Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = laser induced thermocapillary flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2235 KB  
Review
Interfacial Flows and Interfacial Shape Modulation Controlled by the Thermal Action of Light Energy
by Natalia Ivanova
Colloids Interfaces 2022, 6(2), 31; https://doi.org/10.3390/colloids6020031 - 13 May 2022
Cited by 7 | Viewed by 3309
Abstract
The review covers the research on thermocapillary convection caused by the thermal action of laser radiation in single-layer and bilayer liquid systems of capillary thickness. The advantages of using optical radiation are the instantaneous delivery of thermal energy to a place on demand [...] Read more.
The review covers the research on thermocapillary convection caused by the thermal action of laser radiation in single-layer and bilayer liquid systems of capillary thickness. The advantages of using optical radiation are the instantaneous delivery of thermal energy to a place on demand (a bulk phase, interfaces); low radiation power required; concentrating heat flux on a spot of a few micrometers; the production of arbitrary spatial distributions of radiation intensity; and, as a result, corresponding thermal fields at a liquid interface and their fast reconfiguration. Thermocapillary stresses at the liquid interfaces lead to the transfer of the liquid and a change in the shape of the interface, in accordance with the distribution of the light-induced thermal field. Studies concerned with the methods of non-destructive testing of liquid media and solids, which are based on a photothermocapillary signal emitted by a laser-induced concave deformation of a thin layer, are considered. Features of thermocapillary deformation of a liquid–air interface caused by local heating of thin and thick (exceeding the capillary length) layers are demonstrated. A part of the review addresses the results of the study of thermocapillary rupture of films in the heating zone and the application of this effect in semiconductor electronics and high-resolution lithography. The works on the light-induced thermocapillary effect in bilayer (multilayer) liquid systems are analyzed, including early works on image recording liquid layer systems, liquid IR transducers, and nonlinear optical media. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids, Nanomaterials, and Interfaces)
Show Figures

Figure 1

17 pages, 6222 KB  
Article
Mesoscopic Computational Fluid Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A Novel Study
by Asif Ur Rehman, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu and Ion N. Mihailescu
Metals 2021, 11(10), 1569; https://doi.org/10.3390/met11101569 - 30 Sep 2021
Cited by 19 | Viewed by 5295
Abstract
For laser-melting deposition (LMD), a computational fluid dynamics (CFD) model was developed using the volume of fluid and discrete element modeling techniques. A method was developed to track the flow behavior, flow pattern, and driving forces of liquid flow. The developed model was [...] Read more.
For laser-melting deposition (LMD), a computational fluid dynamics (CFD) model was developed using the volume of fluid and discrete element modeling techniques. A method was developed to track the flow behavior, flow pattern, and driving forces of liquid flow. The developed model was compared with experimental results in the case of AISI 304 stainless steel single-track depositions on AISI 304 stainless steel substrate. A close correlation was found between experiments and modeling, with a deviation of 1–3%. It was found that the LMD involves the simultaneous addition of powder particles that absorb a significant amount of laser energy to transform their phase from solid to liquid, resulting in conduction-mode melt flow. The bubbles within the melt pool float at a specific velocity and escape from the melt pool throughout the deposition process. The pores are generated if the solid front hits the bubble before escaping the melt pool. Based on the simulations, it was discovered that the deposited layer’s counters took the longest time to solidify compared to the overall deposition. The bubbles strived to leave through the contours in an excess quantity, but became stuck during solidification, resulting in a large degree of porosity near the contours. The stream traces showed that the melt flow adopted a clockwise vortex in front of the laser beam and an anti-clockwise vortex behind the laser beam. The difference in the surface tension between the two ends of the melt pool induces “thermocapillary or Benard–Marangoni convection” force, which is insignificant compared to the selective laser melting process. After layer deposition, the melt region, mushy zone, and solidified region were identified. When the laser beam irradiates the substrate and powder particles are added simultaneously, the melt adopts a backwards flow due to the recoil pressure and thermocapillary or Benard–Marangoni convection effect, resulting in a negative mass flow rate. This study provides an in-depth understanding of melt pool dynamics and flow pattern in the case of LMD additive manufacturing technique. Full article
Show Figures

