Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = laser direct writing via two photon polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10691 KB  
Article
Improved Bioactivity of Titanium-Based Surfaces Fabricated by Laser Melting Deposition by Functionalization with 3D Polymeric Microstructures Produced by Laser Direct Writing via Two-Photon Polymerization
by Bogdan Stefanita Calin, Roxana Cristina Popescu, Roxana Gabriela Ghita, Eugenia Tanasa, Sabin Mihai and Irina Alexandra Paun
Polymers 2025, 17(19), 2620; https://doi.org/10.3390/polym17192620 - 27 Sep 2025
Viewed by 397
Abstract
Titanium (Ti)-based implants are widely used for bone injuries but suffer from poor bioactivity. To address this, we propose an innovative synergistic approach that combines laser melting deposition (LMD) for the fabrication of titanium-based supports with laser direct writing via two-photon polymerization (LDW [...] Read more.
Titanium (Ti)-based implants are widely used for bone injuries but suffer from poor bioactivity. To address this, we propose an innovative synergistic approach that combines laser melting deposition (LMD) for the fabrication of titanium-based supports with laser direct writing via two-photon polymerization (LDW via TPP) for their functionalization with 3D polymeric microstructures. We functionalized Ti surfaces fabricated by LMD using Ti (99.85 wt.%) and TiC powders (79.95 wt.% Ti, 20.05 wt.% C), with 3D microstructures obtained by LDW via TPP. The 3D microstructures were made of IP-Dip photopolymer and comprised 64 vertical microtubes arranged in five layers (10 to 170 μm tall, >94% porosity). When seeded with MG-63 osteoblast-like cells, the Ti-based surfaces functionalized with 3D polymeric microstructures promoted 3D cells’ spatial organization. Moreover, the cells seeded on functionalized Ti-based surfaces showed earlier organic matrix synthesis (day 7 vs. day 14) and mineralization (higher deposits of calcium and phosphorus, starting from day 7), as compared with the cells from non-functionalized Ti. In addition, the traction forces exerted by the cells on the 3D microstructures, determined using FEBio Studio software, were of the order of hundreds of µN, whereas if the cells would have been seeded on extracellular matrix-like materials, the traction forces would have been of only few nN. These results point towards the major role played by 3D polymeric microarchitectures in the interaction between osteoblast-like cells and Ti-based surfaces. Overall, the functionalization of Ti-based constructs fabricated by LMD with 3D polymeric microstructures made by LDW via TPP significantly improved Ti bioactivity. Full article
(This article belongs to the Special Issue Laser Treatment of High-Polymer Materials)
Show Figures

Figure 1

38 pages, 9835 KB  
Review
A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication
by Bogdan Stefanita Calin and Irina Alexandra Paun
Int. J. Mol. Sci. 2022, 23(22), 14270; https://doi.org/10.3390/ijms232214270 - 17 Nov 2022
Cited by 17 | Viewed by 4060
Abstract
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can [...] Read more.
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures’ fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized. Full article
(This article belongs to the Special Issue Interactions of Cells with Biomaterials for Regenerative Medicine 3.0)
Show Figures

