Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = laser ablation characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4468 KiB  
Article
A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
by Hongliang Pei, Qingwen Fan, Yixiang Duan and Mingtao Zhang
Appl. Sci. 2025, 15(15), 8640; https://doi.org/10.3390/app15158640 (registering DOI) - 4 Aug 2025
Abstract
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and [...] Read more.
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and extrinsic camera parameters accurately. Based on the pinhole imaging model, disparity maps were obtained via pixel matching to reconstruct high-precision 3D ablation morphology. A mathematical model was established to analyze how key imaging parameters—baseline distance, focal length, and depth of field—affect reconstruction accuracy in micro-imaging environments. Focusing on trace element detection in WC-Co alloy samples, the reconstructed ablation craters enabled the precise calculation of ablation volumes and revealed their correlations with laser parameters (energy, wavelength, pulse duration) and the physical-chemical properties of the samples. Multivariate regression analysis was employed to investigate how ablation morphology and plasma evolution jointly influence LIBS quantification. A nonlinear calibration model was proposed, significantly suppressing matrix effects, achieving R2 = 0.987, and reducing RMSE to 0.1. This approach enhances micro-scale LIBS accuracy and provides a methodological reference for high-precision spectral analysis in environmental and materials applications. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 124
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

12 pages, 1990 KiB  
Article
Vaginal Intraepithelial Neoplasia (VaIN)—A Retrospective Cohort Analysis of Epidemiology, Risk Factors, and Management in an Academic Clinical Center
by Barbara Suchońska, Franciszek Ługowski, Magdalena Papież and Artur Ludwin
J. Clin. Med. 2025, 14(15), 5386; https://doi.org/10.3390/jcm14155386 - 30 Jul 2025
Viewed by 256
Abstract
Background: Vaginal intraepithelial neoplasia (VaIN) is a rare but potentially precancerous condition strongly associated with human papillomavirus (HPV) infection. Despite increased detection rates due to HPV screening and colposcopy, diagnosis and management remain challenging. This study aimed to evaluate the epidemiological characteristics, [...] Read more.
Background: Vaginal intraepithelial neoplasia (VaIN) is a rare but potentially precancerous condition strongly associated with human papillomavirus (HPV) infection. Despite increased detection rates due to HPV screening and colposcopy, diagnosis and management remain challenging. This study aimed to evaluate the epidemiological characteristics, risk factors, and outcomes of VaIN in patients referred to a tertiary academic center. Methods: We conducted a retrospective analysis of 48 patients who underwent colposcopy-directed vaginal biopsies between January 2019 and June 2024 at the Medical University of Warsaw. Data collected included patient demographics, HPV status, cytology, histopathology, and treatment outcomes. Patients were grouped based on the presence and grade of VaIN (VaIN 1 vs. VaIN 2/3). Statistical analyses were performed using SPSS software. Results: VaIN was diagnosed in 24 patients (50%), VaIN was confirmed in half of the cohort, VaIN 2 in 30%, and VaIN 3 in 18% of cases. HPV infection and prior cervical pathology were significantly associated with VaIN diagnosis (P = 0.03 and P = 0.05, respectively), and high-risk HPV infection correlated with higher-grade lesions (P = 0.04). Among VaIN 2+ cases, most patients required laser ablation or surgical excision, while VaIN 1 often regressed spontaneously. Regression occurred in 11 cases, and high-risk HPV infection was inversely associated with spontaneous regression (P = 0.04). Conclusions: This study confirms the central role of HPV, particularly high-risk subtypes, in VaIN pathogenesis. Conservative management may be appropriate for VaIN 1, while VaIN 2+ requires active intervention. HPV genotyping should be integrated into diagnostic workups, and long-term follow-up is essential due to the risks of persistence and recurrence. Full article
Show Figures

