exclusively in the area of Bled Bou Haouza (Figure 3B). They
are either laying directly or with an angular discordance over the folded or laminated
upper Visean basement. Occasionally they are separated from the latter by Autunian
molasses formed conglomeratic and sandstone deposits with mainly F1 volcanic elements.
Sometimes, they are overlain by a level of breccias of the same nature. The mineralogical
assemblage is composed of pyroxene, plagioclase, and sanidine.

4.1.5. Biotite Rhyolites

The biotite rhyolites outcrop in the eastern part of TSESDAI as extrusive domes
associated with a network of rhyolitic dikes with a NE–SW general trend. The dome and
the dikes are both systematically intrusive in the pre-Permian basement. The rhyolitic
domes (Figure 3C,D) have generally prismatic joints, developing vertical prisms of about
15 to 20 m in height. Sometimes the prisms are imperfect as a result of the development of
horizontal joints. The prismatic feature locally disappears due to the latter development of
spheroidal disjunction. The rhyolitic dikes have a general trend of N50–60 and a metric to
kilometer extension, with frequent columnar jointing with contiguous sharp edge columns
characterized by centimetric polygonal sections. Massive, rounded blocks with “onion
peel” structures are common.

4.1.6. Lapilli Tuffs and Rhyolitic Ash Deposits

These 5 m thick lenticular pyroclastic deposits are interbedded within the detrital
deposits of the formation F1. They are characterized by a decimetric stratification with
internal horizontal laminations, normally or inversely graded, with occasional accretionary
lapilli levels.

4.2. Lithostratigraphic Organization

Figure 4 illustrates the spatiotemporal distribution of the described facies. Depending
on the areas, 50 to 350 m thicknesses of sedimentary, lava flows, and pyroclastic deposits
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have been accumulated, representing about 24 km3 of the volcanic and sedimentary mate-
rial. The buildup of these piles is the result of a volcanological and sedimentary evolution
that differs very little from one sector to another. The standard volcanic succession includes
(i) a 15 to 50 m thick stack of andesites breccias (Tiddas andesites), castings and lapilli
tuff, and andesitic ash deposits; (ii) 100 m of rhyolitic lavas structured in a series of domes
and preceded by the intrusion of rhyolitic dikes, a phase that forms stratigraphically and
that is the lateral equivalent of the “Tiddas andesites”; (iii) 2 m deposits of lapilli tuffs
and rhyolitic ashes that are contemporaneous with the filling of the basin (deposits of the
F1 formation); (iv) 60 m of flows and breccias of dacite; (v) 15 m of andesite flows; and
(vi) 50 m of basaltic flows.
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(49.66 wt.% up to 52.66 wt.% and an average of 51.22 wt.%); (ii) a low TiO2 content (0.31 
up to 1.70 wt.% with an average of 0.60 wt.%; (iii) a low or high Al2O3 content (1.04 to 5.5 
wt.% with an average of 2.09 wt.%); (iv) and a CrO3 content ranging from 0.025 to 0.31 
wt.% with an average of 0.10 wt.%. AlIV is usually low (0.034 to 0.141) indicating the lack 
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0.048) in the octahedral site. 

Figure 4. Lithostratigraphic columns of the Permian volcanic complex of TSESDAI: 1. Upper Visean Paleozoic terrains;
2. Tiddas pyroxene andesites in flows (2a), flow breccias (2b), and lapilli tuff and ash deposits (2c); 3. biotite rhyolitic dikes
(3a), domes (3b), and lapilli tuffs and ash deposits (3c); 4. detrital formations of Permian conglomerates (4a), argillites (4b),
and sandstones (4c); 5. Bled Bou Haouza dacites with pyroxenes (in flows (5a) and flow breccias (5b); 6A Sebt Ait Ikko
andesites with olivine and pyroxenes. F1, lower formation; F2, intermediate formation. Location of sections; (A), west of
Tiddas (Glimis); (B), west–southwest of Tiddas (KiKene); (C), northeast of Tiddas; (D), southwest of Sebt Ait Ikko; (E), south
of Sebt Ait Ikko.