Graphical abstract

19 pages, 9633 KB  
Article
Three-Dimensional Reconstruction of Evaporation-Induced Instabilities Using Volumetric Scanning Particle Image Velocimetry
by Mohammad Amin Kazemi, Janet A. W. Elliott and David S. Nobes
Optics 2020, 1(1), 52-70; https://doi.org/10.3390/opt1010005 - 16 Feb 2020
Cited by 1 | Viewed by 4312
Abstract
The three-dimensional (3D) flow below the interface of an evaporating liquid at a low pressure is visualized and quantified using scanning particle image velocimetry. The technique presented highlights the use of a single camera and a relatively fast moving laser sheet to image [...] Read more.
The three-dimensional (3D) flow below the interface of an evaporating liquid at a low pressure is visualized and quantified using scanning particle image velocimetry. The technique presented highlights the use of a single camera and a relatively fast moving laser sheet to image the flow for an application where using more than one camera is difficult. The technique allows collection of the full three-dimensional velocity vector map over the whole liquid volume. The out-of-plane component of the velocity has been determined using two different processing approaches: (i) deriving the full vector from a 3D cross-correlation of the particle volumes and (ii) applying the continuity equation to determine out-of-plane velocities from the calculated in-plane velocity vector fields. The results obtained from both methods showed good agreement with each other. The 3D velocity field reveals the existence of a torus shaped vortex below the evaporating meniscus that was induced by the exposure of the cold liquid to the warmer solid walls. The velocity data also shows that the maximum velocity occurs below the interface, not at the interface which highlights that the observed vortex is not driven by thermocapillary forces that usually govern the flow during evaporation at smaller scales. Full article
(This article belongs to the Special Issue Optical Diagnostics in Engineering)
Show Figures

Figure 1

10 pages, 1845 KB  
Article
Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow
by Sewoong Park, Jinhyeong Kwon, Jaemook Lim, Wooseop Shin, Younggeun Lee, Habeom Lee, Hyun-Jong Kim, Seungyong Han, Junyeob Yeo, Seung Hwan Ko and Sukjoon Hong
Nanomaterials 2018, 8(9), 645; https://doi.org/10.3390/nano8090645 - 22 Aug 2018
Cited by 16 | Viewed by 5659
Abstract
Selective laser sintering of metal nanoparticle ink is a low-temperature and non-vacuum technique developed for the fabrication of patterned metal layer on arbitrary substrates, but its application to a metal layer composed of large metal area with small voids is very much limited [...] Read more.
Selective laser sintering of metal nanoparticle ink is a low-temperature and non-vacuum technique developed for the fabrication of patterned metal layer on arbitrary substrates, but its application to a metal layer composed of large metal area with small voids is very much limited due to the increase in scanning time proportional to the metal pattern density. For the facile manufacturing of such metal layer, we introduce micropatterning of metal nanoparticle ink based on laser-induced thermocapillary flow as a complementary process to the previous selective laser sintering process for metal nanoparticle ink. By harnessing the shear flow of the solvent at large temperature gradient, the metal nanoparticles are selectively pushed away from the scanning path to create metal nanoparticle free trenches. These trenches are confirmed to be stable even after the complete process owing to the presence of the accompanying ridges as well as the bump created along the scanning path. As a representative example of a metal layer with large metal area and small voids, dark-field photomask with Alphabetic letters are firstly created by the proposed method and it is then demonstrated that the corresponding letters can be successfully reproduced on the screen by an achromatic lens. Full article
(This article belongs to the Special Issue Nanomaterials for Renewable and Sustainable Energy)
Show Figures

Graphical abstract

Back to TopTop