Figure 1

19 pages, 38450 KB  
Article
Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density
by Irina Alexandra Paun, Bogdan Stefanita Calin, Roxana Cristina Popescu, Eugenia Tanasa and Antoniu Moldovan
Int. J. Mol. Sci. 2022, 23(6), 3247; https://doi.org/10.3390/ijms23063247 - 17 Mar 2022
Cited by 2 | Viewed by 2497
Abstract
The fabrication of complex, reproducible, and accurate micro-and nanostructured interfaces that impede the interaction between material’s surface and different cell types represents an important objective in the development of medical devices. This can be achieved by topographical means such as dual-scale structures, mainly [...] Read more.
The fabrication of complex, reproducible, and accurate micro-and nanostructured interfaces that impede the interaction between material’s surface and different cell types represents an important objective in the development of medical devices. This can be achieved by topographical means such as dual-scale structures, mainly represented by microstructures with surface nanopatterning. Fabrication via laser irradiation of materials seems promising. However, laser-assisted fabrication of dual-scale structures, i.e., ripples relies on stochastic processes deriving from laser–matter interaction, limiting the control over the structures’ topography. In this paper, we report on laser fabrication of cell-repellent dual-scale 3D structures with fully reproducible and high spatial accuracy topographies. Structures were designed as micrometric “mushrooms” decorated with fingerprint-like nanometric features with heights and periodicities close to those of the calamistrum, i.e., 200–300 nm. They were fabricated by Laser Direct Writing via Two-Photon Polymerization of IP-Dip photoresist. Design and laser writing parameters were optimized for conferring cell-repellent properties to the structures, even for high cellular densities in the culture medium. The structures were most efficient in repelling the cells when the fingerprint-like features had periodicities and heights of ≅200 nm, fairly close to the repellent surfaces of the calamistrum. Laser power was the most important parameter for the optimization protocol. Full article
(This article belongs to the Special Issue Interactions of Cells with Biomaterials for Regenerative Medicine 2.0)
Show Figures

Figure 1

15 pages, 8960 KB  
Article
Additive Manufacturing of Gold Nanostructures Using Nonlinear Photoreduction under Controlled Ionic Diffusion
by Wera Di Cianni, María de la Mata, Francisco J. Delgado, Giovanni Desiderio, Sergio I. Molina, Alberto S. de León and Michele Giocondo
Int. J. Mol. Sci. 2021, 22(14), 7465; https://doi.org/10.3390/ijms22147465 - 12 Jul 2021
Cited by 4 | Viewed by 3226
Abstract
Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser [...] Read more.
Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser (λ = 780 nm), tetrachloroauric acid (HAuCl4) as a gold precursor, and isinglass as a natural hydrogel matrix. The presence of a polymeric, transparent matrix avoids unwanted diffusive processes acting as a network for the metallic nanoparticles. After the writing process, a bath in deionized water removes the gold precursor ions and eliminates the polymer matrix. Different aspects underlying the growth of the gold nanostructures (AuNSs) are here investigated to achieve full control on the size and density of the AuNSs. Writing parameters (laser power, exposure time, and scanning speed) are optimized to control the patterns and the AuNSs size. The influence of a second bath containing Au3+ to further control the size and density of the AuNSs is also investigated, observing that these AuNSs are composed of individual gold nanoparticles (AuNPs) that grow individually. A fine-tuning of these parameters leads to an important improvement of the created structures’ quality, with a fine control on size and density of AuNSs. Full article
(This article belongs to the Special Issue Molecular Nano-Architectures: Chemistry and Physics)
Show Figures

Figure 1

21 pages, 6332 KB  
Article
Laser Direct Writing via Two-Photon Polymerization of 3D Hierarchical Structures with Cells-Antiadhesive Properties
by Irina A. Paun, Bogdan S. Calin, Cosmin C. Mustaciosu, Eugenia Tanasa, Antoniu Moldovan, Agata Niemczyk and Maria Dinescu
Int. J. Mol. Sci. 2021, 22(11), 5653; https://doi.org/10.3390/ijms22115653 - 26 May 2021
Cited by 7 | Viewed by 3469
Abstract
We report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of “mushrooms”, consisting of an underside (mushroom’s leg) acting as a support structure and a [...] Read more.
We report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of “mushrooms”, consisting of an underside (mushroom’s leg) acting as a support structure and a top side (mushroom’s hat) decorated with micro- and nanostructures. A ripple-like pattern was created on top of the mushrooms, over length scales ranging from several µm (microstructured mushroom-like pillars, MMP) to tens of nm (nanostructured mushroom-like pillars, NMP). The MMP and NMP structures were hydrophobic, with contact angles of (127 ± 2)° and (128 ± 4)°, respectively, whereas flat polymer surfaces were hydrophilic, with a contact angle of (43 ± 1)°. The cell attachment on NMP structures was reduced by 55% as compared to the controls, whereas for the MMP, a reduction of only 21% was observed. Moreover, the MMP structures preserved the native spindle-like with phyllopodia cellular shape, whereas the cells from NMP structures showed a round shape and absence of phyllopodia. Overall, the NMP structures were more effective in impeding the cellular attachment and affected the cell shape to a greater extent than the MMP structures. The influence of the wettability on cell adhesion and shape was less important, the cellular behavior being mainly governed by structures’ topography. Full article
(This article belongs to the Special Issue Cell-Biomaterial Interaction 2021)
Show Figures