4.3. Mineral Chemistry
4.3.1. Clinopyroxenes of Dacites

The clinopyroxenes (Cpx) are colorless with polysynthetic twins and/or sectorial
zoning structures constituting 5% of the total volume of the dacitic lava flows. They
appear as phenocrysts (2%) and microlites (3%) (Figure 5A) and are euhedral or subhedral,
sometimes corroded. Cationic proportions based on six oxygen atoms per formula unit
of the studied clinopyroxenes allowed them to be classified mainly as augites, using [43]
systematics, with compositions clustered around an average of En 42–Wo 42–Fs 16 (Figure 6,
Tables S1 and S2). They are characterized by (i) a high SiO2 content (49.66 wt.% up to
52.66 wt.% and an average of 51.22 wt.%); (ii) a low TiO2 content (0.31 up to 1.70 wt.% with
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an average of 0.60 wt.%; (iii) a low or high Al2O3 content (1.04 to 5.5 wt.% with an average
of 2.09 wt.%); (iv) and a CrO3 content ranging from 0.025 to 0.31 wt.% with an average
of 0.10 wt.%. AlIV is usually low (0.034 to 0.141) indicating the lack of significant non-
quadrilateral substitutions. These are accomplished by the incorporation of small amounts
of aluminum (AlVI = 0 to 0.101) and titanium (Ti = 0.009 to 0.048) in the octahedral site.
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(En), Wollastonite (Wo), and ferrosilite (Fs) triangle of [43]. Blue circles indicate the analyzed
orthopyroxenes. Red circles indicate the analyzed clinopyroxenes. The numbers (1 to 6) indicate
respectively; Diopside, Hedenbergite, Augite, Pigeonite, Clinoenstatite, Clinoferrosilite.

4.3.2. Biotite of Rhyolites

Biotite constitutes about 6% of the total rock volume and appears isolated or grouped
in glomeruli with feldspar phenocrysts (2%) being euhedral to subhedral with rarely
corroded contours (Figure 5B), and as microlites (4%). Biotite crystals retain generally their
primary optical characteristics, but occasionally they are partially or totally transformed
into chlorite and invaded by oxide granules (Figure 5B). The chemical analyzes of the
biotites and their structural formulas calculated on the basis of 22 oxygen atoms (Table S3)
show that they are characterized by (i) low iron oxide content (mean average = 17.45 wt.%)
and calcium (CaO = 0.09 wt.%); (ii) relatively high levels of titanium (TiO2 = 3.13 wt.%),
which is compatible with a medium magmatic formation, alumina (Al2O3 = 15.28 wt.%),
and magnesium (MgO = 11.72 wt.%) (e.g., [44–47]; and (iii) Fe/Mg + Fe ratios ranging
between 0.44 and 0.49 allowing their classification as magnesian biotites (see Figure 7; [48]).
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4.4. Whole-Rock Geochemistry
4.4.1. Major Elements

The studied volcanic and subvolcanic rocks display variable contents of SiO2 (54.11 to
70.80 wt.%), Al2O3 (13.42 to 15.99 wt.%), CaO (0.49 to 6.32 wt.%), MgO (0.11 to 2.55 wt.%),
and alkalis (Na2O + K2O = 4.38 to 10.32 wt.%). Loss on ignition (LOI) contents are moder-
ately high and variable (LOI = 1.98 to 6.13 wt.%) suggesting the operation of post-magmatic
processes, which requires caution when interpreting the concentrations of the more mobile
elements (e.g., alkalis). The classification diagram of [49] shows that the studied rocks
occupy the fields of basaltic trachyandesite, trachydacites, and rhyolites. The rhyolites (in
domes and dikes) from TSESDAI display a sub-alkaline behavior, while the andesites and
dacites display an alkaline one [50] (Figure 8). The andesites and a large part of the dacites
have a very high K2O content due to the alteration of feldspar to sericite. This explains the
migration of their representative points in domains not identical to those indicated by their
petrographic and mineralogical features, and this is mainly due to the alteration of feldspar
to sericite and clays and devitrification glasses made up of chlorite and other clay minerals.
The evolution diagram of [51] (Figure 9), where the content of SiO2 is taken as an index of
differentiation, allows for the following remarks:

- The TiO2, Al2O3, FeO*, MgO, CaO, and P2O5 oxides have a negative correlation with
SiO2, while K2O and Na2O have an opposite or a random behavior.

- A negative correlation of Al2O3 and SiO2 in the dacitic terms could be a result of the
fractionation of alumino-silicate minerals such as plagioclase. The same correlation is
observed in the transition from dacites to rhyolites.