Figure 1

14 pages, 814 KiB  
Article
Impact of Corneal-Hydration-Induced Changes in Ablation Efficiency During Refractive Surgery
by Samuel Arba Mosquera and Shwetabh Verma
Photonics 2025, 12(8), 769; https://doi.org/10.3390/photonics12080769 - 30 Jul 2025
Viewed by 224
Abstract
(1) Background: A decrease in corneal hydration during refractive surgery is observed clinically as well as in laboratory settings, but the associated consequences are not yet fully understood. The purpose of this paper is to analyze the impact of the gain of ablation [...] Read more.
(1) Background: A decrease in corneal hydration during refractive surgery is observed clinically as well as in laboratory settings, but the associated consequences are not yet fully understood. The purpose of this paper is to analyze the impact of the gain of ablation efficiency due to hydration changes during cornea refractive surgery. (2) Methods: We developed a simulation model to evaluate the influence of hydration changes on the ablation algorithms used in laser refractive surgery. The model simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model considers corneal hydration, as well as environmental humidity, along with the laser beam characteristics and ablative spot properties for evaluating any hydration changes and their effect on laser refractive surgery. (3) Results: Using pulse lists collected from actual treatments, we simulated the gain of efficiency during the ablation process. Ablation efficiency is increased due to dehydration effects during laser treatments. Longer treatments suffer larger dehydration effects and are more prone to overcorrections due to gain of efficiency than shorter treatments. (4) Conclusions: The improper use of a model that overestimates or underestimates the effects derived from the hydration dynamics during treatment may result in suboptimal refractive corrections. This model may contribute to improving emmetropization and the correction of ocular aberrations with improved laser parameters that can compensate for the changes in ablation efficiency due to hydration changes in the cornea. Full article
(This article belongs to the Special Issue Advances and Applications in Visual Optics)
Show Figures

Figure 1

18 pages, 3853 KiB  
Article
Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass
by Huaye Kong, Xijing Zhu, Yao Liu, Dekang Zhang and Xingqi Du
Coatings 2025, 15(7), 802; https://doi.org/10.3390/coatings15070802 - 9 Jul 2025
Viewed by 671
Abstract
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm [...] Read more.
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm fiber laser is used for S-pattern scanning cutting of soda–lime glass. A moving heat source model is established and analyzed via MATLAB R2022a numerical simulation. Combined with the ABAQUS 2019 software, the relationships among temperature field, stress field, crack propagation, and deviation during laser-induced thermal crack cutting are deeply explored. Meanwhile, laser thermal fracture experiments are also carried out. A confocal microscope detects glass surface morphology, cross-sectional roughness and hardness under different heat flux densities (HFLs), determining the heat flux density threshold affecting the glass surface quality. Through a comprehensive study of theory, simulation, and experiments, it is found that with an increase in the HFL value of the material, the laser-induced thermal crack propagation can be divided into four stages. When the heat flux density value is in the range of 47.2 to 472 W/m2, the glass substrate has good cross-sectional characteristics. There is no ablation phenomenon, and the surface roughness of the cross-section is lower than 0.15 mm. The hardness decreases by 9.19% compared with the reference value. Full article
Show Figures

Figure 1

28 pages, 3444 KiB  
Review
A Review on Liquid Pulsed Laser Propulsion
by Sai Li, Baosheng Du, Qianqian Cui, Jifei Ye, Haichao Cui, Heyan Gao, Ying Wang, Yongzan Zheng and Jianhui Han
Aerospace 2025, 12(7), 604; https://doi.org/10.3390/aerospace12070604 - 2 Jul 2025
Viewed by 525
Abstract
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and [...] Read more.
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and orbital maneuvering. Liquid pulse laser propulsion has notable advantages among the various laser propulsion systems. We review the concept and the theory of liquid laser propulsion. Then, we categorize the current state of research based on three types of propellants—non-energetic liquids, energetic liquids, and liquid metals—and provide an analysis of the propulsion characteristics arising from the laser ablation of liquids such as water, glycidyl azide polymer (GAP), hydroxylammonium nitrate (HAN), and ammonium dinitramide (ADN). We also discuss future research directions and challenges of pulsed liquid laser propulsion. Although experiments have yielded encouraging outcomes due to the distinctive properties of liquid propellants, continued investigation is essential to ensure that this technology performs reliably in actual aerospace applications. Consistent results under both spatial and ground conditions remain a key research content for fully realizing its potential. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