Figure 1

18 pages, 3474 KB  
Article
Collagen/Chitosan Functionalization of Complex 3D Structures Fabricated by Laser Direct Writing via Two-Photon Polymerization for Enhanced Osteogenesis
by Irina Alexandra Păun, Cosmin Cătălin Mustăciosu, Roxana Cristina Popescu, Bogdan Ştefăniţă Călin and Mona Mihăilescu
Int. J. Mol. Sci. 2020, 21(17), 6426; https://doi.org/10.3390/ijms21176426 - 3 Sep 2020
Cited by 12 | Viewed by 3717
Abstract
The fabrication of 3D microstructures is under continuous development for engineering bone substitutes. Collagen/chitosan (Col/CT) blends emerge as biomaterials that meet the mechanical and biological requirements associated with bone tissue. In this work, we optimize the osteogenic effect of 3D microstructures by their [...] Read more.
The fabrication of 3D microstructures is under continuous development for engineering bone substitutes. Collagen/chitosan (Col/CT) blends emerge as biomaterials that meet the mechanical and biological requirements associated with bone tissue. In this work, we optimize the osteogenic effect of 3D microstructures by their functionalization with Col/CT blends with different blending ratios. The structures were fabricated by laser direct writing via two-photons polymerization of IP-L780 photopolymer. They comprised of hexagonal and ellipsoidal units 80 µm in length, 40 µm in width and 14 µm height, separated by 20 µm pillars. Structures’ functionalization was achieved via dip coating in Col/CT blends with specific blending ratios. The osteogenic role of Col/CT functionalization of the 3D structures was confirmed by biological assays concerning the expression of alkaline phosphatase (ALP) and osteocalcin secretion as osteogenic markers and Alizarin Red (AR) as dye for mineral deposits in osteoblast-like cells seeded on the structures. The structures having ellipsoidal units showed the best results, but the trends were similar for both ellipsoidal and hexagonal units. The strongest osteogenic effect was obtained for Col/CT blending ratio of 20/80, as demonstrated by the highest ALP activity, osteocalcin secretion and AR staining intensity in the seeded cells compared to all the other samples. Full article
(This article belongs to the Special Issue Polymeric Scaffolds: Design, Processing, and Biomedical Application)
Show Figures

Figure 1

20 pages, 4780 KB  
Article
3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation
by Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu
Materials 2019, 12(17), 2834; https://doi.org/10.3390/ma12172834 - 3 Sep 2019
Cited by 21 | Viewed by 4094
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs [...] Read more.
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies. Full article
(This article belongs to the Special Issue Biomaterials and Implant Biocompatibility)
Show Figures

Graphical abstract

18 pages, 11300 KB  
Article
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis
by Irina Alexandra Paun, Roxana Cristina Popescu, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Maria Dinescu and Catalin Romeo Luculescu
Int. J. Mol. Sci. 2018, 19(2), 495; https://doi.org/10.3390/ijms19020495 - 7 Feb 2018
Cited by 47 | Viewed by 7246
Abstract
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. [...] Read more.
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering 2018)
Show Figures

Graphical abstract

Back to TopTop