- The occurrence of a hiatus between the mafic terms (andesites), the intermediate and
the felsic terms (dacites and rhyolites). The intermediate terms of the felsic andesite
type are absent.
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4.4.2. Trace Elements

The contents of large-ion lithophile element (LILE) including low field strength (LFS)
(Rb, K, Ba, Sr, Th) and light rare earth elements (La, Ce) occasionally display large variations.
However, the same order of magnitude for the various facies and for a given element is
preserved. The behavior of Sr seems compatible with plagioclase fractionation in the
andesite–dacite series (Figure 10) (correlation between CaO and SiO2 in these rocks). Ba
shows a slightly positive correlation with SiO2 in andesites. The decrease of Ba in dacites
and rhyolites is related to the fractionation of Ba-rich minerals such as Sanidine. The Th
and rare earths (e.g., La, Ce, Nd) have a negative correlation with SiO2 (Figure 10).
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Figure 10. Diagram of the variation of some trace elements versus SiO2. See symbol legend in
Figure 8.

The high field strength elements (HFSE), such as Zr, Hf, Ti, P, Nb, and Ta are considered
immobile during the alteration [52–54]. In the studied volcanic and subvolcanic facies,
Zr and Hf contents are also high. The Zr contents range between 151 to 298 and the
Hf contents vary from 1 to 4. The latter shows a negative correlation with SiO2. The
spectra obtained for andesites and dacites (Figure 11A), although corresponding to rocks of
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different mineralogical compositions and degrees of differentiation, have very similar traces,
when compared to MORB N, all these profiles presenting important enrichments in strongly
incompatible elements (LILE), an important decrease between Th and Y (Th/Y = 0.56 to
0.84, average = 0.66), with a well-marked negative anomaly in Nb and a depletion in Ti
and transition elements of the 3d series; in addition, the values of the La/Nb ratios are
between 2 and 7 (La/Nb = 2.93 to 4.3, average 3.73). Compared to the andesites, the dacites
show more pronounced negative TiO2 and P2O5 anomalies, higher La/Th ratios, and a
depletion of less incompatible elements, particularly the transition elements of the 3d
series. Similarly, the LILE (Sr, Ba, Rb, U, Th) appear low in comparison to the Nb, La,
and Ce contents. All the spectra of rhyolitic domes show, when compared to the ORG
(Figure 11B), an enrichment in LILE (Sr, K, Rb, Ba, Th, La, and Ce), an increased deficit
in weakly incompatible elements or HFSE (Zr, Hf, and Nb), with a significant decrease
between Th and Nb that triggers a very marked negative anomaly in Nb (Th/Nb varies
from 0.5 to 0.58 with an average of 0.54). An important fractionation of light rare earths is
underlined in the Trace elements spidergram by the slope of the line between La and Nd
(La/Nd varies from 2.07 to 3.71, average of 2.71) and the enrichment in LILE. The spectra
of rhyolites when compared to the ORG shows Rb/Zr ratios very similar to those of [55],
with values that go from 0.29 to 0.41, averaging 0.36.
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4.5. Geochronology: The Shark Fin Rhyolitic Extrusive Dome of Ari el Mahsar, Sample ARM15

Zircons from sample ARM15 exhibit mean lengths and widths of 240 µm and 98 µm,
respectively; they are euhedral to subhedral. Cathodo-luminescence images show oscil-
latory zoning patterns in most zircons. Some grains show an overgrowth by continuous
non-luminescent rims with cores that are mostly zoned in an oscillatory manner, which
can be interpreted as inherited (Figure 12). In addition, the morphological typology of the
zircons shows the omnipresence of the S type around an S13 nucleus, the average points
IA and IT [56], respectively, reaching values of 385 and 420, with formation temperatures
between 750 ◦C and 800 ◦C (Figure 13). The Th/U ratio ranges from 0.01 to 1.36, indicating
a mostly igneous population [57,58]. The Concordia diagram shows that the shark-fin-like
rhyolitic extrusive dome of Ari el Mahsar (sample ARM15) yielded two predominant
Concordia ages (603 ± 25 Ma and 286.4 ± 4.7 Ma) (Figure 14, Table 2). The young age is
more concordant, being interpreted as the crystallization age of rhyolites, while the 603 Ma
age indicates inherited zircon from the Pan-African crust under the Rehamna.
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5. Discussion
5.1. The Calc-Alkaline Affinity of TSESDAI Rocks