18 pages, 7713 KiB  
Article
Enrichment Regularity of Indium in the Dulong Mineral Processing Plant, Yunnan Province, China
by Peiqiang Fan, Xiong Tong, Xian Xie, Qiang Song, Ruiqi Xie, Bin Han, Haitao Fu and Zhiming Lu
Minerals 2025, 15(7), 672; https://doi.org/10.3390/min15070672 - 23 Jun 2025
Viewed by 275
Abstract
The Dulong deposit in Wenshan, southeastern Yunnan Province, is rich in zinc, tin, and copper resources, accompanied by rare metals such as indium and silver. It is a particularly important indium production base, with reserves of approximately 7000 tons, ranking first globally. Enrichment [...] Read more.
The Dulong deposit in Wenshan, southeastern Yunnan Province, is rich in zinc, tin, and copper resources, accompanied by rare metals such as indium and silver. It is a particularly important indium production base, with reserves of approximately 7000 tons, ranking first globally. Enrichment and recovery of indium-bearing minerals are mainly achieved through mineral processing technology. However, the recovery rate of indium in the Dulong concentrator remains relatively low, and there is an insufficient understanding of its occurrence state and distribution characteristics, resulting in marked indium resource wastage. Here, we conducted a systematic process mineralogy study on indium-bearing polymetallic ore in the Dulong concentrator. The average grade of indium in the ore is 43.87 g/t, mainly occurring in marmatite (63.63%), supplemented by that in silicate minerals (23.31%), chalcopyrite (7.84%), and pyrrhotite (4.22%). The indium has a relatively dispersed distribution, which is inconducive to enrichment and recovery. The substitution mechanism of indium in marmatite was investigated using laser ablation inductively coupled plasma mass spectrometry. This revealed a positive correlation between indium and copper, allowing us to revise the substitution relationship to: ZnxS+Cu++In3+Znx2CuInS+2Zn2+ or Znx1FeS+Cu++In3+Znx2CuInS+Zn2++Fe2+. Electron probe microanalysis revealed the presence of roquesite (CuInS2), an independent indium mineral not previously reported from this deposit. Our detailed investigation of the Dulong concentrator mineral processing technology showed that the recovery rate of indium from marmatite is currently poor, at only 48.01%. To improve the comprehensive utilization rate of indium resources, it will be necessary to further increase the recovery rate from marmatite and explore the flotation recovery of indium from chalcopyrite and pyrrhotite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2894 KiB  
Article
Identification of Laser Parameters Acting on an Axisymmetric Domain Using an Artificial Immune System
by Arkadiusz Poteralski and Jolanta Dziatkiewicz
Materials 2025, 18(12), 2895; https://doi.org/10.3390/ma18122895 - 18 Jun 2025
Viewed by 570
Abstract
The paper presents the control of the ablated gap of required dimensions in an axisymmetric domain made of metal. For this purpose, two parameters of the laser interacting on this layer were identified, which means laser intensity and characteristic time of the laser [...] Read more.
The paper presents the control of the ablated gap of required dimensions in an axisymmetric domain made of metal. For this purpose, two parameters of the laser interacting on this layer were identified, which means laser intensity and characteristic time of the laser pulse. A hyperbolic two-temperature model was applied. This is a model in which there are two coupled equations for electrons and phonons. The model was supplemented with appropriate boundary and initial conditions. The direct problem was solved using the finite difference method with a staggered grid. An artificial immune system was used for the identification process. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 5653 KiB  
Article
Effect of Dual-Site Co-Cultivation on Spectral Characteristics and Trace Element Enrichment in Akoya Pearls
by Peiqi Zhou, Geng Li and Fabian Schmitz
Minerals 2025, 15(6), 654; https://doi.org/10.3390/min15060654 - 18 Jun 2025
Viewed by 413
Abstract
This study systematically investigates for the first time the effects of dual-site co-cultivation on spectral characteristics and trace element enrichment in marine-cultured Akoya pearls from Beihai, China. Akoya pearls were cultured over a one-year period, with the final 40-day stage designated as the [...] Read more.
This study systematically investigates for the first time the effects of dual-site co-cultivation on spectral characteristics and trace element enrichment in marine-cultured Akoya pearls from Beihai, China. Akoya pearls were cultured over a one-year period, with the final 40-day stage designated as the terminal phase. During this period, two experimental groups of pearl oysters were established: Group Y remained in Beihai for continued local cultivation and harvest, while Group B was transferred to Weihai, Shandong Province, for terminal-stage farming under different thermal conditions. A series of comparative analyses were performed using Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, X-ray fluorescence (XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The FTIR results revealed distinct differences between the two groups in the distribution of amide and polysaccharide functional groups, particularly around 1643 cm−1 and 1100 cm−1. The UV-Vis spectra of Group B displayed characteristic absorption bands at 430 nm and 460 nm, associated with the organic matrix of the nacre. Raman spectroscopy further indicated a higher abundance of organic-related vibrational features in Group B. Additionally, both XRF and LA-ICP-MS analyses consistently showed significant differences in the concentrations and distributions of trace elements, particularly copper (Cu), cobalt (Co), and zinc (Zn). The findings demonstrate that the dual-site co-cultivation mode significantly impacts both the organic composition and trace element enrichment patterns in seawater Akoya pearls. This research provides valuable references for optimizing environmental parameters in pearl cultivation processes. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