Given the evidence for alteration of the studied rocks (LOI up to 6.13 wt.%), the use
of alkali concentrations to decipher the magmatic affinities of the rocks was discarded.
Instead, we used the ratio (Nb/Y) between two elements, which being characterized by
high field strength are as such considered immobile during meteoric alteration and low-
grade metamorphism and are also considered proxies of the degree of alkalinity of magmas
(e.g., [59,60]). The studied rocks are characterized by Nb/Y ratios clearly below 0.6, the
threshold usually considered as a divider between sub-alkaline and alkaline affinities,
clearly pointing to the sub-alkaline characteristics of these rocks. Additionally, all the
volcanic rocks of Tiddas show an absence of enrichment in FeO and TiO2 with the increase
of the magmatic evolution, as represented by the index FeO*/MgO, clearly pointing,
according the criteria defined by [61,62], to the calc-alkaline characteristics of these rocks.
This is confirmed by the low contents in TiO2 (0.23 to 1.04%) and by the negative anomalies
in Nb and Ti in the primordial mantle normalized diagrams (Figure 15) and by Zr/Y ratios
clearly above 7 (see [59]). The chemical data collected on clinopyroxenes (cf. supra) confirm
this calc-alkaline affinity with clinopyroxenes plotting on the calc-alkaline orogenic basalt
field in the discrimination diagrams of [63] (Figure 15) and [64] (Figure 16). Additionally,
the composition of biotites is typical from those usually found on calc-alkaline rocks
(Figure 17; [46]).
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5.2. Petrogenesis of TSESDAI Rocks

Calc-alkaline rocks are abundant along destructive plate margins, but calc-alkaline
geochemistry is not an indisputable indicator of sin-subduction processes [65]. Indeed
calc-alkaline rocks are also known from regions undergoing extension without a time
correlated subduction, such as the Basin and Range province [66], the Mexican Volcanic
Belt [65], or the northern Da Hinggan Mountains in China [67].

The Paleozoic geology of Morocco was shaped by the Variscan orogeny, with conti-
nental collision, between 360 and 290 Ma, having occurred at circa 330–300 Ma, i.e., some
44–14 or even 4 Ma before the emplacement of the studied rocks. This indicates that the
generation of the magmas at the origin of the studied rocks cannot be associated with an
operating subduction process [25].

When compared to some reference calc-alkaline volcanic series (e.g., calc-alkaline
basalts of island arcs [68]; calc-alkaline andesites and dacites of active margins [69]; calc-
alkaline andesites of the Tertiary volcanic province of the Basin and Range in the western
USA [70]), the chemical composition means and element ratios of andesites and dacites
of the TSESDAI volcanics demonstrate that they display greater similarities with the calc-
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alkaline series not linked to active subduction, being more similar to those generated in
intracontinental extensional settings, as is the case of the Tertiary volcanic province of
the Basin and Range (e.g., [71]). However, the Permian andesites of Tiddas is enriched in
TiO2, P2O5, Rb, and Cr and depleted in SiO2, MnO, Sr, Ba, Nb, Hf, and Y. On the other
hand, the elemental ratios of the Moroccan Permian andesites and those of the Basin and
Range are usually very similar and thus confirm the intraplate calc-alkaline character of the
volcanic rocks studied in the present paper. On a first approach, these comparative results
suggest that the studied rocks have the same genetic origin as the lavas of the Basin and
Range, i.e., petrogenesis involving both fractional crystallization and crustal contamination
processes [70].

5.2.1. Fractional Crystallization

Based on their petrographic and geochemical data/criteria, the least differentiated
terms of the volcanic materials (the andesites) do not represent primary liquids which
have been in equilibrium with the residual paragenesis resulting from partial melting of
the common mantle sources. Indeed, they are characterized by low Mg# (0.816 to 0.961)
and concentrations in the incompatible element Ni (41 to 58). The POAM (plagioclase–
olivine/orthopyroxene–augite–magnetite) crystal fractionation model is a widely accepted
process to explain the genesis of andesitic magmas from primary mantle liquids of basaltic
composition, and by extension, the mode of evolution of calc-alkaline magmas [72]. The
sub-parallel normalized trace elements distribution, as well as the behavior of major
and trace elements as a function of silica and Th used as differentiation indices and the
decrease of transition elements during the magma evolution clearly show the role played
by fractional crystallization in the petrogenesis of the andesites–dacites–rhyolites series of
the TSESDAI basin

5.2.2. Crustal Contamination

The existence of enclaves in the lavas of the TSESDAI massif led to the assumption
of a magmatic evolution partially controlled by crustal contamination mechanisms. The
participation of such processes is also suggested by two observations: (i) the abnormally
high contents of Rb, Ba, Th, and La; and (ii) the systematic anomalies in TiO2 and P2O5. The
intervention of the continental crust in the petrogenesis could also explain the following
facts:

(i) The absence of basalts and the low volume of andesites compared to dacites and
rhyolites. According to [72,73], a thick continental crust would have the effect of
prolonging the ascent of basaltic and andesitic flows, and thus the fractional crystal-
lization of minerals at low pressure, therefore favoring differentiation and assimilation
until reaching the ultimate rhyodacitic to rhyolitic terms;

(ii) The specific chemical characteristics of the andesites such as the enrichment in highly
incompatible elements (Rb, Ba, Th, Sr, K2O, and La) and high ratios (La/Th = 2, 93 to
3; 2.97 on average).

It is interesting to note that Ti and Nb negative anomalies increase with the increasing
degree of magmatic evolution, which argues in favor of the conjunction of assimilation
and fractional crystallization processes (the ACF process of [74]), a consequence of the
exothermic behavior of crystallization processes. The fact that even the least fractionated
rocks (the andesites) present such Nb and Ti anomalies suggests that the source of magmas
could have some supra-subduction fingerprints inherited from previous subduction events,
most probably the Variscan subduction that occurred some 420–330 Ma before [25].

5.3. Volcanological History and Formation Model of the TSESDAI Rocks

The geological and paleogeographical context of the TSESDAI region during the
Permian period (deposits within intramontanous continental half-grabens) and the low
volume of the outcropping materials (24 km3) are indicative of an intraplate continental
environment. In addition, the lava flows show features suggesting aerial-type eruption
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for the TSESDAI volcanism such as the absence of pillow lavas and the presence of flows
breccias. Indeed, the pyroclastic formations have juvenile pyroclastic fragments with
extensive vesiculation and accreted lapilli. These characteristics are generally ascribed to
aerial to sub-aerial environments. Intra-volcanic epiclastites have features of continental
fluvial sedimentary rocks. The volcanism of the TSESDAI basin is bimodal, and it is
characterized by a predominance of rhyolitic and andesitic facies over dacitic ones. The
emissions of andesitic and dacitic magmas take place mainly in the form of lava flows
of limited extent, whereas the rhyolitic facies occur in the form of dikes, domes, and
pyroclastic fall deposits (deposits of aerial fallout). The volcanological history of the
TSESDAI complex is relatively simple when compared to other Moroccan complexes (e.g.,
Khenifra). It includes three well constrained episodes. The first episode is found in the
southwestern boundary (columns A and B, Figure 4) and in the northeastern zone (column
E, Figure 4). The volcanic activity begins with the emplacement of pyroxene-rich andesitic
flows (“Tiddas andesites”), followed by weak deposits of lapilli, lapilli tuff, and andesitic
ashes with volcanological characteristics similar to typical volcanic aerial fallout deposits.
Far from the emission centers (characterized by relatively powerful accumulations (50m)
and facies diversities; Glimis sector) (F1), a fluvial sedimentation is established including
conglomerates with basal pebbles and andesites (alluvial fan deposits) and fallout of aerial
projections of andesitic characteristics (andesites to the SW and rhyolites to the NE). The
thickness of the andesitic units is between 15 and 40 m, and the total pile reaches nearly
50 m. Contemporaneously with the emplacement of the Tiddas andesitic flows, a dome-
like structure is established at the northwestern limit of the volcanic complex (column E,
Figure 4), followed by the emplacement of rhyolitic dikes. These domes might be classified
as “dome-pistachios”, “dome-pistons”, or “plug domes” according to the classification
of [75]. The second episode, recorded in the central part of the basin (columns C and
D, Figure 4) consists of dacite and andesite flows with olivine and pyroxene. The only
witnesses of the latter episode are the Bled Bou Haouza and Tabahart outcrops. The last
episode was recorded only in the southeastern part of the complex, NE of Tiddas (Figure 2).
It is characterized by the emplacement of NE–SW-oriented pyroxene/dolerite dikes. The
basaltic flows of El Gitoune (50 m) probably constitute the effusive witnesses of this episode.
This episode would be equivalent to the pyroxene dolerites of Khenifra. The vent system is
distributed over the entire volcanic domain and is generally oriented parallel to the NE–SW
direction of the structures and fractures. Even if this volcanism is basically decentralized, a
restricted area (Ari Al Mahsar Sector, southeast of Sebt Ait ikko) has a relatively high density
of dikes and domes with high petrographic diversities, i.e., a volcanic apparatus. Based
on all the characteristics previously described, the volcanism of the TSESDAI basin can be
ascribed to a continental strato-volcano model. However, as in Khenifra, the absence of
associated pyroclastic flows (ignimbrites) and pyroclastite deposits in the TSESDAI region
is a peculiarity that differentiates the Permian volcanism of western Morocco from the
Viseo–Namurian volcanism of eastern Morocco, where caldera-type structures associated
with the emission of important ignimbritic layers are notorious [76–79].