23 pages, 5217 KiB  
Article
Constraints from Geochemistry of Mineralization-Hosting Sandstone and Sulfur Isotopes of Pyrite on Uranium Mineralization in the Liuhuanggou Area, Southern Junggar Basin
by Junyang Li, Yu Zhou, Chunji Xue, Shizhong Chen, Guoxiong Ma, Zuohuai Yang, Min Liu, Le Yang and Jie Gong
Minerals 2025, 15(6), 575; https://doi.org/10.3390/min15060575 - 28 May 2025
Viewed by 421
Abstract
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern [...] Read more.
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern Junggar Basin. Based on field geological investigations and the geochemical characteristics, it is concluded that the source of the ore-bearing sandstones originates from felsic igneous rocks in the Northern Tianshan and Central Tianshan regions. Through optical microscopy and scanning electron microscopy (SEM), three generations of pyrite were identified: framboidal pyrite, concentric overgrown pyrite, and sub-idiomorphic to idiomorphic cement pyrite. The sulfur isotopes of the pyrite were analyzed using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The results indicate that each type of pyrite has distinct sulfur isotope compositions (the framboidal pyrite: −16.85‰ to +2.16‰, the concentric overgrown pyrite: −7.86‰ to +10.32‰, the sub-idiomorphic to idiomorphic cement pyrite: +9.16‰ to +16.77‰). The framboidal pyrite and the sub-idiomorphic to idiomorphic cement pyrite were formed through bacterial sulfate reduction (BSR), while the concentric overgrown pyrite was formed through thermochemical sulfate reduction (TSR) triggered by the upward migration of hydrocarbons. The discovery of hydrocarbon inclusions provides evidence for the involvement of deep-seated reducing fluids in uranium mineralization. Uranium mineralization occurred in two distinct stages: (1) The early stage involved the interaction of uranium-bearing fluids with reductants in the mineralization-hosting strata under the influence of groundwater dynamics, leading to initial uranium enrichment. (2) The later stage involved the upward migration of deep-seated hydrocarbons along faults, which enhanced the reducing capacity of the sandstone and resulted in further uranium enrichment and mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 2289 KiB  
Article
Propagation Regimes and Signal Enhancement Mechanisms of Collinear Double-Pulse Plasma with Varying Inter-Pulse Delays
by Yang Zhao, Lei Zhang, Zhihui Tian, Xiuqing Zhang, Jiandong Bai and Wangbao Yin
Sensors 2025, 25(11), 3409; https://doi.org/10.3390/s25113409 - 28 May 2025
Viewed by 402
Abstract
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image information obtained from the emissions emitted by single/double pulse (SP/DP) laser-induced plasmas. The types of laser-supported absorption (LSA) waves of the plasmas were determined according to the interactions among the ablation vapor, the ambient gas, and the laser. Furthermore, the influence mechanisms of plasma shielding on DP-LIBS signal intensity enhancement with different inter-pulse delay were investigated. In our experimental conditions, the propagation regime of SP plasma is a laser-supported combustion (LSC) wave. The DP plasmas with short inter-pulse delays show the characteristics of a laser-supported detonation (LSD) wave, and the enhancement mechanism is mainly reheating for pre-plasma. On the contrary, the DP plasmas with longer inter-pulse delays show the characteristics of a LSC wave, and the increase in laser ablation is a major contributing factor to the signal improvement. In addition, the spectral lines, which are difficult to excite by SP-LIBS, can be obtained by selecting an appropriate inter-pulse delay and setting a short delay, which provides a new idea for the measurement of trace elements. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

12 pages, 8961 KiB  
Communication
Damage Characteristics in Glass Fiber-Reinforced Epoxy Resin Composites Under Continuous Wave and Pulsed Laser Modes
by Xue Zhang, Jian Peng, Tengfei Li, Jing Xiao, Guiyong Chen, Yanjun Tang, Miao He and Jinghua Han
Photonics 2025, 12(6), 526; https://doi.org/10.3390/photonics12060526 - 22 May 2025
Viewed by 462
Abstract
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we [...] Read more.
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we have mainly considered the ablation and damage characteristics of composite materials affected by continuous wave (CW) and pulsed laser (PL) modes. Through comparative analysis of damage morphologies and elemental variations, the damage characteristics and mechanisms of composite materials have been studied, and thermodynamic models have been established. The results demonstrate that the damage produced using the CW mode is primarily thermal ablation, induced through power intensification, whereas the PL mode predominantly causes thermal stress fractures via energy concentration. This investigation provides fundamental references for optimizing laser-based counter-UAV systems. Full article
Show Figures