5.4. Links between Volcanism and Tectonics in the TSESDAI Basin

The Tiddas-Souk Es Sebt region was subjected during the Permian to an essentially
compressive regime [29,80,81], with four deformation episodes, the first three mainly com-
pressive and the fourth corresponding to an extensional event. Among the compressional
episodes, the first one is transpressional, with a N50 to N60 compressional direction. This
episode is responsible for the opening of the TSESDAI Permian basin following left-lateral
N60–N90 strike-slip accidents and the extrusion of the first andesitic and rhyolitic volcan-
ism. A N10–N40 to N70 syn-sedimentary normal-fault system can be clearly associated
with this episode. This fault system guides the collapse of the blocks and thus lead to the
individualization of Permian grabens and half-grabens. The NW–SE extension, developed
by this transtensional regime and guided by the rework of normal faults inherited from
the Hercynian major phases, gave rise to a series of collapsed blocks. Thus, the Permian
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graben and half-graben structures clearly resulted from this phase. The opening of deep
extensional fractures in the Paleozoic substratum allowed the extrusion of the first volcanic
series (the rhyolitic domes and associated rhyolitic dikes to the northeast and the Tiddas
andesitic flows) and conditioned the Permian sedimentation. The second episode is a
WNW–ESE-oriented compressional regime. It triggered conjugate strike-slip fault systems
affecting the Permian deposits: N80 to N90 right-lateral faults and N140–150 left-lateral
faults. The later fault system transected the normal faults triggered during the first tectonic
event (NW–SE extension). The third tectonic episode involved NNW–SSE to N–S regional
compression, reactivating some N40–N70 normal faults into inverse ones. This episode is
also responsible for the N80-oriented-axis of the large-radius folds deforming the Permian
detrital deposits. The fourth episode is a NW–SE extensional event accompanied by N40 to
N60 normal faults that gave rise to a series of collapsed blocks. The age of this extensional
episode remains unknown. However, the fact that the faults generated during this episode
affect only the basal conglomerates of the Triassic series and that its extension direction
is compatible with the dolerite dikes of the El Gnoune sector suggest a Late Permian to
Early/Middle Triassic age. On the map of Figure 18, we represented different character-
istics of the emission centers (cumulo-domes, sills, maximum thicknesses of flows, and
the diversity of eruptive mechanisms) and the major accidents that acted as rifts during
the Permian. We suggest that the dikes and the emission points are mostly aligned along
N40–N70 accidents whose complex and polyphase play triggered the chaotic peeling off
characteristics of the deformation. The magma emission would occur by injection, either in
relays of major accidents, or as en echelon tension cracks or normal faults. The direction of
shortening Z or compression σ1 can be deduced from the direction of the dikes: N50 to
N90 with a clear predominance of the N60 direction, which coincides with the alignment
of the emission centers. This direction is similar to the N50–60 compressional vector that
controlled the opening of the basin: relay-basins along left-lateral accidents. It should also
be noted that the inclination of the veins is compatible with the strike-slip movement along
these accidents.
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Figure 18. Structural control of emission centers in the Permian volcanics of the TSESDAI volcanic
complex: (1) Pre-Permian Paleozoic basement; (2) Autunian conglomerates, sandstones, and mud-
stones; (3) Mesozoic and Tertiary formations; (4) left-lateral fault; (5) normal faults; (6) emission
centers, domes (6a), veins (6b), and maximum thickness of flows (6c). Z, direction of shortening; X,
direction of extension. The inlet displays a rosette of the directions and cumulative lengths of the
rhyolitic veins.
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5.5. Geochronological Constraints

The SHRIMP U–Pb geochronologic data of zircons recovered from the rhyolite dome
of Ari El Mahsar in the TSESDAI basin shows a Concordia age of 286.4 ± 4.7 Ma (MSWD
of concordance = 0.47, probability of concordance = 0.49) interpreted to date the magmatic
crystallization of this dome (Figure 14, Table 2). According to the stratigraphic framework
of [6,27], this age should be older than the andesites of the first pulse and the dacites of
the second one [23]. The 286.4 ± 4.7 Ma dating agrees with an Artinskian–Kungurian
age attributed to the clastic succession in relation with their flora and macrofauna (e.g,
ichnofauna) content of [23,33,34,82]. At the Bou Achouch basin, the C–P sedimentary series
is considered by [34] as Kungurian in age based on macroflora assemblages found in their
fine-grained clastic units and reworked ash deposits. In addition, similarities between the
flora of Bou Achouch and the Lower Rotliegend of the Saar-Nahe Basin (Germany; [83])
extend their age back into the latest Carboniferous. Recently, authors in [23] obtained a
weighted mean 206Pb/238U age of 301.50 ± 1.24 Ma for an andesite (Table S4). This age is
considered the best estimate of the eruption moment of the andesite. According to [23], the
flora studied by [34] are indeed older than Kungurian (~283–273 Ma), similar to what occurs
with the flora of the Lower Rotliegened (latest Carboniferous to early Permian) sediments of
the Saar-Nahe Basin in Germany [83], considering that this andesite represents indeed the
top of the stratigraphic sequence at Bou Achouch as suggested by the stratigraphic analyses
of [6]. However, according to [23], the latter stratigraphic framework is composite, as the
basin stratigraphy is disturbed by thrusts. Therefore, the possibility that some andesites
stratigraphically lie below the fossil-bearing units cannot be excluded. Previous ages of
the volcanic rocks of the Khenifra basin comprise a K–Ar whole rock age of 264 ± 10 Ma
obtained from a rhyolitic breccia at Jbel Bou Hayati [84]. At the same locality, the volcanic
pile that was assigned to the early Permian contains fossil wood [34,85,86]. Recently LA–
ICP–MS U–Pb (on zircon) ages from several volcanic localities in Khenifra were published
by [87], including a dacite from the lower lava flows at Jbel Taghat (295.1 ± 2.9 Ma) and
interpreted as the oldest volcanic pulse of Khenifra. The dome of Sidi Tir delivered
ages ranging from 290.3 ± 2.1 Ma to 287.9 ± 3.8 Ma, thus suggesting that the dome was
emplaced during ~2 Ma. Rhyolitic pyroclastic fall deposits from Sidi Tir yielded two
predominant age clusters at 307.3 ± 2.6 Ma and 290.6 ± 2.6 Ma. The latter age was thought
to be more concordant with the age of the eruption. At Talat Mechtal, inferred to post-date
Cisuralian sedimentation in Khenifra, authors in [87] obtained an age of 280.3 ± 2.1 Ma
for the upper dacitic lavas, supposedly marking the last volcanic pulse in agreement with
the lithostratigraphic sequence [7]. From the same locality, authors in [23] reported a
206Pb/238U weighted mean-age of 305.59 ± 2.68 Ma for an andesite lava laying at the
base of the Talat Mechtal volcanic succession, overlain by 290.6 ± 2.6 Ma pyroclastic
fall deposits [87]; this implies that volcanism at Talat Mechtal began ~15 Ma earlier than
previously thought [87]. In the Chougrane and Souk el Had Bouhsoussène basins, the age of
the sedimentary package is not well constrained; on the basis of its similarity with the facies
of the Khenifra and TSESDAI basins it is assumed that the date might be early Permian.
The sedimentary package is overlain by the Bir el Gassaa andesites dated to 270 ± 17 Ma
by whole rock K–Ar techniques [88]. Two samples, an andesite from Bir el Gassaa that
lies on the top of the C–P stratigraphic sequence of Chougrane and an andesite from Souk
el Had Bouhsoussène, were recently dated by [23]. The first sample only provided three
concordant ages that range from 307.8 ± 4 to 295.5 ± 3.4 Ma, implying that the underlying
C–P sediments are earliest Permian or late Carboniferous [23]. The andesitic sample from
Souk el Had Bouhsoussène sub-basin has 206Pb/238U ages ranging between 295.6 ± 2.9
and 267.9 ± 3.9 Ma. According to existing stratigraphic models of the Chougrane CPB,
the andesitic sample from Bir el Gassaa is considered to lie stratigraphically above the
andesitic sample from Souk el Had Bouhsoussène sub-basin and is thus expected to be
younger. According to [23], the existing stratigraphic model would require consideration as
the crystallization age of the youngest value of 295.5 ± 3.4 Ma and 295.6 ± 2.9 Ma from the
two dated samples. Even if these geochronological results are clearly inadequate to obtain
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solid conclusions, they provisionally suggest that the Souk el Had Bouhsoussène sub-basin
is younger than the Chougrane one, and therefore the two basins evolved independently,
in contrast to the above-mentioned stratigraphic models. The youngest age of the andesitic
sample from Souk el Had Bouhsoussène sub-basin could offer a valid constraint on the
final phase of the Variscan tectonism, since this basin was tilted during this stage [23]. In
the Mechra Ben Abbou basin of “Bled Mekrach”, authors in [89] obtained a 611 ± 20 Ma
U–Pb SHRIMP age on zircon from a rhyolitic dome, supposedly inherited from zircons
of the Pan-African basement of the Rehamna massif and a younger more concordant
age of 285.3 ± 4.9 Ma interpreted as the age of crystallization of the rhyolitic dome [89].
South of the basin, a microgranitic/microdioritic dike swarm intruding the pre-Permian
basement has been dated to 285.4± 6.1 Ma (U–Pb on zircon) [89–92]. Two samples, from an
andesite flow and an andesite plug (Douar Ouled Said Ben Ali lavas), provided concordant
206Pb/238U (on zircon) ages of 284.2 ± 4.6 and 294.63 ± 0.67 Ma, respectively. The younger
age of 284.2 ± 4.6 Ma would imply that volcanism could have begun in this basin at least
10 Ma earlier [23]. In the Nzalet el Hararcha basin, sediments are sealed by Permian lavas
dominated by andesites and calc-alkaline rhyolitic domes [38,89,93–95], and the entire
basinal sequence is unconformably covered by Cretaceous and Cenozoic rocks [95]. A
rhyolitic sample (Sidi Bou Yahia dome) provided a robust 206Pb/238U weighted mean age
of 277.07 ± 0.61 Ma, which represents the first absolute age constraint from this basin [23].