Figure 1

24 pages, 21734 KiB  
Article
Formation Mechanism and Gemological Characteristics of “Yellow-Skinned” Nanhong Agate in Northeastern Yunnan, China: Evidence from Mineralogy and Geochemistry
by Qiuyun Song, Shitao Zhang, Wenzhou Pu, Liurunxuan Chen, Ruohan Zuo, Xianchao Chen, Dai Zhang and Wenlian Liu
Crystals 2025, 15(5), 488; https://doi.org/10.3390/cryst15050488 - 21 May 2025
Viewed by 486
Abstract
The “yellow-skinned” Nanhong agate represents a unique variety of Nanhong agate found in northeastern Yunnan, China, and it is highly valued for its distinctive yellow exterior and clear red–yellow interface. Owing to the limited research on this variety, the present study provides the [...] Read more.
The “yellow-skinned” Nanhong agate represents a unique variety of Nanhong agate found in northeastern Yunnan, China, and it is highly valued for its distinctive yellow exterior and clear red–yellow interface. Owing to the limited research on this variety, the present study provides the first comprehensive analysis. Field surveys and various laboratory techniques—including polarizing microscopy, scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectrometry, ultraviolet–visible (UV-VIS) absorption spectrometry, Raman spectroscopy, micro X-ray diffraction (µ-XRD) with Rietveld refinement, electron microprobe analysis (EPMA), and laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS)—were utilized to investigate its gemological, microtextural, spectroscopic, and geochemical characteristics. Field surveys identified the occurrence states of the “yellow-skinned” Nanhong agate. The laboratory results indicate that the agate primarily consists of α-quartz, with minor amounts of moganite, goethite, and hematite. The coloring mechanism observed in this study is consistent with the findings of previous studies: the external yellow coloration is due to goethite, while the internal red hue is attributed to hematite. Its unique pseudo-granular silica (Type III) structure provides a foundational basis for the later formation of the “yellow-skinned” agate variety, and geochemical data reveal the distribution patterns of elements. Based on geological surveys and experimental data, the formation of the “yellow-skinned” Nanhong agate in northeastern Yunnan can be divided into two stages: first, hydrothermal fluids filled the vesicles in the Permian Emeishan Basalt Formation (P2β), leading to the formation of primary Nanhong agate. Subsequently, the Type III primary agate underwent weathering, erosion, transport, and deposition in the red–brown sandy mudstone of the Lower Triassic Feixianguan Formation (T1f). The sedimentary environment in the second stage facilitated the conversion of outer hematite into goethite, resulting in the distinct “yellow-skinned” appearance with a clear red–yellow boundary. Based on the occurrence and stratigraphic relations, this study constrains the formation age of the “yellow-skinned” Nanhong agate to approximately 261.6 Ma. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

12 pages, 5901 KiB  
Article
Characteristics of Mineralization of Refractory Gold and Its Influence on Cyanide Gold Leaching Rates: A Case Study in Pituca II, Zamora Chinchipe, Ecuador
by Santiago Jose Navas Jaramillo and Renato Efren Gonzalez Zuñiga
Minerals 2025, 15(5), 523; https://doi.org/10.3390/min15050523 - 15 May 2025
Viewed by 510
Abstract
The recovery of gold in metallurgical processes is significantly influenced by the presence of refractory minerals. This study investigates the mineralogical characteristics of refractory gold in the Pituca II ore deposit, with a focus on identifying the sulfide minerals that encapsulate gold particles [...] Read more.
The recovery of gold in metallurgical processes is significantly influenced by the presence of refractory minerals. This study investigates the mineralogical characteristics of refractory gold in the Pituca II ore deposit, with a focus on identifying the sulfide minerals that encapsulate gold particles and understanding their impact on gold recovery rates via cyanidation leaching. To establish a theoretical basis for optimizing gold recovery, a comprehensive suite of analytical techniques including electron microprobe analysis, petrographic analysis, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and X-ray diffraction was employed to characterize the ore’s composition and mineralogical properties. The primary ore minerals identified were pyrite, galena, chalcopyrite, and sphalerite, with hessite occurring as an accessory phase. Gold was observed as fine-grained particles (<40 µm), predominantly enclosed within pyrite and galena, contributing to its refractory nature. Cyanidation tests revealed a strong correlation between particle size and leaching efficiency: material ground to D80 = 170 mesh (90 μm) achieved a recovery rate of 81.2%, compared to 72.2% for material at D80 = 100 mesh (150 μm). These findings elucidate the mineralogical constraints on gold recovery and underscore the necessity of appropriate particle size reduction to enhance leaching performance. The study provides practical insights and targeted recommendations for pretreatment strategies, thereby contributing to more efficient exploitation of refractory gold ores in similar geological settings. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1101
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

Back to TopTop