6. Conclusions

The main conclusions of this study are summarized below:
(1) The volcanic characteristics of the TSESDAI volcanic complex and the distribu-

tion of the emission centers and their structural control suggest a multi-vent continental
stratovolcano-type facies model.

(2) The Ari Al Mahssar area has a relatively high density of dikes and domes and a
remarkable petrographic diversity indicative of a possible volcanic apparatus.

(3) The mineralogy of the primary crystals (biotite and clinopyroxenes) and the mor-
phological typology of the zircons of the TSESDAI volcanic rocks suggest a calc-alkaline
orogenic magmatic setting.

(4) The geochemical study of major and trace elements confirms the intracontinental
calc-alkaline signature of the studied rocks, similar to the andesites of the American Basin
and Range extensional realm.

(5) The geochemical study also indicates an evolution controlled by fractional crystal-
lization and crustal contamination (assimilation).

(6) The petrographic and volcanological characteristics of the TSESDAI volcanic series
(in particular the first and the second episodes) suggest a similarity with the well-defined
first Permian cycle of the Khenifra region, with the exception of the dolerite dikes and the
basaltic flows of El Gitoune (third episode) that belong to the second Permian cycle, despite
their similar NE–SW alignment to the first and the second episodes studied here.

(7) The TSESDAI basin recorded four Permian deformation episodes. The first one
is responsible for the opening of the Permian basin along N60–N90 left-lateral strike-slip
accidents and the establishment of the first andesitic and rhyolitic volcanic episode. The
second one is defined by a conjugated system of faults affecting the Permian deposits. The
third compressive episode (NNW–SSE to N–S orientation of σ1) reactivates some N40–N70
normal faults into inverse faults. The fourth episode is a NW–SE trending extensional
event triggering N40 to N60 normal faults and consequent collapsed blocks.

(8) The SHRIMP U–Pb geochronologic data of zircons recovered from the rhyolitic
dome of Ari El Mahsar in the TSESDAI basin show a Concordia age of 286.4 ± 4.7 Ma
interpreted to date the magmatic crystallization of this dome. Thus, this rhyolite belongs
likely to the third magmatic episode of the region.



Minerals 2021, 11, 1099 26 of 30

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11101099/s1, Table S1: Chemical analysis of dacite clinopyroxenes from Tiddas-Souk
Es Sebt des Ait Ikko volcanic complex, and their structural formula calculated on the basis of 6
oxygens, Table S2: Chemical analysis of dacites orthopyroxenes from Tiddas-Souk Es Sebt des Ait
Ikko volcanic complex, and their structural formula calculated on the basis of 6 oxygens, Table S3:
Chemical analysis of rhyolite biotites in dome of Tiddas-Souk Es Sebt des Ait Ikko volcanic complex
and their structural formulas calculated on the basis of 22 oxygens, Table S4: Overview of new
and published geochronological data from Carboniferous–Early Permian basins of central Morocco
(after [23]).
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